FutureMatch: Combining Human Value Judgments and Machine Learning to
Match in Dynamic Environments

John P. Dickerson
Carnegie Mellon University
dickerson@cs.cmu.edu

Abstract

The preferred treatment for kidney failure is a transplant;
however, demand for donor kidneys far outstrips supply. Kid-
ney exchange, an innovation where willing but incompatible
patient-donor pairs can exchange organs—via barter cycles
and altruist-initiated chains—provides a life-saving alterna-
tive. Typically, fielded exchanges act myopically, consider-
ing only the current pool of pairs when planning the cycles
and chains. Yet kidney exchange is inherently dynamic, with
participants arriving and departing. Also, many planned ex-
change transplants do not go to surgery due to various fail-
ures. So, it is important to consider the future when matching.

Motivated by our experience running the computational side
of a large nationwide kidney exchange, we present FUTURE-
MATCH, a framework for learning to match in a general dy-
namic model. FUTUREMATCH takes as input a high-level
objective (e.g., “maximize graft survival of transplants over
time”) decided on by experts, then automatically (i) learns
based on data how to make this objective concrete and (ii)
learns the “means” to accomplish this goal—a task, in our
experience, that humans handle poorly. It uses data from all
live kidney transplants in the US since 1987 to learn the qual-
ity of each possible match; it then learns the potentials of
elements of the current input graph offline (e.g., potentials
of pairs based on features such as donor and patient blood
types), translates these to weights, and performs a computa-
tionally feasible batch matching that incorporates dynamic,
failure-aware considerations through the weights.

We validate FUTUREMATCH on real fielded exchange data.
It results in higher values of the objective. Furthermore, even
under economically inefficient objectives that enforce equity,
it yields better solutions for the efficient objective (which does
not incorporate equity) than traditional myopic matching that
uses the efficiency objective.

Introduction

Chronic kidney disease is a life-threatening health issue that
affects millions of people worldwide; its societal burden is
likened to that of diabetes (Neuen et al. 2013). Damage from
kidney disease can cause irreparable loss of organ function
and, eventually, kidney failure. Such failure requires either
continual dialysis or an organ transplant to sustain life.
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The preferred treatment for kidney failure is transplanta-
tion. However, the demand for donor kidneys is far greater
than supply. In the US alone, the waiting list for a kid-
ney transplant had 101,956 patients as of November 18,
2014 (UNOS). Demand is increasing: for example, 36,395
people were added to the US national waiting list in 2013,
while only 16,461 left it due to receiving a kidney.

Patients can receive a transplant organ from either a de-
ceased or living donor. Roughly two thirds of transplanted
kidneys are sourced from cadavers, while one third come
from willing and healthy living donors. Patients who are for-
tunate enough to find a willing living donor must still con-
tend with compatibility issues like blood type, tissue type,
and other medical or logistical factors (as we discuss later in
the paper). If a willing would-be donor is incompatible with
a patient, the kidney cannot be transplanted.

Kidney exchange is a recent innovation that allows pa-
tients to swap willing but incompatible donors. Figure 1
shows a graphical representation of a small pool consist-
ing of three patient-donor pairs, where an arrow from pair
¢ to pair j means the patient at j is compatible with the
donor at 7. Also shown is an altruistic donor; such donors
do not come with paired patients and are willing to donate
a kidney without asking for one in return. The basic kid-
ney exchange problem is then to recommend an optimal—
according to some social welfare function—set of disjoint
cycles and altruist-initiated chains in the graph.
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Figure 1: Tiny example kidney exchange pool with three
patient-donor pairs and one altruistic donor.

Our Contributions

Fielded kidney exchange algorithms match patients and
donors myopically, considering only the current state of
the pool when deciding on a matching. However, kidney
exchange is inherently dynamic, with patient-donor pairs
and altruists arriving and departing the pool over time.
Intuitively, the matching algorithm should take distribu-
tional information about the future into account when de-
ciding what action to take now. Indeed, recent research



has shown that such dynamic matching should result in in-
creased overall social welfare (Awasthi and Sandholm 2009;
Unver 2010; Dickerson, Procaccia, and Sandholm 2012;
Ashlagi, Jaillet, and Manshadi 2013; Anshelevich et al.
2013; Akbarpour, Li, and Gharan 2014; Anderson et al.
2015). However, most of that prior work has been either
not computationally scalable or studied in simplified theo-
retical models, while here we study the problem in its full
complexity and develop a computationally scalable method-
ology. Also, the prior work has focused mainly on maxi-
mizing the number of matches, while our approach is for
any objective. Furthermore, many planned exchange trans-
plants do not go to surgery due to various failures in the
last few weeks before the operation (Ashlagi et al. 2011;
Dickerson, Procaccia, and Sandholm 2013). That introduces
a second form of dynamism. The approach in this paper is
the first to address both forms of dynamism.

As a proof of concept for this paper, we learn a novel
transplant quality predictor from a dataset consisting of all
living-donor kidney transplant events in the US since Oct 1,
1987, and discover that some present-day features of living-
donor transplants do not align with older results from de-
ceased donation in the medical literature (Opelz 1985). This
is noteworthy since today’s exchange priority policies have
largely been inherited from the United Network for Organ
Sharing (UNOS) deceased-donor waiting list policies.

Motivated by our experience running the computational
side of the UNOS nationwide kidney exchange that includes
over 140 transplant centers (over 60% of the centers in the
US), we present FUTUREMATCH, a general framework for
learning how to match in dynamic environments. FUTURE-
MATCH separates the “means” from the “ends” of kidney
exchange; it takes as input from human experts an overarch-
ing objective, and automatically learns a matching strategy
to achieve this goal. We validate the framework on three ex-
ample objective functions on real data drawn from the large,
fielded exchange. We find that using FUTUREMATCH even
with economically inefficient objectives—like maximizing
the match size subject to equity constraints—results in sig-
nificantly higher efficiency than myopic matching with the
explicit objective of efficiency.

Kidney Exchange Model

The standard model for kidney exchange encodes a kidney
exchange as a directed compatibility graph G = (V, E) by
constructing one vertex for each patient-donor pair in the
pool (Roth, Sénmez, and Unver 2004; 2005a; Roth, S6nmez,
and Unver 2005b). An edge e from v; to v; is included if the
patient in v; wants the donor kidney of v;. A paired donor
is willing to give her kidney if and only if the patient in her
vertex v; receives a kidney.

The weight w, of an edge e represents the utility to v;
of obtaining v;’s donor kidney. A cycle ¢ in the graph G
represents a possible kidney swap, with each vertex in the
cycle obtaining the kidney of the previous vertex. If ¢ in-
cludes k pairs, we refer to it as a k-cycle. For example, the
compatibility graph in Figure 1 includes two possible cycles:
a 2-cycle between vertex v; and vg, and a 3-cycle consist-
ing of vertices v;, v;, and vy. In kidney exchange, cycles of
length at most some small constant L are allowed—all trans-

plants in a cycle must be performed simultaneously so that
no donor backs out after his patient has received a kidney
but before he has donated his kidney. In most fielded kidney
exchanges, L = 3 (i.e., only 2- and 3-cycles are allowed).

Fielded kidney exchanges gain great utility through the
use of chains (Montgomery et al. 2006; Rees et al. 2009).
Chains start with an altruistic donor donating his kidney to
a patient, whose paired donor donates her kidney to another
patient, and so on. The compatibility graph in Figure 1 in-
cludes four possible chains: (a,v;), {(a,vs,v;), (@, v;, k),
and (a, v, v;, vx). Chains can be (and typically are) longer
than cycles in practice because it is not necessary to carry
out all the transplants in a chain simultaneously. There is
a chance that a donor backs out of his/her commitment to
donate—which has happened (albeit rarely) already in the
United States. Cycles cannot be executed in parts because if
someone backs out of a cycle, then some pair has lost a kid-
ney (i.e., their “bargaining chip”). In contrast, if someone
backs out of a chain, no pair has lost their bargaining chip
(although it is unfortunate that the chain ends).

A matching M is a collection of disjoint cycles and chains
in the graph G. The cycles and chains must be disjoint be-
cause no donor can give more than one of her kidneys. Given
the set of all legal matchings M, the (batch) clearing prob-
lem in kidney exchange is to find a matching M * that maxi-
mizes some utility function u : M — R. Formally:

M* = argmaxu(M)
MeM

The standard clearing problem for finite cycle cap L >
2 (even without chains) is NP-hard (Abraham, Blum, and
Sandholm 2007). Abraham, Blum, and Sandholm (2007)
took the first serious computational step toward solving
the kidney exchange problem by providing a specialized
branch-and-price-based (Barnhart et al. 1998) integer pro-
gram solver; subsequent work by Dickerson, Procaccia, and
Sandholm (2013; 2014) has increased solver speed and gen-
erality. We use an adapted version of that clearing algorithm
as the batch clearing algorithm module in our framework (as
we will discuss later).

In fielded kidney exchanges, one typically finds the maxi-
mum weighted cycle cover (i.e., u(M) = Y 1/ D co We).
This utilitarian objective can favor certain classes of patient-
donor pairs while marginalizing others, a phenomenon that
we explore—and help alleviate—in this paper.

Proposed Method

We now present the FUTUREMATCH framework for learn-
ing to match in dynamic environments. We begin by moti-
vating and describing the framework at a high level in the
first subsection. In the following subsections we discuss the
different parts of the framework in detail and how we instan-
tiated them for kidney exchange.

The FUTUREMATCH Framework

We are interested in learning from demographically accurate
data how to match in the present such that some overarch-
ing objective function is maximized over time. Scalability is
important: heavy offline statistics can be computed and peri-
odically updated, but the fielded clearing algorithm must run
quickly (within minutes or at most hours).
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Figure 2: The FUTUREMATCH framework.

Figure 2 graphically depicts the FUTUREMATCH frame-
work. A domain expert (e.g., a committee of medical and
legal professionals) begins by describing an overall objec-
tive function for the exchange. Even measuring this objec-
tive can be difficult: for example, if the goal is to maxi-
mize the number of days added to patients’ lives via kid-
ney transplantation, then calculating the relative quality of
a proposed match requires knowing some notion of utility
for each edge—representing a potential transplant—in the
compatibility graph. We propose to learn this edge weight
function w : £ — RT from data, and give examples for a
variety of objective functions later.

The learned weight function w is then fed into a parame-
terized (kidney exchange) simulator, calibrated by real data
so that it mimics the underlying distribution. This generator
in turn feeds training and test sets into a system for learning
the potentials of element classes in the compatibility graph.
Intuitively, given an element 6 (e.g., vertex, edge, cycle, or
chain type), a potential Py € R quantifies the expected util-
ity to the exchange of that element in the future (Dickerson,
Procaccia, and Sandholm 2012). Potentials are combined
with w to quantify an edge-specific quality rating. Here, we
learn potentials for the combinations of different blood types
for pairs under each of the weight functions we define.

Finally, the fielded clearing algorithm incorporates the
combined weight function w and set of potentials Pg into
its myopic weighted matching algorithm. This incorporation
comes at very low or no cost to the runtime of the clearing
algorithm; indeed, the final “potential-aware” input graph is
simply a re-weighted version of the original compatibility
graph, using the weights that encode the future.

In the rest of the section, we describe an in-depth im-
plementation of FUTUREMATCH. Our goals are twofold:
first, to show the general applicability and tractability of
the framework, and second, to mimic a large fielded kid-
ney exchange. Accomplishing this second goal, and lever-
aging our involvement with fielded kidney exchanges, sets
the stage for adoption of sustainability-motivated technol-
ogy that solves a problem clearly too difficult for humans—a
success story for computational sustainability practitioners.

Encoding an Objective Function

We now discuss in depth the process of defining an objective
for FUTUREMATCH. We do this in the context of kidney
exchange, but note that the process is general.

The medical and legal communities in kidney exchange

are concerned about a wide variety of match characteris-
tics. In our experience, the most frequently discussed in-
clude the number of overall matches, the number of over-
all transplants, the quality of transplants, and whether or not
to prefer specific subgroups in the exchange (children, sen-
sitized patients, underrepresented ethnicities) and by how
much. Other concerns could include notions of fair treatment
among participating centers and minimizing legal exposure.

In this paper, we consider two different kidney exchange
models—deterministic, where post-algorithmic match fail-
ures are not quantified in the optimization problem and
failure-aware, where they are—and three matching objec-
tives in each of the two models:

1. MAXCARD: Maximize the total number (i.e., cardinality)
of patients who are algorithmically matched (in the deter-
ministic model) or receive transplants in expectation (in
the failure-aware model);

2. MAXCARD-FAIR: Maximize the total number of pa-

tients who are algorithmically matched (in the determin-
istic model) or receive transplants in expectation (in the
failure-aware model), where “marginalized” patients are
weighted in the objective by some constant factor 5 more
than others; and

3. MAXLIFE: Maximize the total time algorithmically-

matched (deterministic) or transplanted (failure-aware)
donor organs will last in patients.

Each of these objectives amounts to setting weights on
edges in the input graph (e.g., Figure 1). Next, we detail edge
weighting algorithms for these example objectives.

In our experience, when committees debate priority points
for today’s exchanges, the discussions confound the goal
and the means. For example, a goal could be to maximize
matches and a means could be to prioritize sensitized pa-
tients because they are harder to match in the future. On the
other hand, many argue that sensitized patients should be
inherently preferred, and it seems that most do not make a
clear distinction between means and ends. In contrast, FU-
TUREMATCH clearly separates ends and means. Our objec-
tive (i.e., the “end”) lives in the space of weights on edges,
which the committee can clearly debate. On the other hand,
our framework automatically optimizes, via learning, the po-
tentials (the “means”) that are used as the means for enabling
the algorithm to make good future-aware failure-aware de-
cisions. The committee does not need to debate these poten-
tials, whose quantitative impact on performance is hard for
a human to predict or even understand.



Defining MAXCARD and MAXCARD-FAIR. The MAX-
CARD-FAIR objective can be viewed as a generalized form
of MAXCARD (that is, MAXCARD is just MAXCARD-FAIR
with an empty set of vertices who are preferred by the objec-
tive). A natural weighted fairness rule, adapted from (Dick-
erson, Procaccia, and Sandholm 2014), adjusts edge weights
by some re-weighting function A : E — R™. A simple ex-
ample re-weighting function is multiplicative:

AP(e) =

(14 B)we ifeendsin Vp
We otherwise

Here, Vp C V is the set of preferred vertices (we will define
one such subset in the experiments). Intuitively, for some
B > 0, this function scales the weight of edges ending in
marginalized vertices by (1 + ). For example, if 5 = 1.5,
then the optimization algorithm will value edges that result
in a marginalized patient receiving a transplant at 250% of
their initial weight (possibly scaled by factors such as edge
failure probability or chain position, as we discuss later).

For any M € M, let M’ be the matching such that every
edge e € E has augmented weight A®(e). Then the MAX-
CARD-FAIR utility function ua is defined in terms of the
utilitarian MAXCARD utility function u applied to the aug-
mented matching M’, such that ua (M) = u(M’). In the
experiments, we vary the parameter 8 to empirically quan-
tify its effects on each of the three objective functions.
Optimizing for MAXLIFE via learning to predict graft
survival from data. With the MAXLIFE objective we are
interested in maximizing how long the transplanted kidneys,
in aggregate, survive in the patients.! To do so, we must first
determine an empirically sound estimate of the lifespan of a
transplant as a function of donor and recipient attributes.

Delen, Walker, and Kadam (2005) compare a variety of
techniques for predicting breast cancer survivability; unlike
their study, we are interested in predicting the survival length
of a kidney graft, as opposed to whether or not a patient sur-
vives treatment at all. Data mining models are also actively
being developed to predict the risk of readmission for con-
gestive heart failure patients (Meadem et al. 2013). Most re-
lated to our work is the Kidney Donor Profile Index (KDPI),
which is currently under development by UNOS for use in
the deceased donor allocation process (Kidney Transplanta-
tion Committee 2011). The KDPI score of a deceased donor
kidney measures the estimated quality of the donor organ
being allocated to the average recipient. In contrast, our pre-
dictor, which we will describe next, provides a unique qual-
ity score not just based on donor attributes but also based on
attributes of the specific potential recipient.

We look at all 75,264 living donor transplant events in the
US between October 1, 1987 and June 30, 2013. This data
includes medical characteristics of the recipient and donor
at the time of transplantation, as well as follow-up data re-
garding the health of the recipient and the recipient’s new
kidney; this follow-up data is updated at least annually.

! Another objective would be to maximize aggregate increase in
life duration. This would involve subtracting out the expected life
duration without a transplant from the expected life duration with
the transplant, and could incorporate the possibility of additional
transplants after graft failure.

Conditioned on a kidney graft being marked as failed in
our dataset, the average graft lifetime is about 1912.7 days,
or slightly over 5 years. However, due in large part to the
marked increase in kidney failure since the late 1980s, nearly
75% of grafts in the dataset are not marked as failed. This oc-
curs because either (i) the recipient is still alive with a func-
tioning donated kidney or (ii) the recipient has died, but for
a non-kidney-failure-related reason. Thus, we use survival
analysis to estimate the lasting power of a graft.

Features of both the recipient and donor have a large ef-
fect on graft survival. For example, tissue type (HLA) test-
ing measures the closeness of match between antigens in the
cells of a donor and patient. Figure 3 gives a Kaplan-Meier
estimator of the survival functions of (i) kidney transplants
resulting from a donor and recipient being a perfect HLA
match and (ii) those resulting from imperfect HLA match-
ings. Clearly, a kidney that is a perfect tissue type match is
more desirable than an imperfectly matched one; indeed, the
model estimates a median survival time of 5808 days for a
perfect match compared to 4300 for an imperfect match. A
log-rank test revealed that the difference between the two
distributions was significant (p < 0.0001).

In our experiments, we
use a Cox proportional haz-
ards regression analysis to
explore the effect of multi-
ple features on survivability.
At a high level, this method
regresses the survival time
of the graft against explana-
tory features of the donor
and recipient. More specif-

ically, define the hazard H Figure 3: Kapllan-Meier .CSﬁ'
at time ¢ days after a trans- mator of survival functions,

plant as follows: 95% confidence intervals.
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H(t) :Ho(t) Xexp(b1X1 +b2X2++kak) (1)

Here, each Xj is a predictor variable corresponding to a
single feature of the donor or recipient, and Hy(t) is a base-
line hazard rate at time ¢ for a recipient with X; = 0 for
i € {1,...,k}. Then H (t) represents the instantaneous risk
of graft failure at time ¢. We want to learn this function.

To begin, we include the following features: recipient
age, difference in donor and recipient’s age, donor HLA
profile, recipient HLA profile, donor and recipient blood
type compatibility. The HLA profile of a donor or recipient
is separated into three integral features—HLA-A, HLA-B,
and HLA-DR—that can take values in {0, 1, 2}, represent-
ing 0, 1, or 2 mismatches. By separating the general HLA
mismatch feature into three separate mismatch features, we
complicate (but increase the power of) the model (Opelz
1985); this separation is motivated by evidence that mis-
matches at the HLA-A, -B, and -DR level have varyingly
negative impact on survival.

We ran a Cox proportional hazards regression on this un-
pruned feature space. This used 74,244 live donor transplan-
tations during which there were 18,714 graft failures (920
live donation events were dropped due to one or more miss-
ing features). Our initial regression showed that increases in
the HLA-B mismatch feature did not have a significant ef-



fect on the dependent variable (p = 0.22). Prior research
from the mid-1980s on cadaveric donation found a signif-
icant relationship between the combined feature of HLA-B
and HLA-DR mismatches on graft outcome (Opelz 1985);
we find that this does not hold on living donor data in the
present. After selecting significant variables in this initial
run—that is, all of the attributes previously discussed except
HLA-B mismatch—we re-ran a Cox proportional hazard re-
gression. Results are reported in Table 1.

feature | exp(b;) | SE(b;) z D
recipient age | 1.00753 | 0.0008 | 9.715 | <2x 10~ '°
age diff. | 1.00525 | 0.0007 | 7.766 | 8.10 x 10~
HLA-A | 1.05273 | 0.0120 | 4297 | 1.73 x 107°
HLA-DR | 1.08680 | 0.0119 | 6.984 | 2.86 x 10~ 2
ABO incomp. | 1.37871 | 0.0748 | 4.295 | 1.74 x 10~°

Table 1: Learned weights via Cox regression after feature
pruning for statistical significance.

Table 1 gives the standard error, z-score, and correspond-
ing p-value for each of our pruned features; each clearly has
a statistically significant effect on graft survival. To inter-
pret the results, as an example first consider the HLA-DR
feature. We see that exp(buLapr) = 1.087; recalling Equa-
tion 1, a unit increase in the HLA-DR mismatch feature will
result in a factor of 1.087 increase over the baseline hazard
rate. Varying either recipient age or the difference in donor
and recipient age was also statistically significant, with a
unit increase in recipient age having a larger effect on the
hazard rate. As might be expected, blood type compatibility
plays the largest role in hazard rate, where an incompatible
(and thus heavily immunosuppressed) transplant has a factor
1.379 increase over the base hazard rate.

Using this data, we can estimate S, (¢), the survival prob-
ability at time ¢ for a potential transplant e € E between a
recipient and donor with features x§, as follows: S, (t) =
exp (—Ho(t) x >_, x$b;) . Building on this, we define a
weight function w : E — RT as w(e) o exp (— Y, 25b;).
Intuitively, the weight function w assigns higher relative
weight to edges with lower risk, in turn biasing the optimizer
toward transplants with longer expected graft survival.

Learning the Potentials

The weight function w defined above quantifies how use-
ful an edge is in the present. To complement this, poten-
tials quantify how useful an element of the graph (an edge,
2-cycle, etc.) is expected to be in the future. This idea
was initially proposed by Dickerson, Procaccia, and Sand-
holm (2012); we build on their work but use a better learn-
ing algorithm (theirs did not converge, while ours did) for
determining the potentials, and a significantly more realistic
distribution of training and test instances.

First, we select a set © of features representing different
element types in the pool. Then, for each element type 6, as-
sign some value Py € R that represents the expected poten-
tial usefulness of that kind of element to the pool over time.
(We give a pedagogical instantiation of © in Appendix D.)
In this paper, we use a rich feature space consisting of the
ABO blood types of patients and donors. The blood type of

a donor kidney can result in rejection in a potential patient.
Human blood is split into four types—O, A, B, and AB—
based on the presence or absence of the A and B proteins.
While other reasons for incompatibility also exist (e.g., due
to sensitization, sickness, etc.), a type O kidney can be trans-
planted into any patient; type A and B kidneys can be trans-
planted into A and B patients, respectively, or an AB can-
didate; and type AB kidneys are limited to only type AB
patients. This imposes a natural partial ordering on blood
types; for example, it seems that an O-donor is somehow
more “valuable” than an A-donor because she has no blood
type restriction. Our automatically learned potentials agree
with this, as we will now discuss.

There are 4 x 4 = 16 combinations of patient and donor
blood types, and 4 possible blood types of altruists. So, we
have 20 different kinds of vertices. We want to learn a po-
tential for each of those 20 vertex types. Formally, the types
of vertex are ©g0 = {0-0,0-A,...,AB-B,AB-AB} U
{O,...,AB}, and we want to learn values Py for § € O po.

We combine the learned potentials Py with the weight
function w learned earlier using a function f,, : £ — R.
It balances the myopic value of an edge encoded by w with
the future value of an edge encoded by potentials. The idea
is that the revised weight, f,,, of an edge is its immediate
value if matched minus the potentials of its vertices because
if those vertices are matched now, they cannot contribute to
future matches. Specifically, f,,(e) = w(e)-(1—Pp, —Pp,),
where d and p are the vertices adjacent to edge e.

We use SMAC (Hutter, Hoos, and Leyton-Brown 2011),
a state-of-the-art model-based algorithm configuration tool
that searches through a parameter space to optimize a given
objective. SMAC guides its navigation in the space of pa-
rameter vectors by constructing a model that predicts algo-
rithm performance as a function of the parameters. It uses
the model to select promising parameter vectors and tests
them against the incumbent parameter vector.

In our setting, the parameter vector is the vector of poten-
tials. At each parameter vector that SMAC navigates to, we
run a large number of trials of our simulator of a kidney ex-
change to see how the batch matching algorithm would per-
form in a dynamic setting using that parameter vector. That
performance number is then fed back to SMAC, and SMAC
navigates to the next parameter vector to continue the search.
We learned potentials in two models—deterministic, where
post-algorithmic match failures are not quantified in the
optimization problem and failure-aware, where they are—
using a realistic dynamic simulator we built based on histor-
ical data from the UNOS kidney exchange (Kidney Paired
Donation Work Group 2013). See Appendix E for details.

Experiments

We validated FUTUREMATCH experimentally on data from
the UNOS nationwide kidney exchange. We explore the ef-
fect each of the three objectives—MAXCARD, MAXCARD-
FAIR, and MAXLIFE—has on a variety of metrics under
FUTUREMATCH and under myopic deterministic matching,
which is the fielded state of the art. The latter does not take
edge failure or learned potentials into account during opti-
mization; as described earlier, it finds a maximum weight



[V =300 |V|=400 |V|=500 |V|=600 [V|=700 |V]|=800 |V|=900
Total Gain  p [ Gain  p [ Gain  p [ Gain  p [ Gain p [ Gain  p | Gain _p
MAXCARD +2 v +4 v +5 v +6 v | 410 v | +11 v | +13 v
MAXCARD-FAIR, 5 = 1 +1 v +4 e +6 v +8 v +9 v +11 v +12 v
MAXCARD-FAIR, = 2 +1 +2 v +3 v +3 v +5 v +6 v +10
MAXCARD-FAIR, 3 =3 +1 +0 +3 v +1 +1 v +3 v +2
MAXCARD-FAIR, § = 4 -1 +1 +1 +1 +3 v +3 +2
MAXCARD-FAIR, 3 =5 +0 +0 +1 +1 +1 +2 +3
MAXLIFE +2 v +3 v +6 v +8 v +7 v | +11 v +9 v
Marginalized I
MAXCARD -2 X 2 X -3 X -4 X -6 X -7 X -9 X
MAXCARD-FAIR, 5 =1 -1 X -1 X -1 X -2 X -3 X -3 X -5 X
MAXCARD-FAIR, 3 = 2 +0 +0 +1 v +1 v +2 v +1 +1
MAXCARD-FAIR, =3 +1 v +1 v +3 v +3 v +3 v +5 v +4 v
MAXCARD-FAIR, § = 4 +1 v +2 v +3 v +4 v +4 v +5 v +5 v
MAXCARD-FAIR, 5 =5 +1 v +2 v +3 v +4 v +5 v +7 v +5 v
MAXLIFE -1 X -3 X -3 X -5 X -6 X -6 X -9 X

Table 2: Median gains in expected total number of transplants (top table) and total number of marginalized transplants (bottom
table) under FUTUREMATCH. A v represents statistical significance (Wilcoxon signed-rank test, p < 0.01).

matching (i.e., for each chain or cycle ¢, u(c) = > .. we)
during each period separately.

In the fairness-weighted expariments, we adapt our

matching algorithm using the re-weighting function A® de-
scribed earlier. The preferred set of vertices Vp includes
those with a pediatric or highly-sensitized patient. These
preferences are commonly used in kidney exchanges, al-
beit not in sophisticated, quantitative ways. For kidney ex-
change it has explicitly been articulated that pediatric pa-
tients should be preferred not only because they have a lot of
life left (barring their kidney disease) but also because hav-
ing poor kidney function stunts growth. Similarly, some pa-
tients are highly sensitized, which means they are extremely
unlikely to be medically compatible with a random organ.
For these patients, finding a kidney is difficult (UNOS). The
percentage of highly-sensitized patients in fielded kidney ex-
changes is high; over 60% of the patients in the UNOS kid-
ney exchange are highly sensitized. In fielded exchanges,
both of these “marginalized” patient types are prioritized.
We quantitatively explore how this should be done and what
the impact is.
Results. We compare FUTUREMATCH against a baseline of
myopic deterministic matching under each of the objectives.
Conservatively, statistical significance was determined us-
ing the Wilcoxon signed-rank test, which is a nonparametric
alternative to the paired ¢-test. Table 2 shows the median ex-
pected gain in the overall number of transplants from using
FUTUREMATCH under each of the objectives. Each column
labeled |V| = k corresponds to a simulation over k patient-
donor pairs and altruists; we test over increasing values of k
because kidney exchanges (both in the US and worldwide)
are still expanding toward their steady-state sizes.

Table 2 (top) shows that the two objectives that do not
regard fairness—MAXCARD and MAXLIFE—significantly
beat myopic deterministic matching under the same objec-
tive. Interestingly, so too does MAXCARD-FAIR for low
values of 8. As 3 increases, the gain in overall number of
transplants decreases (although it never drops below the de-
terministic matching algorithm with significance). This de-

crease in overall gain is incurred because marginalized pa-
tients, who (i) generally have lower in-degree, and (ii) have a
higher probability of match failure, are being weighted more
than easier-to-match pairs.

Table 2 (bottom) explores this tradeoff between fair-
ness and efficiency explicitly. For the fairness-agnostic and
lightly fairness-preferring objectives, a relative loss of a
few marginalized transplants is realized—although this loss
of marginalized transplants is always less (typically much
less) than the overall gain in transplants. Increasing the opti-
mizer’s preference for marginalized patients results in statis-
tically significant gains in the number of marginalized trans-
plants at no statistically significant loss in the overall ex-
pected number of transplants. In fact, for a middle ground
around S = 2, FUTUREMATCH often shows statistically
significant gains in both overall transplant and marginalized
transplant counts—a clear win over myopia.

Our experiments support the following conclusions:

e FUTUREMATCH under MAXCARD and MAXCARD-
FAIR with low 8 = 1 results in a significant increase in
the overall number of transplants compared to myopic, at
the cost of a smaller decrease in the number of marginal-
ized transplants.

e FUTUREMATCH under MAXCARD-FAIR with high j3 re-
sults in a significant increase in marginalized transplants,
at no cost to the overall number of transplants under my-
opic matching.

e For a middle ground around 5 = 2, FUTUREMATCH can
result in both more overall expected transplants and more
marginalized transplants.

We note that we are nor making policy recommendations;
rather, we are giving a proof of concept that our framework
can effectively balance conflicting wants in an exchange. In-
deed, the exact fairness quantification /3 that most effectively
balances efficiency and fairness is a function of the underly-
ing graph dynamics, which vertices are considered marginal-
ized, and the ethical and legal wants of an exchange. All
of these dimensions can be effectively encoded, validated,



compared, and fielded through FUTUREMATCH.

Conclusions

We presented FUTUREMATCH, a framework for learning
to do complex matching in a general dynamic model. The
framework addresses a computational sustainability prob-
lem directly uses data mining and optimization in many of
its modules. Motivated by our experience running the com-
putational side of a large nationwide kidney exchange, we
showed how to instantiate FUTUREMATCH to mimic an ex-
change under three different matching objectives and un-
der two models of kidney exchange. We validated FUTURE-
MATCH on real data drawn from 94 match runs of the US
nationwide exchange, and found that dynamic matching re-
sults in statistically significant increases in each of these ob-
jectives. Perhaps most critically, we showed that the frame-
work yields better efficiency and better fairness than deter-
ministic myopic matching algorithms—which are the status
quo class of algorithm in practice.
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Appendix A: Additional Prior Research in
Dynamic Matching

We briefly overview related theoretical work in dynamic
matching. Our work differs from it significantly. For one,
FUTUREMATCH learns to match better using data. Also, it
applies to a significantly richer set of problems, such as kid-
ney exchange, than traditional matching where the goal is to
simply pair up vertices. We now briefly overview some of
the prior work.

In the dynamic matching problem, vertices and/or edges
arrive and depart over time. Karp, Vazirani, and Vazirani
showed that the competitive ratio of any randomized on-
line bipartite matching algorithm is at best 1 — 1/e, and
gave an algorithm that achieves this (Karp, Vazirani, and
Vazirani 1990). The online bipartite matching problem has
seen significant renewed interest from Internet advertising
firms, since it relates to keyword and display ad allocation
(e.g., (Feldman et al. 2009; Manshadi, Gharan, and Saberi
2012)). Akbarpour, Li, and Gharan (2014) looks at mini-
mizing a function of average vertex waiting time (instead
of overall number of matches) in a dynamic model where
vertices arrive and depart over time.

In the query-commit problem (Goel and Tripathi 2012;
Molinaro and Ravi 2013), the goal is to find a matching
of maximum size in a graph where the set of edges is not
known ahead of time. Instead, an actor may query an edge

and, if present, is forced to commit to using that edge in the
final matching. This is relevant to kidney exchange, where
a matching algorithm first selects an edge, but that edge can
fail for either a medical or logistical reason before transplan-
tation. Blum et al. (2013) address a similar problem, where
at most two edges incident to any vertex can be selected in
a possible matching. Those papers operate in significantly
simpler models than real kidney exchange.

Dickerson, Procaccia, and Sandholm (2013) show that
making the optimization “failure-aware” by incorporating
edge failure probabilities directly into the optimization pro-
cess increases the expected number of transplants both in
theory and in practice; we incorporate their (static) model
into the FUTUREMATCH framework. Dickerson, Procaccia,
and Sandholm (2014) also explored the price of fairness in
kidney exchange, which is a measure of the relative loss in
efficiency of the system under various “fair”” matching rules.
They found that while the theoretical price of fairness is
low, in practice it can be non-trivial; we also incorporate this
model into FUTUREMATCH (and show that a favorable bal-
ance between fairness and efficiency can be struck in prac-
tice).

Dynamic kidney exchange is a largely unsolved prob-
lem. From the theory side, Unver provided the first results
in a model of dynamic kidney exchange that only includes
2-cycles and no chains (Unver 2010). Ashlagi, Jaillet, and
Manshadi (2013) and Anshelevich et al. (2013) look at
the batch matching problem, where a maximum cardinal-
ity matching is performed every k time periods, or when-
ever some feature of the graph crosses a predetermined
threshold. Awasthi and Sandholm (2009) approached the
problem computationally, using trajectory-based optimiza-
tion that samples potential future states to inform the present
matching algorithm; unfortunately, this does not scale com-
putationally to the projected steady-state size of the nation-
wide kidney exchange. Motivated by this, Dickerson, Pro-
caccia, and Sandholm (2012) proposed learning offline the
potentials of different elements (e.g., types of vertices or
edges) in the input graph, then subtracting out these poten-
tials per element in the objective online. We incorporate this
approach, too, into FUTUREMATCH.

Explicit novelty of our optimization approach. This pa-
per’s high level contribution is the design, implementa-
tion, and validation of FUTUREMATCH, the first data-
driven learning framework for complex online matching.
This paper is the first of its kind to combine future-
aware (Dickerson, Procaccia, and Sandholm 2012), failure-
aware (Dickerson, Procaccia, and Sandholm 2013), and
fairness-aware (Dickerson, Procaccia, and Sandholm 2014)
dimensions explicitly in the optimization and simulation
models. Each of these points has been discussed in the kid-
ney exchange literature and—especially in the context of
fairness—continues to be discussed in fielded kidney ex-
changes. We provide the first computational framework in
which the tradeoffs and benefits of these aspects of kidney
exchange can be explored, quantified, and balanced to max-
imize a high-level objective provided by human experts.



Appendix B: Fielded Kidney Exchanges

The idea of kidney exchange was presented in 1986 (Rapa-
port 1986), while the first organized kidney exchange, the
New England Paired Kidney Exchange (NEPKE), started
in 2003-2004 (Roth, Sénmez, and Unver 2004; 2005a;
Roth, Sénmez, and Unver 2005b). It has since ceased op-
erations and its pool was merged into the UNOS kidney ex-
change, which started in 2010 and now includes 58% of the
US transplant centers. All the decisions are transparent and
purely computational without human intervention.

There are also two large private kidney exchanges in the
US, the National Kidney Registry (NKR) and the Alliance
for Paired Donation (APD). They typically only work with
large transplant centers. Transplant centers can be part of
multiple exchanges. NKR makes their matching decisions
manually and APD uses a combination of algorithmic and
manual decision making. There was also another large pri-
vate kidney exchange, the Paired Donation Network (PDN),
which has ceased operations. In addition, there are several
smaller private kidney exchanges in the US. They typically
only involve one or a couple of transplant centers. These in-
clude an exchange at Johns Hopkins University and a single-
center exchange at the Methodist Specialty and Transplant
Hospital in San Antonio. Furthermore, there are now es-
tablished kidney exchanges in the Netherlands, Canada, and
England, as well as nascent ones in Portugal and Israel.

Kidney exchanges started with just using 2-cycles before
also allowing 3-cycles and altruist-initiated chains (Roth et
al. 2006). Since 2006, kidney exchanges have also incorpo-
rated never-ending chains, where the last donor in a chain
serves as an altruist in a later match run to initiate a new
chain (Rees et al. 2009). This approach is now included at
least in the three leading kidney exchanges (UNOS, NKR,
and APD).

Fielded kidney exchanges perform batch matching. The
objective in the batch optimization engine is not to simply
maximize the number of matches, but a weighted sum of
the matches, where the weights—aka. priority points—are
decided by committees of medical personnel, computer sci-
entists, and economists. At UNOS the current prioritization
scheme was largely inherited from the US deceased-donor
waiting list (which UNOS also runs) prioritization policy.
The UNOS priority points take into account the following
factors: do the donor and patient have zero antigen mismatch
in tissue type, sensitization of the patient, prior organ donor
status, pediatric status, wait time, geographic proximity, and
other antibody specificities.

Appendix C: Additional Details about
MAXCARD and MAXCARD-FAIR

In the main paper, we formally define and derive the
MAXLIFE objective function. We now formally address the
MAXCARD and MAXCARD-FAIR objectives. The MAX-
CARD-FAIR objective can be viewed as a generalized form
of MAXCARD (that is, MAXCARD is just MAXCARD-FAIR
with an empty set of vertices who are preferred by the ob-
jective).

Deciding which class of vertices are preferred is a com-
plex ethical and medical decision. We use two common pref-

erence criteria in this paper: pediatric status and sensitiza-
tion. Children (in the US, those who are under age 18) are
typically treated preferentially in medical systems; we fol-
low that rule here. For kidney exchange it has explicitly
been articulated that such pediatric patients should be pre-
ferred not only because they have a lot of life left (barring
their kidney disease) but also because having poor kidney
function stunts growth. Some patients are highly sensitized,
which means they are extremely unlikely to be medically
compatible with a random organ. For these patients, find-
ing a kidney is difficult (UNOS ). The percentage of highly-
sensitized patients in fielded kidney exchanges is high; over
60% of the patients in the UNOS kidney exchange are highly
sensitized.

Figure 4 shows the evolution of the UNOS nationwide
pool since inception, with each bar representing the pool at
the time of a match run. Red bars show the portion of the
pool that is marginalized (that is, either the patient is under
the age of 18 or highly sensitized). UNOS currently priori-
tizes such patients significantly in its matching algorithm.

Marginalization in the UNOS Exchange
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Figure 4: Evolution of the UNOS national kidney exchange.
For each of 94 match runs (x-axis), the number of highly-
sensitized or underage patients, non-highly-sensitized pa-
tients, and altruists are plotted (left y-axis), as well as the
percentage of patients who are highly sensitized or under-
age as a percentage of the pool size (right y-axis).

While defining fairness is a contentious issue in social
science, a recent paper by Dickerson, Procaccia, and Sand-
holm (2014) formalizes two natural “fair” utility functions
and shows how to optimize either of these functions in the
deterministic or failure-aware static models of kidney ex-
change. We adapt the weighted fairness rule from that paper
to FUTUREMATCH. The weighted fairness rule adjusts edge
weights by some re-weighting function A : £ — RT. A
simple example re-weighting function is multiplicative:

AP(e) — (14 B)w, ifeendsinVp
(e) = We otherwise

Here, Vp C V is the set of vertices with preferred,
marginalized patients. Intuitively, for some 5 > 0, this func-
tion scales the weight of edges ending in marginalized ver-



tices by (1+ ). For example, if 3 = 1.5, then the optimiza-
tion algorithm will value edges that result in a marginalized
patient receiving a transplant at 250% of their initial weight
(possibly scaled by factors like edge failure probability or
chain position, as we discussed in the experimental section
of the main paper).

For any M € M, let M’ be the matching such that every
edge e € F has augmented weight A?(e). Then the MAX-
CARD-FAIR utility function ua is defined in terms of the
utilitarian MAXCARD utility function u applied to the aug-
mented matching M’, such that ua (M) = u(M’). In the
experiments in the main paper, we varied the parameter 3 to
empirically quantify its effects on each of the three objective
functions.

Appendix D: Small Example of Potentials in
Kidney Exchange

We now provide an example of setting vertex potentials in a
reduced model of kidney exchange; note that, as described in
our paper, we use a much richer set of features in our exper-
iments. We must first select a set © of features representing
different element types in the pool. Then, for each element
type 6, assign some value Py € R that represents the ex-
pected potential usefulness of that kind of element to the
pool over time. As an overly simplified pedagogical exam-
ple, let ©,.r = {ALT, PAIR}; potentials are assigned based
on whether or not a vertex is an altruist or a patient-donor
pair. Intuitively, Py r > Ppar; altruistic donors tend to be
(much) easier to match because no returning edge is required
to “close the cycle” at the end of a chain. These potentials
are then subtracted out for each element in the objective.

Figure 5: Example of potentials ©rr. Pair p3 appears in
the second period. Myopic matching uses a to match two
pairs; assigning a positive potential results in all three pairs
matched without using a.

Figure 5 shows a two time period example under © .
Vertices a, p1, and py arrive in the first time period, while
vertex ps arrives in the second time period. Assigning a
(large enough) potential P, r results in the chains {(a,p;)
and (a, p1, p2) having negative weight and thus not being
matched in the first time period. However, when p3 arrives,
the chain (a, p1, p2, p3) may now have positive value (i.e.,
the utility of matching three pairs outweighs the learned
potential of holding a back for another round) and can be
matched, or the 3-cycle (p1, p2, p3) has higher positive value
and is matched instead, continuing to save the altruistic
donor a for a longer chain in the future.

Appendix E: Dynamic Simulator and
Verification

When learning potentials offline, it is important to mimic
closely the behavior of the fielded exchange online. If the
distribution of incoming potential types is different than ex-
pected, so too will be the estimates of potentials. We built
a dynamic simulator of kidney exchange using data from
the UNOS exchange (and APD (Ashlagi et al. 2011)). This
work significantly extends that of Dickerson, Procaccia, and
Sandholm (2013), which defined and experimentally evalu-
ated a model of the evolution of dynamic kidney exchange.
Critically, they did not perform dynamic optimization in that
model—just myopic optimization applied sequentially in a
dynamic model. They also sampled from a basic generator
that is no longer accepted in the kidney exchange commu-
nity (Saidman et al. 2006), while we sample from an accu-
rate distribution—the historical UNOS exchange pool!

Enter:

New pairs
& altruists
New pairs
& altruists

Figure 6: Dynamic kidney exchange.

Figure 6 portrays two time steps in our dynamic kidney
exchange simulator. New pairs and altruistic donors enter
the pool at each time period, while some leave the pool
due to a variety of non-exchange-related reasons (becoming
too ill to transplant, death, having a donor back out, find-
ing a donor elsewhere). A matching is performed at each
time period, which results in a set of matched pairs leaving
the pool for ¢ > 0 time periods. This reflects the length of
time required to medically and logistically verify the imple-
mentability of the planned match. Matched patients then ei-
ther leave the pool permanently after successfully receiving
a kidney, or return to the pool after failing to receive a kid-
ney. We set the relevant entrance and exit probabilities based
on the real UNOS kidney exchange data (Kidney Paired Do-
nation Work Group 2013).

A matching is determined at each time period based
on either a deterministic or failure-aware clearing algo-
rithm, which we briefly describe here. Both models compute
an optimal matching M* = argmax,,; ¢ u(M), where
u(M) = > .cp u(c). Here, u(c) represents the utility of
a cycle or chain c. In the deterministic model, u(c) =
Y ece fw(e): that is, the sum of the weights of the con-
stituent edges in a cycle or chain subject to the weight func-
tion w and potential mapping f learned in the main paper.



The deterministic model is susceptible to edge failures.
For example, if a single edge in a 3-cycle fails, that en-
tire cycle fails to execute. Similarly, if the third edge in a
long chain fails, then the tail of that chain (after the failed
edge) is cut off. Because of this dependence on other mem-
bers of a cycle or chain, edge failures cannot simply be en-
coded via the edge weighting function w, which treats all
edges (and their failures) independently. Let ¢. € [0, 1]
be the probability that an edge succeeds. Then the failure-
aware model defines the discounted utility for a cycle c as

u(c) = [Y.eo fw(€)] - [TT.ee ge]. and the discounted util-
ity for a chain ¢ = (eg, €1,...,€x_1) as

kE—1 i—1 1—1 k—1 k—1
u(e) = > (1—a) > fule)) [Tas | + D fuled) ]| qz} :
i=1 j=0 j=0 i=0 i=0
To compute the optimal matching M* at each time
period, we use an adapted version of the standard inte-
ger programming-based batch clearing algorithm (Abraham,
Blum, and Sandholm 2007; Dickerson, Procaccia, and Sand-
holm 2013; 2014) as a module in our dynamic simulator. In
the main paper, we explored the effects of optimization un-
der both models using each of the three objective functions
we defined.

Appendix F: Experimental Method &
Additional Experimental Results

Compatibility graphs are sampled with replacement from the
set of all altruistic donors and patient-donor pairs who have
ever participated (either successfully or unsuccessfully) in
the UNOS exchange between Oct. 2010 and Jan. 2014,
over a total of 94 match runs. Edges are drawn between
two vertices in the graph if they pass the UNOS feasibil-
ity test, which determines compatibility with respect to pa-
tient and donor blood type, which kidney (left or right) is
available, Hepatitis B/cytomegalovirus (CMV)/Epstein-Barr
virus (EBV) positivity, creatinine clearance, blood pressure
limits for the patient and donor, Body Mass Index (BMI)
preferences, minimum and maximum age requirements for
the donor, whether the donor and patient are willing to travel
or accept a shipped organ, and other per-patient and per-
donor requirements. The patient and donor features are used
during the learning of the weight function for MAXCARD-
FAIR (to determine marginalization status) and MAXLIFE
(to determine relative risk), and during the learning of poten-
tials Papo (to determine blood types). Which exact features
are used, and how, was discussed in the respective subsec-
tions earlier in the paper.

We draw edge failure probabilities in accordance with
those published in the medical literature (Ashlagi et al.
2011). Critically, according to the experience of the ex-
change (APD) in that work, sensitization plays a large role
in the probability of a match failing, with higher sensitiza-
tion correlating with higher failure probability. These fail-
ure probabilities are incorporated directly into the optimiza-
tion under the failure-aware model, and are incorporated di-
rectly into the simulation under both models (deterministic
and failure-aware). A matched patient-donor pair leaves the
pool for ¢ = 8 weeks before receiving a confirmation of

transplant success (and thus leaving the pool) or match fail-
ure (and thus reentering the pool, if the pair did not leave
for other reasons like death or finding a donor elsewhere).
Matching is performed once per week as is the current prac-
tice in the UNOS exchange; the total simulation occurs over
T = 24 weeks. Each data point is based on at least 140 runs
on separate generated realistic graphs.

We compare against the deterministic myopic matching
algorithm, variants of which are employed by all fielded kid-
ney exchanges. This matching algorithm does not explicitly
take edge failure nor learned potentials into account dur-
ing optimization; as described earlier, it finds a maximum
weight matching (i.e., for each chain or cycle ¢, u(c) =
> ece We). We adapt this matching algorithm as in Dicker-
son, Procaccia, and Sandholm (2014) when appropriate to
include equity constraints, using the re-weighting function
AP described earlier.

Additional Experimental Results

Figure 7 shows the increase in number of marginalized
transplants fielded as the [ fairness factor is increased. It
also shows the relative gain in the MAXLIFE objective com-
pared to myopic matching. From Table 2 in the main pa-
per, MAXLIFE yielded roughly the same number of trans-
plants, just weighted slightly toward those with longer ex-
pected graft survival. This correlation aligns with the general
notion that easier-to-match patients also tend to be healthier
overall, and thus similar vertices will tend to be favored (or
disfavored) by both the MAXCARD and MAXLIFE objec-
tives.

Num. marginalized transplants

™ Gain, relative graft survival

Median #Marg. Transplants
Median gain, relative survival

VI Vi

Figure 7: Median expected total number of marginalized
transplants under FUTUREMATCH (left), and median ex-
pected gain in MAXLIFE (right).



