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Abstract
Limited lookahead has been studied for decades
in perfect-information games. This paper initi-
ates a new direction via two simultaneous devia-
tion points: generalization to imperfect-information
games and a game-theoretic approach. The ques-
tion of how one should act when facing an oppo-
nent whose lookahead is limited is studied along
multiple axes: lookahead depth, whether the oppo-
nent(s), too, have imperfect information, and how
they break ties. We characterize the hardness of
finding a Nash equilibrium or an optimal commit-
ment strategy for either player, showing that in
some of these variations the problem can be solved
in polynomial time while in others it is PPAD-
hard or NP-hard. We proceed to design algorithms
for computing optimal commitment strategies for
when the opponent breaks ties 1) favorably, 2) ac-
cording to a fixed rule, or 3) adversarially. The
impact of limited lookahead is then investigated
experimentally. The limited-lookahead player of-
ten obtains the value of the game if she knows
the expected values of nodes in the game tree for
some equilibrium, but we prove this is not sufficient
in general. Finally, we study the impact of noise
in those estimates and different lookahead depths.
This uncovers a lookahead pathology.

1 Introduction
Limited lookahead has been a central topic in AI game
playing for decades. To date, it has been studied in single-
agent settings and perfect-information games—specifically
in well-known games such as chess, checkers, Go, etc., as
well as in random game tree models [Korf, 1990; Pearl,
1981; Pearl, 1983; Nau, 1983; Nau et al., 2010; Bouzy and
Cazenave, 2001; Ramanujan, Sabharwal, and Selman, 2010;
Ramanujan and Selman, 2011]. In this paper, we initiate
the game-theoretic study of limited lookahead in imperfect-
information games. Such games are more broadly applica-
ble to practical settings—for example auctions, negotiations,
security, cybersecurity, and medical settings—than perfect-
information games. Mirrokni, Thain, and Vetta [2012] con-
ducted a game-theoretic analysis of lookahead, but they con-
sider only perfect-information games, and the results are for

four specific games rather than broad classes of games. In-
stead, we analyze the questions for imperfect information and
general-sum extensive-form games.

As is typical in the literature on limited lookahead in
perfect-information games, we derive our results for a two-
agent setting. One agent is a rational player (Player r) try-
ing to optimally exploit a limited-lookahead player (Player
l). Our results extend immediately to one rational player and
more than one limited-lookahead player, as long as the latter
all break ties according to the same scheme (statically, favor-
ably, or adversarially—as described later in the paper). This
is because such a group of limited-lookahead players can be
treated as one from the perspective of our results.

The type of limited-lookahead player we introduce is anal-
ogous to that in the literature on perfect-information games.
Specifically, we let the limited-lookahead player l have a
node evaluation function h that places numerical values on
all nodes in the game tree. Given a strategy for the rational
player, at each information set at some depth i, Player l picks
an action that maximizes the expected value of the evalua-
tion function at depth i + k, assuming optimal play between
those levels. Our study is the game-theoretic, imperfect-
information generalization of lookahead questions studied
in the literature and therefore interesting in its own right.
The model also has applications such as biological games,
where the goal is to steer an evolution or adaptation process
(which typically acts myopically with lookahead 1) [Sand-
holm, 2015] and security games where opponents are often
assumed to be myopic (as makes sense when the number
of adversaries is large [Yin et al., 2012]). Furthermore, in-
vestigating how well a rational player can exploit a limited-
lookahead player lends insight into the limitations of using
limited-lookahead algorithms in multiagent decision making.

We then design algorithms for finding an optimal strat-
egy to commit to for the rational player. We focus on this
rather than equilibrium computation because the latter seems
nonsensical in this setting: the limited-lookahead player de-
termining a Nash equilibrium strategy would require her to
reason about the whole game for the rational player’s strat-
egy, which rings contrary to the limited-lookahead assump-
tion. Computing optimal strategies to commit to in standard
rational settings has previously been studied in normal-form
games [Conitzer and Sandholm, 2006] and extensive-form
games [Letchford and Conitzer, 2010], the latter implying
some complexity results for our setting as we will discuss.



As in the literature on lookahead in perfect-information
games, a potential weakness of our approach is that we re-
quire knowing the evaluation function h (but make no other
assumptions about what information h encodes). In practice,
this function may not be known. As in the perfect-information
setting, this can lead to the rational exploiter being exploited.

2 Extensive-form games
We start by defining the class of games that the players will
play, without reference to limited lookahead. An extensive-
form game Γ is a tuple 〈N,A, S, Z,H, σ0, u, I〉. N is the set
of players. A is the set of all actions in the game. S is a set of
nodes corresponding to sequences of actions. They describe
a tree with root node sr ∈ S. At each node s, it is the turn of
some Player i to move. Player i chooses among actions As,
and each branch at s denotes a different choice in As. Let tsa
be the node transitioned to by taking action a ∈ As at node
s. The set of all nodes where Player i is active is called Si.
Z ⊂ S is the set of leaf nodes. The utility function of Player
i is ui : Z → R, where ui(z) is the utility to Player i when
reaching node z. We assume, without loss of generality, that
all utilities are non-negative. Zs is the subset of leaf nodes
reachable from a node s. Hi ⊆ H is the set of heights in
the game tree where Player i acts. Certain nodes correspond
to stochastic outcomes with a fixed probability distribution.
Rather than treat those specially, we let Nature be a static
player acting at those nodes. H0 is the set of heights where
Nature acts. σ0 specifies the probability distribution for Na-
ture, with σ0(s, a) denoting the probability of Nature choos-
ing outcome a at node s. Imperfect information is represented
in the game model using information sets. Ii ⊆ I is the set
of information sets where Player i acts. Ii partitions Si. For
nodes s1, s2 ∈ I, I ∈ Ii, Player i cannot distinguish among
them, and so As1 = As2 = AI .

We denote by σi : Si → [0, 1] a behavioral strategy for
Player i. For each information set I ∈ Ii, it assigns a proba-
bility distribution over AI , the actions at the information set.
σi(I, a) is the probability of playing action a at information
set I . A strategy profile σ = (σ0, . . . , σn) consists of a be-
havioral strategy for each player. We will often use σ(I, a)
to mean σi(I, a), since the information set specifies which
Player i is active. As described above, randomness external
to the players is captured by the Nature outcomes σ0.

Let the probability of going from node s to node ŝ under
strategy profile σ be πσ(s, ŝ) = Π〈s̄,ā〉∈Xs,ŝ

σ(s̄, ā) where
Xs,ŝ is the set of node-action pairs on the path from s to ŝ. We
let the probability of reaching node s be πσ(s) = πσ(sr, s),
the probability of going from the root node to s. Let πσ(I) =∑
s∈I π

σ(s) be the probability of reaching any node in I . Due
to perfect recall, we have πσi (I) = πσi (s) for all s ∈ I . For
probabilities over Nature, πσ0 = πσ̄0 for all σ, σ̄, so we can ig-
nore the strategy profile superscript and write π0. Finally, for
all behavioral strategies, the subscript −i refers to the same
definition, excluding Player i. For example, πσ−i(s) denotes
the probability of reaching s over the actions of the players
other than i, that is, if i played to reach s with probability 1.

3 Model of limited lookahead
We now describe our model of limited lookahead. We use
the term optimal hypothetical play to refer to the way the

limited-lookahead agent thinks she will play when looking
ahead from a given information set. In actual play part way
down that plan, she may change her mind because she will
then be able to see to a deeper level of the game tree.

Let k be the lookahead of Player l, and SkI,a the nodes at
lookahead depth k below information set I that are reach-
able (through some path) by action a. As in prior work in
the perfect-information game setting, Player l has a node-
evaluation function h : S → R that assigns a heuristic nu-
merical value to each node in the game tree.

Given a strategy σr for the other player and fixed action
probabilities for Nature, Player l chooses, at any given in-
formation set I ∈ Il at depth i, a (possibly mixed) strategy
whose support is contained in the set of actions that max-
imize the expected value of the heuristic function at depth
i + k, assuming optimal hypothetical play by her (maxσl

in
the formula below). We will denote this set by A∗I =

{a : a ∈ arg max
a∈AI

max
σl

∑
s∈I

πσ−l(s)

πσ−l(I)

∑
s′∈Sk

I,a

πσ(tsa, s
′)h(s′)},

where σ = {σl, σr} is the strategy profile for the two play-
ers. Here moves by Nature are also counted toward the depth
of the lookahead. The model is flexible as to how the ratio-
nal player chooses σr and how the limited-lookahead player
chooses a (possibly mixed) strategy with supports within the
sets A∗I . For one, we can have these choices be made for both
players simultaneously according to the Nash equilibrium so-
lution concept. As another example, we can ask how the play-
ers should make those choices if one of the players gets to
make, and commit to, all her choices before the other.

4 Complexity
In this section we analyze the complexity of finding strategies
according to these solution concepts.
Nash equilibrium. Finding a Nash equilibrium when Player
l either has information sets containing more than one node,
or has lookahead at least 2, is PPAD-hard [Papadimitriou,
1994]. This is because finding a Nash equilibrium in a 2-
player general-sum normal-form game is PPAD-hard [Chen,
Deng, and Teng, 2009], and any such game can be converted
to a depth 2 extensive-form game, where the general-sum
payoffs are the evaluation function values.

If the limited-lookahead player only has singleton informa-
tion sets and lookahead 1, an optimal strategy can be trivially
computed in polynomial time in the size of the game tree for
the limited-lookahead player (without even knowing the other
player’s strategy σr): for each of her information sets, we sim-
ply pick an action that has highest immediate heuristic value.
To get a Nash equilibrium, what remains to be done is to com-
pute a best response for the rational player, which can also be
easily done in polynomial time [Johanson et al., 2011].
Commitment strategies. Next we study the complexity of
finding commitment strategies (that is, finding a strategy for
the rational player to commit to, where the limited lookahead
player then responds to that strategy.). The complexity de-
pends on whether the game has imperfect information (infor-
mation sets that include more than one node) for the limited-
lookahead player, how far that player can look ahead, and
how she breaks ties in her action selection.



When ties are broken adversarially, the choice of response
depends on the choice of strategy for the rational player. If
Player l has lookahead one and no information sets, it is easy
to find the optimal commitment strategy: the set of optimal
actions A∗s for any node s ∈ Sl can be precomputed, since
Player r does not affect which actions are optimal. Player l
will then choose actions from these sets to minimize the util-
ity of Player r. We can view the restriction to a subset of
actions as a new game, where Player l is a rational player in
a zero-sum game. An optimal strategy for Player r to com-
mit to is then a Nash equilibrium in this smaller game. This
is solvable in polynomial time by an LP that is linear in the
size of the game. The problem is hard without either of these
assumptions. This is shown in an extended online version.

5 Algorithms
In this section we will develop an algorithm for solving the
hard commitment-strategy case. Naturally its worst-case run-
time is exponential. As mentioned in the introduction, we
focus on commitment strategies rather than Nash equilibria
because Player l playing a Nash equilibrium strategy would
require that player to reason about the whole game for the
opponent’s strategy. Further, optimal strategies to commit to
are desirable for applications such as biological games [Sand-
holm, 2015] (because evolution is responding to what we are
doing) and security games [Yin et al., 2012] (where the de-
fender typically commits to a strategy).

Since the limited-lookahead player breaks ties adversari-
ally, we wish to compute a strategy that maximizes the worst-
case best response by the limited-lookahead player. For ar-
gument’s sake, say that we were given A, which is a fixed
set of pairs, one for each information set I of the limited-
lookahead player, consisting of a set of optimal actions A∗I
and one strategy for hypothetical play σIl at I . Formally,
A =

⋃
I∈Il〈A

∗
I , σ

I
l 〉. To make these actions optimal for

Player l, Player r must choose a strategy such that all actions
in A are best responses according to the evaluation function
of Player l. Formally, for all action triples a, a∗ ∈ A, a′ /∈ A
(letting π(s) denote probabilities induced by σIl for the hypo-
thetical play between I, a and s):∑

s∈Sk
I,a

π(s) · h(s) >
∑

s∈Sk
I,a′

π(s) · h(s) (1)

∑
s∈Sk

I,a

π(s) · h(s) =
∑

s∈Sk
I,a∗

π(s) · h(s) (2)

Player r chooses a worst-case utility-maximizing strategy
that satisfies (1) and (2), and Player l has to compute a (pos-
sibly mixed) strategy from A such that the utility of Player r
is minimized. This can be solved by a linear program:
Theorem 1. For some fixed choice of actions A, Nash
equilibria of the induced game can be computed in poly-
nomial time by a linear program that has size O(|S|) +

O(
∑
I∈Il |AI | ·maxs∈S |As|k).

To prove this theorem, we first design a series of linear
programs for computing best responses for the two players.
We will then use duality to prove the theorem statement.

In the following, it will be convenient to change to matrix-
vector notation, analogous to that of von Stengel [1996], with

some extensions. Let A = −B be matrices describing the
utility function for Player r and the adversarial tie-breaking
of Player l overA, respectively. Rows are indexed by Player r
sequences, and columns by Player l sequences. For sequence
form vectors x, y, the objectives to be maximized for the
players are then xAy, xBy, respectively. Matrices E,F are
used to describe the sequence form constraints for Player r
and l, respectively. Rows correspond to information sets, and
columns correspond to sequences. Letting e, f be standard
unit vectors of length |Ir| , |Il|, respectively, the constraints
Ex = e, Fy = f describe the sequence form constraint for
the respective players. Given a strategy x for Player r satis-
fying (1) and (2) for some A, the optimization problem for
Player l becomes choosing a vector of y′ representing prob-
abilities for all sequences in A that minimize the utility of
Player r. Letting a prime superscript denote the restriction of
each matrix and vector to sequences in A, this gives the fol-
lowing primal (3) and dual (4) LPs:

max
y′

(xTB′)y′

F ′y′ = f ′

y ≥ 0

(3)

min
q′

q′T f ′

q′TF ′ ≥ xTB′ (4)

where q′ is a vector with |A| + 1 dual variables. Given
some strategy y′ for Player l, Player r maximizes utility
among strategies that induceA. This gives the following best-
response LP for Player r:

max
x

xT (Ay′)

xTET = eT

x ≥ 0

xTH¬A − xTHA ≤ −ε
xTGA∗ = xTGA

(5)

where the last two constraints encode (1) and (2), respec-
tively. The dual problem uses the unconstrained vectors p, v
and constrained vector u and looks as follows

min
p,u,v

eT p− ε · u

ET p+ (H¬A −HA)u+ (GA∗ −GA)v ≥ A′y′

u ≥ 0

(6)

We can now merge the dual (4) with the constraints from the
primal (5) to compute a minimax strategy: Player r chooses
x, which she will choose to minimize the objective of (4),

min
x,q′

q′T f ′

q′TF ′ − xTB′ ≥ 0

−xTET = −eT

x ≥ 0

xTHA − xTH¬A ≥ ε
xTGA − xTGA∗ = 0

(7)

Taking the dual of this gives
max
y′,p

−eT p+ ε · u

−ET p+ (HA −H¬A)u+ (GA −GA∗)v ≤ B′y′

F ′y′ = f ′

y, u ≥ 0

(8)



We are now ready to prove Theorem 1.

Proof. The LPs in Theorem 1 are (7) and (8). We will use
duality to show that they provide optimal solutions to each of
the best response LPs. Since A = −B, the first constraint in
(8) can be multiplied by−1 to obtain the first constraint in (6)
and the objective function can be transformed to that of (6) by
making it a minimization. By the weak duality theorem, we
get the following inequalities

q′T f ′ ≥ xTB′y′; by LPs (3) and (4)

eT p− ε · u ≥ xTA′y′; by LPs (5) and (6)
We can multiply the last inequality by −1 to get:

q′T f ′ ≥ xTB′y′ = −xTA′y′ ≥ −eT p+ ε · u (9)
By the strong duality theorem, for optimal solutions to
LPs (7) and (8) we have equality in the objective functions
q′T f ′ = −eT p+ εu which yields equality in (9), and thereby
equality for the objective functions in LPs (3), (4) and for (5),
(6). By strong duality, this implies that any primal solution
x, q′ and dual solution y′, p to LPs (7) and (8) yields opti-
mal solutions to the LPs (3) and (5). Both players are thus
best responding to the strategy of the other agent, yielding
a Nash equilibrium. Conversely, any Nash equilibrium gives
optimal solutions x, y′ for LPs (3) and (5). With correspond-
ing dual solutions p, q′, equality is achieved in (9), meaning
that LPs (7) and (8) are solved optimally.

It remains to show the size bound for LP (7). Using sparse
representation, the number of non-zero entries in the matri-
ces A,B,E, F is linear in the size of the game tree. The
constraint set xTHA − xTH¬A ≥ ε, when naively imple-
mented, is not. The value of a sequence a /∈ A∗I is dependent
on the choice among the cartesian product of choices at each
information set I ′ encountered in hypothetical play below it.
In practice we can avoid this by having a real-valued vari-
able vdI (I ′) representing the value of I ′ in lookahead from I ,
and constraints vdI (I ′) ≥ vdI (I ′, a) for each a ∈ I ′, where
vdI (I ′, a) is a variable representing the value of taking a at
I ′. If there are more information sets below I ′ where Player l
plays, before the lookahead depth is reached, we recursively
constrain vdI (I ′, a) to be:

vdI (I ′, a) ≥
∑
Ǐ∈D

vdI (Ǐ) (10)

where D is the set of information sets at the next level where
Player l plays. If there are no more information sets where
Player l acts, then we constrain vdI (I ′, a):

vdI (I ′, a) ≥
∑

s∈Sk
I′,a

πσ−lh(s) (11)

Setting it to the probability-weighted heuristic value of the
nodes reached below it. Using this, we can now write the con-
straint that a dominates all a′ ∈ I, a′ /∈ A as:∑

s∈Sk
I,a

πσ(s)h(s) ≥ vdI (I)

There can at most beO(
∑
I∈Il |AI |) actions to be made dom-

inant. For each action at some information set I , there can
be at most O(maxs∈S |As|min{k,k′}

) entries over all the con-
straints, where k′ is the maximum depth of the subtrees rooted
at I , since each node at the depth the player looks ahead to

has its heuristic value added to at most one expression. For
the constraint set xTGA − xTGA∗ = 0, the choice of hy-
pothetical plays has already been made for both expressions,
and so we have the constraint∑

s∈Sk
I,a

πσ(s)h(s) =
∑

s∈Sk
I,a′

πσ
′
(s)h(s)

for all I ∈ Il, a, a′ ∈ I, {a, σl}, {a′, σl,′} ∈ A, where
σ = {σ−l, σl}, σ′ = {σ−l, σl,′}

There can at most be
∑
I∈Il |AI |

2 such constraints, which is
dominated by the size of the previous constraint set.

Summing up gives the desired bound.

In reality we are not given A. To find a commitment strat-
egy for Player r, we could loop through all possible structures
A, solve LP (7) for each one, and select the one that gives
the highest value. We now introduce a mixed-integer program
(MIP) that picks the optimal induced game A while avoiding
enumeration. The MIP is given in (12). We introduce Boolean
sequence-form variables that denote making sequences sub-
optimal choices. These variables are then used to deactivate
subsets of constraints, so that the MIP branches on formula-
tions of LP (7), i.e., what goes into the structure A. The size
of the MIP is of the same order as that of LP (7).

min
x,q,z

qT f

qTF ≥ xTB − zM
Ex = e

xTHA ≥ xTH¬A + ε− (1− z)M
xTGA = xTGA∗ ± (1− z)M∑
a∈AI

za ≥ za′

x ≥ 0, z ∈ {0, 1}

(12)

The variable vector x contains the sequence form variables
for Player r. The vector q is the set of dual variables for Player
l. z is a vector of Boolean variables, one for each Player l se-
quence. Setting za = 1 denotes making the sequence a an in-
optimal choice. The matrixM is a diagonal matrix with suffi-
ciently large constants (e.g. the smallest value in B) such that
setting za = 1 deactivates the corresponding constraint. Sim-
ilar to the favorable-lookahead case, we introduce sequence
form constraints

∑
a∈AI

za ≥ za′ where a′ is the parent se-
quence, to ensure that at least one action is picked when the
parent sequence is active. We must also ensure that the incen-
tivization constraints are only active for actions in A:

xTHA − xTH¬A ≥ ε− (1− z)M (13)

xTGA − xTGA∗ = 0± (1− z)M
for diagonal matrices M with sufficiently large entries.
Equality is implemented with a pair of inequality constraints
{≤,≥}, where ± denotes adding or subtracting, respectively.

The values of each column constraint in (13) is imple-
mented by a series of constraints. We add Boolean variables
σIl (I ′, a′) for each information set action pair I ′, a′ that is
potentially chosen in hypothetical play at I . Using our regu-
lar notation, for each a, a′ where a is the action to be made



dominant, the constraint is implemented by:∑
s∈Sk

I,a

vi(s) ≥ vdI (I), vi(s) ≤ σIl (I ′, a′) ·M (14)

where the latter ensures that vi(s) is only non-zero if chosen
in hypothetical play. We further need the constraint vi(s) ≤
πσ−l(s)h(s) to ensure that vi(s), for a node s at the lookahead
depth, is at most the heuristic value weighted by the probabil-
ity of reaching s.

6 Experiments
In this section we experimentally investigate how much util-
ity can be gained by optimally exploiting a limited-lookahead
player. We conduct experiments on Kuhn poker [Kuhn,
1950], a canonical testbed for game-theoretic algorithms, and
a larger simplified poker game that we call KJ. Kuhn poker
consists of a three-card deck: king, queen, and jack. Each
player antes 1. Each player is then dealt one of the three cards,
and the third is put aside unseen. A single round of betting
(p = 1) then occurs. In KJ, the deck consists of two kings
and two jacks. Each player antes 1. A private card is dealt
to each, followed by a betting round (p = 2), then a public
card is dealt, follower by another betting round (p = 4). If no
player has folded, a showdown occurs. For both games, each
round of betting looks as follows:
• Player 1 can check or bet p.

– If Player 1 checks Player 2 can check or raise p.
∗ If Player 2 checks the betting round ends.
∗ If Player 2 raises Player 1 can fold or call.
· If Player 1 folds Player 2 takes the pot.
· If Player 1 calls the betting round ends.

– If Player 1 raises Player 2 can fold or call.
∗ If Player 2 folds Player 1 takes the pot.
∗ If Player 2 calls the betting round ends.

In Kuhn poker, the player with the higher card wins in a show-
down. In KJ, showdowns have two possible outcomes: one
player has a pair, or both players have the same private card.
For the former, the player with the pair wins the pot. For the
latter the pot is split. Kuhn poker has 55 nodes in the game
tree and 13 sequences per player. The KJ game tree has 199
nodes, and 57 sequences per player.

To investigate the value that can be derived from exploiting
a limited-lookahead opponent, a node evaluation heuristic is
needed. In this work we consider heuristics derived from a
Nash equilibrium. For a given node, the heuristic value of
the node is simply the expected value of the node in (some
chosen) equilibrium. This is arguably a conservative class of
heuristics, as a limited-lookahead opponent would not be ex-
pected to know the value of the nodes in equilibrium. Even
with this form of evaluation heuristic it is possible to exploit
the limited-lookahead player, as we will show. We will also
consider Gaussian noise being added to the node evaluation
heuristic, more realistically modeling opponents who have
vague ideas of the values of nodes in the game. Formally, let
σ be an equilibrium, and i the limited-lookahead player. The
heuristic value h(s) of a node s is:

h(s) =

{
ui(s) if s ∈ Z∑
a∈As

σ(s, a)h(tsa) otherwise
(15)

We consider two different noise models. The first adds Gaus-
sian noise with mean 0 and standard deviation γ indepen-
dently to each node evaluation, including leaf nodes. Letting
µs be a noise term drawn from N (0, γ): ĥ(s) = h(s) + µs.
The second, more realistic, model adds error cumulatively,
with no error on leaf nodes:

h̄(s) =

{
ui(s) if s ∈ Z[∑

a∈As
σ(s, a)h̄(tsa)

]
+ µs otherwise

(16)

Using MIP (12), we computed optimal strategies for the
rational player in Kuhn poker and KJ. The results are given
in Figure 1. The x-axis is the noise parameter γ for ĥ and h̄.
The y-axis is the corresponding utility for the rational player,
averaged over at least 1000 runs per tuple 〈game, choice of
rational player, lookahead, standard deviation〉. Each figure
contains plots for the limited-lookahead player having looka-
head 1 or 2, and a baseline for the value of the game in equi-
librium without limited lookahead.
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(f) Kuhn Player 2, h̄
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(g) KJ Player 1, h̄
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Figure 1: Winnings in Kuhn poker and KJ for the rational
player as Player 1 and 2, respectively, for varying evaluation
function noise. Error bars show standard deviation.

Figures 1a and b show the results for using evaluation func-
tion ĥ in Kuhn poker, with the rational player in plot a and b



being Player 1 and 2, respectively. For rational Player 1, we
see that, even with no noise in the heuristic (i.e., the limited-
lookahead player knows the value of each node in equilib-
rium), it is possible to exploit the limited-lookahead player
if she has lookahead 1. (With lookahead 2 she achieves the
value of the game.) For both amounts of lookahead, the ex-
ploitation potential steadily increases as noise is added.

Figures 1c and d show the same variants for KJ. Here,
lookahead 2 is worse for the limited-lookahead player than
lookahead 1. To our knowledge, this is the first known
imperfect-information lookahead pathology. Such patholo-
gies are well known in perfect-information games [Beal,
1980; Pearl, 1981; Nau, 1983], and understanding them re-
mains an active area of research [Luštrek, Gams, and Bratko,
2006; Nau et al., 2010; Wilson et al., 2012]. This version of
the node heuristic does not have increasing visibility: node
evaluations do not get more accurate toward the end of the
game. Our experiments on KJ with h̄ in Figures 1g and h do
not have this pathology, and h̄ does have increasing visibility.

Figure 2 shows a simple subtree (that could be attached to
any game tree) where deeper lookahead can make the agent’s
decision arbitrarily bad, even when the node evaluation func-
tion is the exact expected value of a node in equilibrium.

P1 P2∗

P1∗

α

−α1

0

01

0

0

Figure 2: A subtree that exhibits lookahead pathology.
We now go over the example of Figure 2. Assume without

loss of generality that all payoffs are positive in some game.
We can then insert the subtree in Figure 2 as a subgame at any
node belonging to P1, and it will be played with probability 0
in equilibrium, since it has expected value 0. Due to this, all
strategies where Player 2 chooses up can be part of an equilib-
rium. Assuming that P2 is the limited-lookahead player and
minimizing, for large enough α, the node labeled P1∗ will be
more desirable than any other node in the game, since it has
expected value −α according to the evaluation function. A
rational player P1 can use this to get P2 to go down at P2∗,
and then switch to the action that leads to α. This example is
for lookahead 1, but we can generalize the example to work
with any finite lookahead depth: the node P1∗ can be replaced
by a subtree where every other leaf has payoff 2α, in which
case P2 would be forced to go to the leaf with payoff α once
down has been chosen at P2∗.

Figures 1e and f show the results for Kuhn poker with h̄.
These are very similar to the results for ĥ, with almost iden-
tical expected utility for all scenarios. Figures 1g and h, as
previously mentioned, show the results with h̄ on KJ. Here
we see no abstraction pathologies, and for the setting where
Player 2 is the rational player we see the most pronounced
difference in exploitability based on lookahead.

7 Conclusions and future work
This paper initiated the study of limited lookahead in
imperfect-information games. We characterized the complex-
ity of finding a Nash equilibrium and optimal strategy to com-
mit to for either player. Figure 3 summarizes those results,
including the cases of favorable and static tie-breaking, the

discussion of which we deferred to the extended online paper.
We then designed a MIP for computing optimal strategies to

Information sets

{PPAD,NP}-hardLookahead depth > 1

Solution concept

Tie-breaking rule

NP-hardP

Adversarial, static Favorable
P

Equilibrium Commitment
{PPAD,NP}-hard

yes no

no yes

Figure 3: Our complexity results. {PPAD,NP}-hard indicates
that finding a Nash equilibrium (optimal strategy to commit
to) is PPAD-hard (NP-hard). P indicates polytime.
commit to for the rational player. The problem was shown to
reduce to choosing the best among a set of two-player zero-
sum games (the tie-breaking being the opponent), where the
optimal strategy for any such game can be computed with an
LP. We then introduced a MIP that finds the optimal solution
by branching on these games.

We experimentally studied the impact of limited lookahead
in two poker games. We demonstrated that it is possible to
achieve large utility gains by exploiting a limited-lookahead
opponent. As one would expect, the limited-lookahead player
often obtains the value of the game if her heuristic node evalu-
ation is exact (i.e., it gives the expected values of nodes in the
game tree for some equilibrium)—but we provided a coun-
terexample that shows that this is not sufficient in general.
Finally, we studied the impact of noise in those estimates,
and different lookahead depths. While lookahead 2 usu-
ally outperformed lookahead 1, we uncovered an imperfect-
information game lookahead pathology: deeper lookahead
can hurt the limited-lookahead player. We demonstrated how
this can occur with any finite depth of lookahead, even if the
limited-lookahead player’s node evaluation heuristic returns
exact values from an equilibrium.

Our algorithms in the NP-hard adversarial tie-breaking set-
ting scaled to games with hundreds of nodes. For some practi-
cal settings more scalability will be needed. There are at least
two exciting future directions toward achieving this. One is to
design faster algorithms. The other is designing abstraction
techniques for the limited-lookahead setting. In extensive-
form game solving with rational players, abstraction plays an
important role in large-scale game solving [Sandholm, 2010].
Theoretical solution quality guarantees have recently been
achieved [Lanctot et al., 2012; Kroer and Sandholm, 2014a;
Kroer and Sandholm, 2014b]. Limited-lookahead games have
much stronger structure, especially locally around an infor-
mation set, and it may be possible to utilize that to develop ab-
straction techniques with significantly stronger solution qual-
ity bounds. Also, leading practical game abstraction algo-
rithms (e.g., [Ganzfried and Sandholm, 2014]), while theo-
retically unbounded, could immediately be used to investi-
gate exploitation potential in larger games. Finally, uncer-
tainty over h is an important future research direction. This
would lead to more robust solution concepts, thereby allevi-
ating the pitfalls involved with using an imperfect estimate.
Acknowledgements. This work is supported by the National
Science Foundation under grant IIS-1320620.



References
[1] Donald F. Beal. “An analysis of minimax”. In: Ad-

vances in computer chess 2 (1980), pp. 103–109.
[2] Bruno Bouzy and Tristan Cazenave. “Computer Go:

an AI oriented survey”. In: Artificial Intelligence 132.1
(2001), pp. 39–103.

[3] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. “Set-
tling the Complexity of Computing Two-Player Nash
Equilibria”. In: Journal of the ACM (2009).

[4] Vincent Conitzer and Tuomas Sandholm. “Computing
the Optimal Strategy to Commit to”. In: Proceedings of
the ACM Conference on Electronic Commerce (ACM-
EC). Ann Arbor, MI, 2006.

[5] Sam Ganzfried and Tuomas Sandholm. “Potential-
Aware Imperfect-Recall Abstraction with Earth
Mover’s Distance in Imperfect-Information Games”.
In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). 2014.

[6] Michael Johanson, Kevin Waugh, Michael Bowling,
and Martin Zinkevich. “Accelerating Best Response
Calculation in Large Extensive Games”. In: Proceed-
ings of the International Joint Conference on Artificial
Intelligence (IJCAI). 2011.

[7] Richard E. Korf. “Real-time heuristic search”. In: Ar-
tificial intelligence 42.2 (1990), pp. 189–211.

[8] Christian Kroer and Tuomas Sandholm. “Extensive-
Form Game Abstraction With Bounds”. In: Proceed-
ings of the ACM Conference on Economics and Com-
putation (EC). 2014.

[9] Christian Kroer and Tuomas Sandholm.
“Extensive-Form Game Imperfect-Recall Ab-
stractions with Bounds”. In: arXiv preprint:
http://arxiv.org/abs/1409.3302 (2014).

[10] Harold W. Kuhn. “A Simplified Two-Person Poker”.
In: Contributions to the Theory of Games. Ed. by H.
W. Kuhn and A. W. Tucker. Vol. 1. Annals of Math-
ematics Studies, 24. Princeton, New Jersey: Princeton
University Press, 1950, pp. 97–103.

[11] Marc Lanctot, Richard Gibson, Neil Burch, Martin
Zinkevich, and Michael Bowling. “No-Regret Learn-
ing in Extensive-Form Games with Imperfect Recall”.
In: International Conference on Machine Learning
(ICML). 2012.

[12] Joshua Letchford and Vincent Conitzer. “Computing
Optimal Strategies to Commit to in Extensive-Form
Games”. In: Proceedings of the ACM Conference on
Electronic Commerce (EC). 2010.
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