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Abstract

Kidney exchange, where candidates with organ failure trade incompatible but willing
donors, is a life-saving alternative to the deceased donor waitlist, which has inadequate
supply to meet demand. While fielded kidney exchanges see huge benefit from altruistic
kidney donors (who give an organ without a paired needy candidate), a significantly higher
medical risk to the donor deters similar altruism with livers. In this paper, we begin by
exploring the idea of large-scale liver exchange, and show on demographically accurate
data that vetted kidney exchange algorithms can be adapted to clear such an exchange at
the nationwide level. We then propose cross-organ donation where kidneys and livers can
be bartered for each other. We show theoretically that this multi-organ exchange provides
linearly more transplants than running separate kidney and liver exchanges. This linear
gain is a product of altruistic kidney donors creating chains that thread through the liver
pool; it exists even when only a small but constant portion of the donors on the kidney
side of the pool are willing to donate a liver lobe. We support this result experimentally on
demographically accurate multi-organ exchanges. We conclude with thoughts regarding the
fielding of a nationwide liver or joint liver-kidney exchange from a legal and computational
point of view.

1. Introduction

The transplantation of organs from a deceased donor to a needy living candidate first oc-
curred nearly sixty years ago, but only became popular in the 1970s due to the introduction
of immunosuppressants that help prevent the rejection of foreign organs in a patient’s body.
Since then, the majority of transplantation has occurred through a deceased donor waiting
list consisting of needy patients who wait for any willing donor to die, resulting in the har-
vesting and subsequent transfer of a compatible organ from the donor’s cadaver to the living
patient. There is a great supply shortage of cadaveric organs in most societies (including
the US), and the imbalance between supply and demand keeps growing. As of July 5, 2015,
there were 101,257 patients waiting for a kidney, 15,268 waiting for a liver, and 9073 for
another organ (e.g., pancreas, joint pancreas-kidney, heart, lung, intestine) in the US alone.

In recent years, live donation of organs has significantly increased the total number of
organ transplants. In live donation, a donor gives one of his two kidneys, one of his liver
lobes, or a part of an intestine, etc., to the patient so both the donor and patient can live.
The effect of live donation has been most prominent in kidney donation, where a recent
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advance—kidney exchange (Rapaport, 1986; Roth, Sönmez, & Ünver, 2004)—has provided
renewed hope to even “hard to match” patients. In kidney exchange, patients bring willing
but incompatible donors to a large waiting pool. Patients can then swap incompatible
donors with other patients. Matching a candidate to a donor is difficult for a variety of
reasons, including blood (ABO) type, tissue (HLA) type, age, and—due to the limitations
of current medical knowledge—unknown exogenous factors. Nevertheless, kidney exchanges
on the regional and national scale have seen marked success over the last few years.

In this paper, we explore the creation of living donor exchanges involving organs other
than kidneys. We first explore large-scale liver exchange, which is similar to kidney ex-
change in some ways, but remains unexplored from a computational point of view.1 The
major difference between kidney and liver exchange rests in the increased risk to live donors,
with very high rates of donor morbidity (24%), “near-miss” events in surgery (1.1%), and
mortality (0.2%) compared to live donor kidney transplantation (Cheah, Simpson, Pom-
poselli, & Pomfret, 2013). Fielded kidney exchanges derive significant value from altruistic
donors, who enter the exchange without a paired needy candidate and trigger long “chains”
of donations within the pool. With such a high risk of complication from surgery in liver
transplantation, we expect significantly fewer (or no, if deemed unethical by the medical
community) altruistic donors in liver exchange. The lack of altruistic donation, along with
novel characteristics of the (in)compatibility of participants in a demographically-accurate
liver exchange, leads to different matching behavior in theory and in practice.

With this in mind, we propose multi-organ exchange, where candidates in need of ei-
ther kidneys or livers can swap donors in the same pool. We show theoretically that this
combination provides linearly more transplants than running separate kidney and liver ex-
changes; this linear gain is a product of altruistic kidney donors creating chains that thread
through the liver pool, and is present even when only a small but constant fraction of one
side of the combined pool is willing to donate to a pair on the other side. We support this
result experimentally on demographically accurate kidney, liver, and cross-organ exchanges.
We conclude with thoughts regarding the fielding of a nationwide liver or joint liver-kidney
exchange from a legal and computational point of view.

This paper provides the first foray into the theory and computational methods necessary
to set the groundwork for a fielded nationwide liver or multi-organ exchange. It is clear that
such exchanges would be highly beneficial for sustaining life and creating value in society.

2. Preliminaries

In order to develop a nationwide liver or multi-organ exchange, we must first accurately
model the realities of such an exchange and design optimal, scalable clearing algorithms
for it. In this section, we describe the creation of a compatibility graph representing the
space of possible swaps among n candidate-donor pairs, based on traits of the candidates
and donors. We then describe the clearing problem, a formalization of the process used to

1. Recently, small-scale liver exchanges have been manually arranged by medical professionals. In Korea,
16 candidates swapped by hand willing donors in a single hospital over the course of six years (Hwang,
Lee, Moon, Song, Ahn, Kim, Ha, Jung, Kim, Choi, Park, Yu, Choi, Park, & Ha, 2010); similarly, in
Hong Kong, 2 candidates hand-swapped willing donors (Chan, Lo, Yong, Tsui, Ng, & Fan, 2010). This
shows the feasibility of the idea at a small scale (Segev & Montgomery, 2010).
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determine an optimal set of swaps. We also overview recent related work in multi-hospital
kidney exchange.

2.1 Compatibility Graph

We begin by encoding an n-patient organ exchange as a directed graph. Construct one
vertex for each incompatible candidate-donor pair. Add an edge e from one candidate-
donor vertex vi to another vj , if the candidate at vj can take a liver lobe or kidney from the
donor at vi. This process creates a compatibility graph for the general concept of barter
exchange, where participants can swap items with each other. Within the compatibility
graph, a cycle c represents a possible swap, with each vertex in the cycle obtaining the item
of the next vertex. A matching is a collection of disjoint cycles; no vertex can give out more
than one item (e.g., more than one kidney or liver lobe).2 Cycles ensure that donors give
items if and only if their patients receive organs.

Fielded kidney exchanges also gain great utility through the use of chains (Rees, Kopke,
Pelletier, Segev, Rutter, Fabrega, Rogers, Pankewycz, Hiller, Roth, Sandholm, Ünver, &
Montgomery, 2009). An altruistic donor initiates a chain by donating his organ to a patient,
whose paired donor donates her organ to another patient, and so on. Due to significantly
increased medical risk to living donors of livers, we do not expect many (or possibly any)
altruistic donors outside of kidney exchanges (Cheah et al., 2013).

Figure 1 gives an example organ exchange compatibility graph, where pairs on the
left, shown with a dark boundary, have patients in need of a kidney while pairs on the
right, shown with a light boundary, have pairs in need of a liver. Possible cycles exist
entirely in either the kidney or liver pool (for example, the 2-cycle 〈(d2 → p3), (d3 → p2)〉
and 2-cycle 〈(d5 → p6), (d6 → p5)〉, respectively) or between the two pools (for example,
the 3-cycle 〈(d2 → p5), (d5 → p3), (d3 → p2)〉, which involves a single liver pair and two
kidney pairs). Additionally, a single altruistic donor a exists in the pool and is willing to
give his or her kidney—but not liver—to a patient, whose paired donor will then either
donate a kidney or liver to a compatible patient in the pool (for example, via the chain
〈(a → p1), (d1 → p4), (d4 → p7), (d7 → ·)〉, with the final donor d7 either donating to the
deceased donor waiting list or remaining in the pool as a future altruistic donor).

2.2 The Clearing Problem

The clearing problem is that of finding a maximum-cardinality matching consisting of dis-
joint chains and cycles of length at most some small constant L. The cycle-length constraint
is crucial since all operations in a cycle have to be performed simultaneously. Were this not
the case, a donor might back out after his incompatible partner has received an organ. This
backing out is legal because, in nearly all countries including the US, it is illegal to form a
binding contract over the exchange of organs. The availability of operating rooms, doctors,
and staff causes long cycles to be unexecutable. As is the practice in the US-wide kidney
exchange and most other real kidney exchanges, we let L = 3. Chains need not be limited
in length (and typically are not in practice); were a donor to renege before giving an organ

2. This is a more general notion of matching than the traditional idea of simply pairing items.
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Figure 1: An example joint liver-kidney compatibility graph.

but after his paired patient had received the organ, then no remaining pair in the pool has
lost its “bargaining chip”—although the collapse of the chain is not desired.

In the small example compatibility graph shown in Figure 1, with L = 3, a maximum
cardinality matching without chains includes five pairs via the 3-cycle and 2-cycle:

{〈(d1 → p2), (d2 → p3), (d3 → p1)〉, 〈(d5 → p6), (d6 → p5)〉} .

With chains—but maintaining two separate pools instead of combining the pools into a
joint exchange—we can achieve a maximum cardinality matching with the same number of
pairs but with a lower cycle cap (L = 2 instead of L = 3) via one chain and two 2-cycles:

{〈(a→ p1), (d1 → ·)〉, 〈(d2 → p3), (d3 → p2)〉, 〈(d5 → p6), (d6 → p5)〉} .

This lower length cap may have practical advantages. For example, shorter cycles are less
likely to fail after the algorithmic matching but before transplantation, and thus may lead
to improved matching in practice (Li, Kalbfleisch, Song, Zhou, Leichtman, & Rees, 2011;
Dickerson, Procaccia, & Sandholm, 2018). Some fielded kidney exchanges explicitly favor
shorter cycles over longer ones (?). While our model could support such extra constraints
or preferences, we do not include them in this paper.

Finally, if we allow a combined liver-kidney exchange, the cardinality of the maximum
matching increases to seven pairs. This is achieved by “threading” a chain started by the
altruist a through a kidney-needing pair into the greater liver pool to match two previously
unmatchable pairs, as well as by using the same two 2-cycles as before:

{〈(a→ p1), (d1 → p4), (d4 → p7), (d7 → ·)〉, 〈(d2 → p3), (d3 → p2)〉, 〈(d5 → p6), (d6 → p5)〉} .

While the clearing problem can be solved easily on very small graphs like that in Figure 1,
it quickly becomes intractable on larger graphs. The standard algorithmic method for
optimally clearing kidney exchanges is integer programming (Roth, Sönmez, & Ünver, 2007).
Formally, denote the set of all (uncapped length) chains and all cycles of length no greater
than L by C(L). Let |c| represent the number of candidate-donor pairs in a cycle or chain
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c. Then, given binary indicator variables xc ∈ {0, 1} ∀c ∈ C(L), we must solve the following
integer linear program:

max
∑

c∈C(L)

|c| xc s.t .
∑
c:v∈c

xc ≤ 1 ∀v ∈ V

The clearing problem with any fixed L > 2 is NP-complete (Abraham, Blum, & Sand-
holm, 2007). (The cases L = 2 with no chains and L = ∞ can be solved in polynomial
time.) Significantly better (i.e., higher cardinality) results are found with L = 3 over L = 2,
so solving the NP-complete version of the problem is necessary in practice (Roth et al.,
2007). The problem, at least with respect to kidneys, can be solved optimally in practice
at the steady-state nationwide scale using a specialized tree search algorithm based on the
branch-and-price framework for integer programming (Abraham et al., 2007; Dickerson,
Manlove, Plaut, Sandholm, & Trimble, 2016). We will later discuss this algorithm in more
detail as well as enhancements to it for liver exchange and multi-organ exchange.

2.3 Related Work in Multi-Hospital Kidney Exchange

We are not the first to consider combining exchanges in general; rather, we are the first
to consider combining exchanges corresponding to different organs, and we are the first
to approach the intricacies of that combination from a theoretical and empirical point of
view. Indeed, fielded centralized kidney exchanges typically consist of the merged pools
of multiple participating hospitals. For example, the United Network for Organ Sharing
(UNOS) kidney exchange includes 143 hospitals in the US. Each of these hospitals enters
(possibly some subset of) the set of candidate-donor pairs and altruistic donors that have
registered at their center into the centralized exchange, and then the exchange recommends
a matching based on its clearing engine. Each hospital can be seen as having its own private
exchange; then, questions can be asked about the possible gains in match efficacy based on
the number or size of participating hospitals, or the truthfulness of their reporting.

Ashlagi, Fischer, Kash, and Procaccia (2015) look at the multi-hospital exchange prob-
lem from a game-theoretic point of view, where participating hospitals can manipulate the
exchange by misreporting their private set of candidate-donor pairs. They show that in
the worst case no deterministic strategy-proof mechanism can provide more than 1/2 of the
truthful maximum matching, and no randomized strategy-proof mechanism can provide
more than 7/8 of the truthful maximum matching. That bound was tightened for the two
hospital case by Caragiannis, Filos-Ratsikas, and Procaccia (2015). That model looks at
2-cycles only (represented as an undirected graph), while ours looks at 2- and 3-cycles and
altruist-initiated chains. They also operate in a dense theoretical model only, while we give
results in both dense and an arguably more realistic sparse model.

Ashlagi and Roth (2014) and Toulis and Parkes (2015) also analyze the multi-hospital
exchange problem from a game-theoretic point of view. Ashlagi and Roth (2014) show
that, in general, a lack of participation of all hospitals can be very costly (although it
is possible, at the cost of a few “lost” matches, to guarantee individual rationality and
strategy proofness). Those results are in a dense model with both 2- and 3-cycles, but no
chains. Toulis and Parkes (2015) present a new multi-hospital mechanism for multi-hospital
exchange and compares against their results.
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As we do not consider incentive issues in the present work, perhaps most related to
our work is a general matching result by Toulis and Parkes (2015). They show, in a dense
kidney exchange model (which we overview in Section 3.2), that given m transplant centers,
each with n candidate-donor pairs, the expected gain in number of matches to an individual
hospital by entering a centralized exchange with full participation is roughly Ω(

√
n). This

result is in a model without chains; indeed, we will show that the inclusion of chains results
in a linear gain in number of matches.

We are now ready to present the results of the paper. Section 3 addresses liver and
multi-organ exchange in adaptations of the two most common theoretical models of kidney
exchange, and proves results in both models regarding the efficiency gains of multi-organ
exchange over independent single-organ exchanges. Section 4 moves from theory to practice
and presents our method of generating demographically accurate kidney, liver, and joint
kidney-liver compatibility graphs. (Appendix A provides more detail about this process,
as well as a quantitative comparison of the resulting graphs against the status quo kidney
exchange generator.) Section 4 also presents the clearing algorithm we use to solve the
multi-organ exchange problem in practice. Section 5 shows experimental results on liver
and multi-organ exchanges, and gives strong empirical support to our earlier theoretical
results showing that multi-organ exchange results in a greater number of matches than
two independent exchanges. (Appendix B presents additional experimental results.) We
conclude in Section 6 with some thoughts on fielding a liver or multi-organ exchange, as
well as future research directions.

3. Combining Exchanges Yields Linearly More Matches

In this section, we prove that combining independent liver and kidney exchanges leads to
a linear gain in the aggregate number of matches. We do this in multi-organ adaptations
of the two standard models of kidney exchange. Section 3.1 works in a newer sparse model
adapted from Ashlagi, Gamarnik, Rees, and Roth (2012), while Section 3.2 works in an
older dense model like that used by Ashlagi and Roth (2014).3 We obtain similar—but not
identical—theoretical results in both models.

3.1 Sparse Model

We begin by adapting to the multi-organ exchange case a version of a recent random graph
model for kidney exchange due to Ashlagi et al. (2012). They adapt sparse Erdős-Rènyi
graphs to a model of kidney exchange with two classes of candidate: those with many incom-
ing edges and those with very few incoming edges (intuitively, “easy-to-match” and “hard-
to-match” candidates). That model mimics the basic structure of compatibility graphs seen
in fielded kidney exchanges.

They build a random directed compatibility graphD(n, λ, t(n), pL, pH) with n candidate-
donor pairs, t(n) altruistic donors, a fraction λ < 1 of the n candidate-donor pairs—
representing lowly-sensitized, easy-to-match patients—who have probability pL of an in-
coming edge from each vertex in the pool, and a fraction 1−λ > 0 of the n candidate-donor

3. While the most recent publication date of the work by Ashlagi and Roth (2014) is after that of the
work by Ashlagi et al. (2012), the former paper appeared in 2011 as a conference paper, while the latter
appeared as a conference paper in 2012 and is still under submission as a final journal paper.
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pairs—representing highly-sensitized, hard-to-match patients—who have probability pH of
an incoming edge from each vertex in the pool. They assume pL > 0 is constant, and
pH = c

n for some constant c > 1; thus, the graph induced by only those 1 − λ fraction of
(sensitized) vertices with incoming edge probability pH is sparse.

We assume, for kidney exchange compatibility graphs DK with nK pairs, t(nK) > 0;
however, for liver exchange graphs DL with nL pairs, t(nL) = 0 (i.e., there are no altruistic
liver donors). Furthermore, we introduce an additional constant probability pK→L > 0 to
address the likelihood that some paired kidney donors will be unwilling to donate a liver
lobe instead of a kidney. For notational simplicity, we will not introduce the complementary
probability pL→K , which would represent the probability that a paired liver donor would
be willing to donate a kidney if matched, because in practice we believe any potential liver
donor would prefer donating the vastly “easier” kidney to donating a liver (i.e., pL→K = 1
in practice). Still, were this not to be the case, the qualitative results to follow would still
hold. We do not assume that pL (resp. pH) for DK equals pL (resp. pH) for DL. Formally,
let pL,{K,L} ∈ (0, 1] be different constants and pH,{K,L} = c{K,L}/n{K,L} for DK and DL

and positive constants cK and cL. When the usage is obvious from context, for expositional
ease we will still use pH , pL, and c.

Now, define the graph join operator D = join(DK , DL, pK→L) between a kidney ex-
change graph DK and liver exchange graph DL as follows. Flip a pK→L-weighted coin for
each patient-donor pair in DK ; if heads, this pair is willing to give a liver to a pair in DL if
matched (or a kidney to a different pair in DK), otherwise the paired donor is only willing
to give a kidney. Next, add directed edges between candidate-donor pairs in both pools
in accordance with each pair’s associated probability (e.g., pL,L from any kidney pair to a
lowly-sensitized liver pair or pH,K from any liver pair to a highly-sensitized kidney pair),
except for those vertices with paired kidney donors who are unwilling to donate livers. Do
not add any edges from the t(nK) altruistic donors in DK to vertices in DL (since altruistic
kidney donors are unwilling to donate a liver lobe).

In the following theoretical results, we consider cycles of length at most some constant
but chains of any length; this models current practice in kidney exchange, and would model
potential future fielded liver exchanges. Thus, an efficient matching allocates the maximum
number of transplants in cycles of size no more than some constant and chains of any length.
Our results build on the work of Ashlagi et al. (2012), which considers only a single kidney
exchange.

Proposition 1 assumes a linear (in the number of candidate-donor pairs) number of
altruistic donors, while Proposition 2 works with just a constant number of altruistic donors.
We contrast both theoretical results at the end of this section.

Proposition 1. Consider β > 0 and γ > 0, sparse kidney compatibility graph DK with
nK pairs and t(nK) = βnK altruistic donors, and sparse liver compatibility graph DL with
nL = γnK pairs. Then for any constant cycle cap and pK→L > 0, any efficient matching
on D = join(DK , DL, pK→L) matches Ω(nK) more pairs than the aggregate of any such
efficient matchings on DK and DL (with probability approaching 1 as nK approaches ∞).

Proof. The proposition follows from the proof of Theorem 5.4 by Ashlagi et al. (2012),
which directly supports a similar result as Theorem 5.2 by Ashlagi et al. (2012). In that
Theorem 5.4 (which assumes a kidney exchange graph similar to ours, with no altruistic
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donors), they show that there are a linear in n (n{K,L} for us) number of “good cycles” of
some constant length z. These “good cycles” have a single vertex u in the lowly-sensitized
portion of D{K,L} that is only connected to a single vertex v1 in the highly-sensitized portion
of D{K,L} (and possibly other vertices in the lowly-sensitized portion). From v1 there then
exists a path 〈v1, . . . , vz−1〉 of highly-sensitized vertices with out- and in-degree one such that
vz−1 connects back to u. Finding that path 〈v1, . . . , vz−1〉 relies on a well-known result (see,
e.g., Janson, Luczak, & Rucinski, 2011) that there exist linearly many isolated tree-like
structures in a sparse graph (like the one induced by our highly-sensitized vertices). They
show an additive linear gain in increasing cycle caps by first taking some optimal cover of
cycles of length at most z and augmenting it to include enough of these “good cycles” of
length at most z + 1—of which there are linearly many in n—resulting in the gain.

Recall that we assume a constant cycle cap of z and no chain cap. Note that regardless of
cycle cap, any efficient matching will match all lowly-sensitized pairs (w.h.p. as n grows),
via direct application of well-known matching results on dense Erdős-Rènyi graphs (see,
e.g., Janson et al., 2011). Under this constant cycle cap assumption, there exist a linear
number of highly-sensitized vertices in the liver pool DL that remain unmatched by an
efficient matching of cycles of length at most z (recall there are no chains in the liver pool).
These are the linearly many isolated highly-sensitized paths that are part of “good cycles”
of length strictly greater than z and thus cannot be matched. By gluing the two pools DL

and DK together, these isolated vertices gain access—through chains that start in DK , of
which there are linearly many in nK—to a linear number of altruists who, as in Theorem 5.2
by Ashlagi et al. (2012), act as the u vertex in “good cycles” of length greater than z that
are now no longer required to connect back to u.

Formally, fix an efficient matching M∗K in DK alone and an efficient matching M∗L in DL

alone, which is disjoint from M∗K by construction. The aggregate size mI = |M∗K ∪M∗L| =
|M∗K | + |M∗L| of these two matchings is the size of the efficient matching under the setting
of independent liver and kidney exchanges. We will show that by combining exchanges, all
pairs matched in M∗I = M∗K ∪M∗L can be matched while also matching a linear number of
previously unmatched pairs.

Figure 2 overviews the augmented matching we will construct. On the left side is a
linear-in-nK number a of chains created from the t(nK) kidney altruists and only pairs
in DK ; these structures exist and are already in the efficient matching M∗K—and thus in
M∗I (Ashlagi et al., 2012). Now, for each of the a chains, consider the final kidney pair
in the chain. By assumption, with constant positive probability pK→L, that pair is willing
to participate in a donation that crosses into the liver pool. This preference is determined
independently across all pairs, so in expectation (pK→L)a chains will be willing to thread
into the liver pool. We will extend these chains in our combined matching, and will leave
the remaining (1− pK→L)a in expectation kidney-only chains allocated as they were in the
original matching M∗K . These estimates are concentrated about their mean via standard
concentration bounds.

Given the original constant cycle cap z, for any larger constant integer z′ > z, there
exist b = βnL ∈ Ω(nL) isolated paths in the liver pool as well, where β is a positive
constant (Ashlagi et al., 2012); these are shown on the right side of the graph in Figure 2.
These consist entirely of pairs that are not matched in M∗L, and thus are not matched in
M∗I , either. Now, for each of those (pK→L)a kidney pairs at the end of a chain in M∗K who
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Figure 2: A linear number of chains threading into the liver pool. Altruistic donors are
shown as a boxes, while pairs in DK and DL are shown as circles with inscribed Ks
and Ls, respectively. Pairs that are matched only when exchanges are combined
are shown in white.

are willing to donate a liver lobe, the probability p1 that at least one edge exists from that
pair to at least one liver pair at the head of one of the βnL isolated paths of length z′ in
DL is

p1 = 1− (1− cL/nL)βnL =nL→∞ 1− e−cLβ ∈ O(1). (1)

This connectivity is determined independently for each of the (pK→L)a kidney pairs, leading
to p1(pK→L)a ∈ Ω(nK) in expectation pairs with at least one connection to a liver pair at
the head of an isolated path in DL. Edges that may exist between the two sets of paths—
the chains in M∗K and the isolated unmatched paths in DL—are shown as dashed lines
in Figure 2. Then all that is left to do is lower bound the size of a maximum bipartite
matching on the graph induced by those dashed edges that actually exist, which we denote
by G. We prove this bound with a balls and bins argument.

As a lower bound on the size of that matching, assume that each of the p1(pK→L)a
kidney pairs with at least one edge crossing into the liver pool has exactly one edge crossing
into the liver pool, selected uniformly at random from its true set of edges. This induces
an injective mapping of kidney pairs to liver pairs, and also a subgraph G′ ⊂ G of the full
bipartite graph over which we are performing a maximum matching; thus, the cardinality
of a maximum matching in this reduced subgraph G′ is a lower bound on the cardinality
of a maximum matching in the fully realized bipartite graph G. Furthermore, the size of
a maximum matching in this subgraph G′ is equal to the number of pairs on the liver side
with at least one incoming edge. We calculate that now, treating each kidney pair as one of
p1(pK→L)a balls being dropped uniformly at random into one of the βnL bins (representing
a liver pair with at least one incoming edge in the full bipartite graph G).

Formally, index the liver pairs [I] = {1, 2, . . . , βnL}, let random variable Y represent
the number of liver pairs with zero incoming edges in the subgraph G′, and let Xi be a
binary random variable that is set to 1 if pair i ∈ [I] has no incoming edges. Then E[Xi] =
(1 − 1/βnL)p1(pK→L)a ∈ O(1). Thus, with constant E[Xi] < 1, and E[Y ] = E[

∑
i∈[I]Xi] =
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∑
i∈[I] E[Xi] by linearity of expectation, we have E[Y ] = βnLE[Xi], a constant fraction

(strictly less than one) of the liver pairs.

Finally, let random variable Z represent the number of liver pairs with at least one
incoming edge in the subgraph. Then βnL = Z + Y , and E[Z] = βnL − E[Y ] = βnL(1 −
E[Xi]) ∈ Ω(nL). With E[Z] a constant positive fraction of the liver pairs, we have a
maximum matching of size Ω(nL) in G′, and thus a maximum matching of size Ω(nL) in G.

We now construct our final matching M∗C in the combined pool. Take M∗C = M∗I . For
those kidney-only chains in M∗K ⊆M∗I ending in (i) a kidney pair willing to donate a liver
lobe with (ii) at least one edge into the liver pool, add edges in accordance with a fixed
maximum matching in G. Each of these Ω(nL) edges connects to an isolated path of length
z′ > z ≥ 0 of previously unmatched pairs in the liver pool. Add each of these pairs to M∗C ,
resulting in a linear gain in matching size over M∗I .

As shown in Proposition 1, the presence of a linear number of altruistic kidney donors
in a multi-organ exchange results in a linear gain in the overall number of pairs matched in
an efficient matching relative to the aggregate of efficient matchings in independent kidney
and liver exchanges. This is realized specifically by giving those highly-sensitized liver pairs
who are unmatchable using only cycles in the liver pool access to more flexible, longer
altruist-initiated chains that thread out of the kidney pool. In the following Proposition 2,
we restrict the number of altruistic kidney donors to a constant and show that even in this
constrained setting, with constant positive probability, chains that thread out of the kidney
pool into the liver pool allow for a linear gain in overall number of matches.

Proposition 2. Consider γ > 0, sparse kidney compatibility graph DK with nK pairs and
constant t > 0 altruistic donors, and sparse liver compatibility graph DL with nL = γnK
pairs. Then, with constant probability, there exists λ′ > 0 such that for all probabilities
of not being sensitized λ < λ′, for any constant cycle cap and pK→L > 0, any efficient
matching on D = join(DK , DL, pK→L) matches Ω(nK) more pairs than the aggregate of
any efficient matchings on DK and DL separately.

Proof. For small enough λ and large enough cK , where pH,K = cK/nK , with high probability
there exists a set SK (of size at least nK/2) of highly-sensitized pairs in DK that are “too
far” away from lowly-sensitized pairs in DK to be matched in a cycle of capped length and
must be matched in a chain triggered by an altruist a or not matched at all (Ashlagi et al.,
2012). By similar reasoning, for large enough cL, where pH,L = cL/nL, there exists a set
SL of pairs in DL that cannot be matched in a cycle of constant capped length and would
have to be matched in a chain or not matched at all—since we assume that no altruists
willing to directly donate a liver lobe exist, these pairs would go unmatched if exchanges
for different organs operated independently.

To aid the reader, Figures 3 and 4 accompany the statements in this part of the proof;
Figure 3 corresponds to our status quo case of two separate kidney and liver exchanges,
while Figure 4 corresponds to the setting of this proof, where the exchanges are combined
via the join operator. We will make use of a general result on sparse random directed
graphs by Krivelevich, Lubetzky, and Sudakov (2013): as c{K,L} increases, a directed path
of length approaching |S{K,L}| in S{K,L} exists.
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Figure 3: Relevant portion of the maximum matching for SK ⊆ DK and SL ⊆ DL in the
independent exchanges case. An altruist is shown as a box, while pairs in SK
and SL are shown as circles with inscribed Ks and Ls, respectively. Pairs that
are matched with constant positive probability are shown in gray. Note that no
pairs in SL are matched.
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Figure 4: Relevant portion of the maximum matching for SK ⊆ DK and SL ⊆ DL in the
combined exchange case. An altruist is shown as a box, while pairs in SK and
SL are shown as circles with inscribed Ks and Ls, respectively. Pairs that are
matched with constant positive probability are shown in gray. Note that a linear
portion of the chain in SL is matched with constant positive probability.
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We first show the existence of long paths of vertices that must be matched by chains
in each of DK and DL. Take the set SK ⊆ DK of kidney pairs that must be matched via
chains or not at all; then |SK | ≥ nK/2 ∈ Ω(nK) (Ashlagi et al., 2012). Similarly, take the
set SL ⊆ DL of liver pairs that must be matched via chains (threaded, in this case, through
a willing kidney pair as determined by pK→L); then |SL| ≥ nL/2 ∈ Ω(nK). Via the results
of Krivelevich et al. (2013), there exists a directed chain CK of length `K ∈ Ω(|SK |) in SK ,
and similarly there exists a directed chain CL of length `L ∈ Ω(|SL|) in SL. Then there
exists constants αK and αL such that `K = αKnK (the length of the chain in SK) and
`L = αLnL (the length of the chain in SL), respectively.

Take the first `K/2 pairs in the head of CK ; then, the probability p1 that a given
altruistic donor has at least one outgoing edge to a pair in that head is

p1 = 1− (1− cK/nK)`K/2 = 1− (1− cK/nK)αKnK/2 =nK→∞ 1− e−cKαK/2 ∈ O(1). (2)

Then, with constant positive probability p1, the altruistic donor in the independent ex-
changes case matches mI pairs, where `K/2 < mI ≤ `K ; exactly 0 pairs in the chain CL
are matched. That matching is visualized in Figure 3.

In the combined exchanges case, a given pair in CK has an outgoing edge to a given pair
in CL with probability pK→LcL/nL > 0. Take a positive constant t > 0 number of pairs in
the tail of the CK chain. Then, the probability p2 that at least one of the t pairs in that
tail has at least one outgoing edge to at least one pair in the first `L/2 pairs at the head of
the liver chain CL is

p2 = 1−
[
(1− pK→LcL/nL)`L/2

]t
= 1−

[
(1− pK→LcL/nL)αLnL/2

]t
=nL→∞ 1−

[
e−pK→LcLαL/2

]t
∈ O(1).

(3)

The independence assumptions above are valid because (i) the willingness of a kidney pair
to give a liver is determined independently via the pK→L parameter and (ii) the initial edge
compatibility check between pairs in DK and DL is independent of the results of the pK→L
coin flip. Then, with constant positive probability p1p2, the altruistic donor in the combined
exchanges case matches mC pairs, where mC > mI + `L/2 − t, the guaranteed matched
pairs in CK minus a constant t pairs in that tail plus the guaranteed matched pairs in the
tail of CL. That matching is visualized in Figure 4.

Recall `L/2 ∈ Ω(|SL|), and with constant t, `L/2− t ∈ Ω(|SL|). So, the gain in matches
between the matching in Figure 3 and that in Figure 4 is

mC −mI > `2/2− t = αLnL/2− t = αLγnK/2− t ∈ Ω(nK) (4)

which occurs with constant probability at least p1p2 > 0, where p1 and p2 are given in
Equations 2 and 3, respectively.

3.1.1 Discussion of Theoretical Results in the Sparse Model

Intuitively, Propositions 1 and 2 show the theoretical efficacy of combining kidney exchange
with alternate organ exchanges (where altruistic donation is less likely to be popular or
deemed ethically acceptable). While Proposition 2 may seem like a stronger result due to
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its relaxed reliance on a constant number of altruistic kidney donors (instead of the linear
number in Proposition 1), the numerator c in pH = c/n may be required to be quite large
(although still constant), the λ probability of not being highly sensitized constant quite
small, and the result also holds with merely constant positive probability instead of holding
with probability approaching one. We thus consider Proposition 1 to be a more relevant
result overall than Proposition 2 for the composition (in terms of pool sensitization and
number of altruistic donors) of currently fielded kidney exchanges.

3.2 Dense Model

Initial research on random graph models for organ exchange adapted dense—that is, con-
stant probability of an edge existing—Erdős-Rènyi graphs to kidney exchange (Ashlagi &
Roth, 2014; Dickerson, Procaccia, & Sandholm, 2012b). Fielded exchanges have proven to
be somewhere in between dense—as we discuss now—and sparse—as in the theory above—
in practice, and thus actual pools and their optimal matchings do not align with these dense
models (Ashlagi et al., 2012; Ashlagi, Jaillet, & Manshadi, 2013; Dickerson, Procaccia, &
Sandholm, 2014b; Dickerson et al., 2018; McElfresh & Dickerson, 2018). Still, we show that
the efficiency results in the dense model with chains (Dickerson et al., 2012b, Thm. 1) can
be applied to independent liver exchange and multi-organ exchange to yield efficient match-
ings with linear expected overall gain from combining the pools (given a linear number of
altruists) for large enough compatibility graphs. We derive these results now.

We begin by overviewing the dense model of kidney exchange (Roth et al., 2004; Roth,
Sönmez, & Ünver, 2005a, 2005b). This model concentrates on blood types of donors and
patients. At a high level, human blood can be of four types—O, A, B, and AB—based on
the presence or absence of type A and type B proteins. Ignoring other potential reasons
for incompatibility, a type O kidney can be transplanted into any patient; type A and B
kidneys can be transplanted into A and B patients, respectively, or an AB patient; and
type AB kidneys can only be transplanted into type AB patients. Therefore, some patients
are more difficult to match with a random donor than others. Usually O-patients are the
hardest to match because only O-type kidneys can be given to them. Similarly, O-donors
are usually the easiest to match.

An under-demanded pair is any pair such that the donor is not ABO-compatible with
the patient. If an under-demanded pair contains only type A and B blood (e.g., a pair with
A-type patient and B-type donor, or vice versa), it is called reciprocal. Any pair in the
pool such that the donor is ABO-compatible with the candidate is called over-demanded.
Furthermore, if a donor and candidate share the same blood type, they are a self-demanded
pair. Under-demanded and reciprocal pairs are intuitively “harder” to match than over-
demanded and self-demanded pairs. This is not necessarily the case if sensitization, the
probability of matching with a random donor, is considered. For example, an A-type patient
who is lowly sensitized is typically easier to match than an O-type patient who is highly-
sensitized; however, the dense model does not consider different degrees of sensitization. The
dense model critically assumes that a donor and patient who are blood-type compatible are
tissue type incompatible with constant probability p̄. This differs from the model we used in
Propositions 1 and 2, where lowly-sensitized patients had a constant edge probability while
highly-sensitized patients did not. The dense model also denotes by µX the frequency of
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blood type X, and assumes µO < 3µA/2 and an ordering µO > µA > µB > µAB. The United
States national blood type distribution satisfies these constraints. We will use V X-Y

{K,L} to
refer to the subset of vertices with patient and donor of blood type X and Y , respectively,
in the kidney and liver compatibility graphs, and V X

{K,L} for the subset of vertices with
altruistic donors with blood type X in the kidney and liver compatibility graphs.

Under the realistic assumptions on blood type distributions stated above, but assuming
no chains and only patients who need kidneys, Proposition 5.1 by Ashlagi and Roth (2014)
states that an efficient allocation exists (with high probability) that uses only cycles of
length at most 3. That result is proven only with respect to cycles, that is, it assumes there
are no altruistic donors. Dickerson et al. (2012b, Thm. 1) extends that result into a pool
that also has chains (but still only patients who need kidneys), stating that an efficient
allocation exists (with high probability) using only cycles and chains of length at most
3. Both of these results are “in the large” and rely on the fact that the size of the set
S ∈ {V X-Y

{K,L}} ∪ {V X
{K,L}} for any blood types X and Y will be very close to its expectation

as |S| → ∞.

3.2.1 Only Livers

We first look at liver exchange in the dense model. The blood type distributional require-
ment is satisfied by patients in need of livers, just as it is with patients who need kidneys.
Thus, under the dense model, a liver-only compatibility graph looks exactly the same as a
kidney-only compatibility graph (albeit with no chains). Thus, the efficiency result of Ash-
lagi and Roth (2014) can be applied directly to liver-only compatibility graphs. If altruistic
liver donors existed in a liver-only compatibility graph, then the result of Dickerson et al.
(2012b) would be directly applicable instead.

3.2.2 Multi-Organ Exchange

Next, we consider dense multi-organ exchange in this model. In this model, there will exist
altruistic donors willing to give a kidney but not a liver, as motivated earlier in our paper.

We assume the same blood type distribution and ordering as Ashlagi and Roth (2014)
for both liver and kidney patients and donors. We also assume a directed multi-organ dense
compatibility graph D, with nK pairs needing a kidney and nL = γnK pairs needing a
liver, for some constant γ > 0. As motivated earlier in our paper, altruistic kidney donors
will not donate directly to liver patients, but may trigger chains that result in a kidney
pair donating to a liver pair. Each kidney pair is willing to give to a compatible liver pair
with some constant probability pK→L > 0. Thus, there are no outgoing edges in D from
altruistic kidney donors to pairs needing a liver, but potentially some edges from kidney
pairs to compatible liver pairs.

In Proposition 3, we show that if there are enough altruistic kidney donors, the size
of an efficient matching on D is larger by an additive linear fraction than the size of the
aggregate of efficient matchings on DL and DK , the subgraphs induced by only the vertices
consisting of pairs needing livers and kidneys, respectively. We achieve this linear gain via
a similar high-level strategy to what was used in Propositions 1 and 2, which threaded
kidney-altruist-initiated chains through willing non-altruist kidney pairs into the liver pool.
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Formally, let V X
K be the subset of vertices in DK containing only altruistic kidney donors

of blood type X ∈ {O,A,B,AB}.

Proposition 3. Consider βA = µAµAB, βB = µBµAB, constants γ > 0 and pK→L > 0,
dense kidney compatibility graph DK with nK pairs, and dense liver compatibility graph DL

with nL = γnK pairs. If at least one of |V A
K | > βAnK or |V B

K | > βBnK , then any efficient
matching on D = join(DK , DL, pK→L) matches Ω(nk) more pairs than the aggregate of any
such efficient matchings on DK and DL (with probability approaching 1 as nK →∞).

Proof. We begin by adopting vocabulary from Ashlagi and Roth (2014); specifically, if a
vertex v participates in an exchange with some under-demanded vertex v′, then we say
v helps v′. Pairs denoted by X-Y have X-type patients and and Y -type donors, for
X,Y ∈ {O,A,B,AB}. Note that AB-altruists cannot help under-demanded pairs, A- and
B-altruists can only help A-AB and B-AB under-demanded pairs, respectively, and O-donors
can trigger two types of chains of length 3 containing under-demanded pairs: 〈O-altruist,
O-A pair, A-AB pair〉 or 〈O-altruist, O-B pair, B-AB pair〉.

First, take the efficient matching result of Ashlagi and Roth (2014) and apply it to DL.
Only (some) under-demanded liver vertices remain unmatched. Second, apply the efficient
matching result of Dickerson et al. (2012b) to DK . Again, only (some) under-demanded
kidney vertices remain unmatched.

Figure 5 provides a visual representation of the full allocation we will construct by aug-
menting the two allocations mentioned above.4 As in the work of Dickerson et al. (2012b),
since applying the two initial matchings results in all over-demanded, self-demanded, and
reciprocally-demanded pairs being matched (assuming |S| approaches its expectation as
|S| → ∞ for any set S ∈ V X-Y

{K,L}, X, Y ∈ {O,A,B,AB}), we must only exhaustively consider
all ways of matching under-demanded pairs. We do this in the list below: bolded items
trigger a linear gain in the combined efficient match, while all other items show no efficiency
loss. This guarantees a linear gain overall.

• AB-altruists: Altruistic AB-donors can only help over- and self-demanded (AB-AB)
pairs, both of which are matched entirely already in the separate exchanges.

• A-altruists: Of the under-demanded pairs, altruistic A-donors can only help A-AB
pairs.5 In the matching of Dickerson et al. (2012b), A-donors donate to the A-AB pairs
until one of the two sets is exhausted. Under our assumption, |V A

K | > µAµABnK =
|V A-AB
K |, so the A-AB set will be exhausted, leaving some A-donors unallocated. These

remaining A-donors can be threaded into the liver pool through A-A kidney pairs to
match with the remainder of under-demanded A-AB liver pairs.

Given constant probability pK→L > 0 of a non-altruist kidney donor being willing
to donate a liver lobe, and constant probability p̄ > 0 of an otherwise blood type

4. Figure 5 shows the full allocation up to symmetries between A-B and B-A pairs. By assumption,
E[|V A-B

K |] = E[|V B-A
K |] and E[|V A-B

L |] = E[|V B-A
L |], but it could be the case in practice that one subgraph

is larger than the other. We assume WLOG in Figure 5 that |V A-B
K | ≥ |V B-A

K | and |V A-B
L | ≥ |V B-A

L |.
5. In the original compatibility graph, altruistic A-donors can also help reciprocal A-B pairs; however, by

the earlier applications of the efficient matchings due to Ashlagi and Roth (2014) to the liver pool and
the efficient matching due to Dickerson et al. (2012b) to the kidney pool, all reciprocal pairs are already
matched.
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Figure 5: Our constructed matching that directly combines the allocations of Dickerson
et al. (2012b) and Ashlagi and Roth (2014)—which it applies initially to the kid-
ney pool and liver pool, respectively—and then threads leftover altruistic kidney
donors through the kidney pool into unmatched portions of the liver pool. Altru-
ists are shown as rectangles and candidate-donor pairs as ovals, over-demanded
pairs are gray, under-demanded and self-demanded pairs are white, and recip-
rocal pairs are black. Solid edges represent donations that are in the original
allocations, while dashed edges are those added by the allocation we generate for
the joint pool.

compatible pair being tissue type incompatible, a constant fraction of the pairs in
V A-A
K , specifically pK→L|V A-A

K | = pK→Lp̄µAµAnK pairs in expectation, are willing
to give a liver to a liver pair. The use of an A-A kidney pair via an A-altruist-
initiated chain results in 0 efficiency loss relative to the initial efficient matching,
since there remains a perfect matching in V A-A

K by well-known results on dense Erdős-
Rènyi graphs (see, e.g., Janson et al., 2011). Thus, we gain 1 match for each of the
remaining

min
{
pK→L|V A-A

K |, |V A
K | − |V A-AB

K |
}

(5)

A-donors. The first input in the minimization in Equation 5 is of size Ω(nK), because
a constant fraction of a set that is linear in nK is still linear in nK . The second input
is never negative and is potentially Ω(nK) by the theorem statement’s assumption
on the number of altruistic A-donors or B-donors; we address this uncertainty in the
next paragraph.
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• B-altruists: Of the under-demanded pairs, altruistic B-donors can only help B-AB
pairs. Under a symmetric argument as the A-donors above, combining pools yields

min
{
pK→L|V B-B

K |, |V B
K | − |V B-AB

K |
}

(6)

additional matches by threading through willing B-B kidney pairs into the unallocated
under-demanded liver pool. By similar logic to the above A-donor case, the first input
to the minimization in Equation 6 is again assuredly Ω(nK), while the second is never
negative and is potentially Ω(nK). The theorem statement ensures that at least one
of the sets of A-donors or B-donors is large enough—specifically, |V A

K | > µAµABnK or
|V B
K | > µBµABnK—to trigger a linear gain in at least one of Equations 5 or 6.

• O-altruists: In the matching of Dickerson et al. (2012b), some O-donors may be used
in 2-chains with remaining under-demanded pairs in DK . It is possible that these
O-donors could be threaded through an under-demanded kidney pair into an under-
demanded liver pair to form a 3-chain at utility gain of 1 (but not necessary for this
proof). Similarly, because we are not making assumptions on the number of O-donors,
if there are so many O-donors in DK that all under-demanded pairs (e.g., pairs of type
O-AB in DK) are matched, then these O-donors can be threaded directly into the liver
pool by way of self-demanded O-O kidney pairs who are willing to give livers (at no
efficiency loss, as a perfect matching will remain in V O-O) for a gain of at least 1
under-demanded match in DL (but this is also not necessary for this proof).

• Non-altruistic (i.e., paired) vertices: Self-demanded and reciprocally-demanded pairs
cannot help under-demanded pairs without involving over-demanded pairs or altruistic
donors. AB-O vertices are the only pairs that can help at most two under-demanded
pairs (either O-A and A-AB, or O-B and B-AB). In the Dickerson et al. (2012b) alloca-
tion, most AB-O pairs are used in 3-cycles with two under-demanded pairs; however,
some may be used in 2-cycles with a single under-demanded pair. Reallocating these
are not necessary for this proof.

Since at least one of the minimum size constraints on the set of altruistic A-donors (|V A
K | >

µAµABnK) or B-donors (|V B
K | > µBµABnK) is satisfied by the proposition statement’s as-

sumptions, we are guaranteed Ω(nK) additional matches by combining both pools by way
of Equations 5 and 6.

The theoretical results presented in this section motivate the combination of indepen-
dent kidney and liver exchanges and show that such a joint exchange would allow for the
use of altruistic kidney donors at great gain to overall social welfare. Still, both models are
significant simplifications of real organ exchange; the push for a fielded liver or multi-organ
exchange in reality will require extensive realistic simulations showing expected gains in
number of matches, among other statistics. We address this in the rest of the paper. Sec-
tion 4 describes our method for generating and clearing demographically accurate bi-organ
compatibility graphs and Section 5 presents experimental results on (i) liver exchange alone
and (ii) independent liver and kidney exchanges versus a combined multi-organ exchange.
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4. Generating and Clearing Demographically Accurate Pools

In this section, we describe our method for generating realistic organ exchange graphs for
programs in steady state, and compare these generated graphs to those produced by the
current status quo steady-state kidney exchange generator. We also briefly describe a gen-
erator built for early-stage exchanges that have not yet reached steady state; this generator
draws from real data from the United Network for Organ Sharing (UNOS) nationwide kid-
ney exchange. We then describe the standard kidney exchange clearing algorithm and,
motivated by generated realistic steady-state liver and kidney exchange graphs, present a
tweak to this algorithm to decrease liver exchange solution time.

4.1 Data Generation

In order to create an at-scale nationwide liver or multi-organ exchange, we first have to
develop a compatibility graph generator with which we can run simulations. First, we
draw data from reliable sources (here, specific to the US). Second, this data is fed into a
graph creation algorithm that probabilistically determines the existence of compatible and
incompatible candidate-donor pairs, as well as compatibility constraints between different
candidate-donor pairs. In the large, with high probability, graphs generated by this algo-
rithm will mimic the demographics that would prevail in a large-scale fielded exchange in
the US. (Plugging different raw data (e.g., age, weight, blood type distributions) into the
generator algorithm would provide realistic generation of non-US compatibility graphs.)
These graphs will mimic organ exchange in steady state; in Section 4.3, we will briefly
describe the differences in compatibility graph composition that we have witnessed in the
creation of a nascent kidney exchange.

We generate kidney exchange compatibility graphs in accordance with Saidman, Roth,
Sönmez, Ünver, and Delmonico (2006); however, the compatibility of a potential liver donor
with a candidate differs from that of a potential kidney donor in three critical ways. While
a donor and candidate must be blood-type (ABO) compatible, (a) they need not be HLA-
compatible,6 (b) the age of the donor and candidate makes a significant difference in trans-
plant success (Egawa, Oike, Buhler, Shapiro, Minamiguchi, Haga, Uryuhara, Kiuchi, Kai-
hara, & Tanaka, 2004), and (c) the portion of the donor liver that is cut out and transplanted
into the candidate must be large enough to keep the candidate alive, while the remainder of
the liver in the donor must be large enough to keep the donor alive. A proxy for liver size
is the weight of the candidate or donor; intuitively, larger people need larger livers. Thus,
we assume a donor must be at least as heavy as his or her matched candidate (or else the
donor’s liver, which must be cut in two before transplantation, will not be large enough to
support the donor and candidate).

Graph generation is performed as follows. For each candidate and donor, we draw a
gender (from the 2010 US Census Report7); conditioned on gender, we then draw candidate

6. In kidney exchange, tissue type (HLA antibodies and antigens) are an important determinant of com-
patibility. A candidate and donor sharing antigen encodings on the same locus are more likely to result
in a rejected kidney. This is a drastically less important factor in liver transplantation, and is typically
not taken into account in liver transplantation in practice or theory.

7. http://www.census.gov/compendia/statab/cats/population.html
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blood types from the OPTN (Organ Procurement and Transplantation Network8) distribu-
tion and donor blood types from the overall US population.9 We sample ages (dependent on
gender) for candidates from the OPTN pool and for the donors from the 2010 US Census at
a granularity level of one year. Then, given the age and gender (generated separately from
OPTN data for candidate and US Census data for donors, as described earlier), we sample
from a fine-grained table of weights released by the Center for Disease Control (McDowell,
Fryar, Ogden, & Flegal, 2008). For candidates requiring a kidney, HLA is sampled from
the OPTN databases. During edge generation, we include an exogenous “incompatibility
factor” f ∈ [0, 1] that randomly determines an edge failure even in the case of a compati-
bility success. This factor is common in the kidney literature (Ashlagi, Gilchrist, Roth, &
Rees, 2011), and is used to account for incompleteness of medical knowledge and temporal
fluctuations in candidate-donor compatibility.

Appendix A provides a much more in-depth detailing of the steps we take for data
generation, as well as a formal compatibility graph generation algorithm. Next, we com-
pare steady-state liver exchange graphs generated by our algorithm to kidney exchange
graphs produced by the standard steady-state generator due to Saidman et al. (2006). Our
generator is a generalization of (i.e., more powerful than) that current standard.

4.2 Comparison to Steady-State Kidney Exchange

In empirical kidney exchange research, traits of the family of compatibility graphs used in
experiments—like the average in- and out-degree of vertices or number of long paths in the
graph—have typically had a large effect on both the performance of clearing engines and
the qualitative results obtained (see, e.g., Constantino, Klimentova, Viana, & Rais, 2013;
Dickerson et al., 2018, 2014b; Anderson, 2014; Klimentova, Alvelos, & Viana, 2014). With
that in mind, we now compare our steady-state generator to the current state of the art
kidney exchange generator (Saidman et al., 2006), which was meant to mimic a kidney
exchange running in the United States in steady state. While the generators and data
are similar in spirit, the medical differences between kidney and liver compatibility create
distinctly different compatibility graphs both at the small and large scale. We will discuss
those differences below.

Figure 6 plots the average number of edges in the liver-only compatibility graphs, using
the generator in this paper, against the average number of edges in the kidney compatibility
graphs generated by the state of the art, as the number of candidate-donor pairs increases.
The kidney compatibility graphs are, for graph sizes above 64, denser than comparably-
sized liver compatibility graphs. This is interesting because it shows that, even though the
liver exchange graphs do not need to take %PRA (i.e., HLA incompatibility) into account,
their sensitivity to age and weight distributions proves to be more constricting than HLA
sensitivity! Regardless, neither the liver nor the kidney graphs are sparse in the classical
sense of the word: at |V | = 1024, the number of edges in the liver graph is 26% of the total
possible edges in a 1024-clique. This lack of sparsity drives the experimental computational
complexity of solving the real-world clearing problem (as exemplified by, e.g., Dickerson et al.
(2012b), where the clearing problem with unbounded chains was easily solved on sparse real-

8. http://optn.transplant.hrsa.gov/data/

9. http://bloodcenter.stanford.edu/about_blood/blood_types.html
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Figure 6: #Edges (in thousands) in generated liver and kidney compatibility graphs (100
graphs per |V |). The generated kidney graphs are denser than the liver graphs.

world graphs, but the clearing problem with even bounded chains became computationally
intractable).

Figure 7 enumerates the differences in the out-degree of the vertices in compatibility
graphs for liver-only exchange generated using our algorithm (shown in white) and compat-
ibility graphs for kidney exchange from the Saidman et al. generator (shown in gray). The
size of the graph, |V |, is held constant along the rows, while the exogenous incompatibility
rate (f) between two otherwise compatible candidates and donors is held constant in each
column. We vary |V | and f ∈ {0.0, 0.2, 0.4, 0.8, 0.9}. Note that there is no notion of an ex-
ogenous incompatibility rate in the kidney graphs (although the %PRA virtual crossmatch
simulation is similar to an exogenous incompatibility rate, but not parameterized); as such,
the kidney exchange graphs vary only in terms of cardinality.

The cumulative distribution functions over the out-degrees of vertices, shown in Figure 7,
exhibit interesting behavior. For example, there are more vertices with low degree in the
liver exchange graphs than in the kidney exchange graphs. More interesting is the behavior
exhibited by the kidney exchange graphs as |V | increases. For instance, when |V | = 1024, we
see three distinct out-degree sections in the kidney exchange graphs. These are an artifact
of the somewhat ad-hoc method of doing %PRA virtual crossmatch tests in the Saidman et
al. generator. The generator groups pairs into three sensitivity levels (“high”, “medium”,
and “low”). As |V | increases, those patients who are highly sensitized tend toward very
few edges, while those at the medium and low sensitivity levels tend toward a medium and
high number of edges, respectively. This is an artifact of the generator by Saidman et al.
(2006) and is not representative of the real kidney exchange data. Our generator (even if
used for kidneys) does not have such coarse artifacting because it can bucket sensitivity
into finer-grained classes.
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as well as the three qualitative sections in the kidney graphs due to the three
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4.3 Sparse Generated Compatibility Graphs

While the transplantation of each organ is unique in its own way, we can draw from the
experience of nascent kidney exchanges in the US and abroad when considering the makeup
of a hypothetical liver or multi-organ exchange. As discussed in Section 3.2, early theo-
retical models of kidney exchange ended up behaving substantially differently than fielded
exchanges; indeed, as practioners uncovered logistical constraints and medical features of
kidney exchange, economic and computational models adapted to better reflect reality.

The data generation process described in Section 4.1 produces a “best guess” at what
a steady-state liver or multi-organ exchange would look like. That generation process can
easily be adapted to unforeseen features of those exchanges as they arise. Indeed, we address
the unforeseen in a general way using the exogeneous incompatibility rate f ∈ [0, 1]. This
incompatibility rate affects each pair independently. In reality, some pairs may be much
harder to match than others, sometimes for poorly-understood reasons from a medical point

659



Dickerson & Sandholm

of view. This is the case in kidney exchange (see discussions in, e.g., Ashlagi et al., 2012,
2013; Dickerson et al., 2018).

With this in mind, in this paper we also perform experiments directly on compat-
ibility graphs drawn from the United Network for Organ Sharing (UNOS) nationwide
kidney exchange, which is a large, fielded real-world kidney exchange that currently in-
cludes 143 transplant centers in the US. In other kidney-exchange-specific work, the au-
thors built a compatibility graph generator that accurately mimics the UNOS nationwide
exchange (Dickerson, Procaccia, & Sandholm, 2014a). In the present work, we seed this
generator with the first 192 match runs (October 2010 through March 2015) of the UNOS
exchange and feed those graphs into our static and dynamic organ exchange simulators. To
simulate multiple organs, we mark pairs as needing either a kidney or liver using demo-
graphic information from the most recent OPTN reports on waiting lists for kidneys and
livers, respectively, and attach edges from real-world altruists in the UNOS pool only to
those pairs marked as needing kidneys.

Obviously, we would not expect compatibility graphs generated in this manner to adhere
at a fine-grained level to those of a fielded multi-organ exchange; indeed, these generated
graphs contain no notion of different organs (beside kidneys) beyond a simple coin flip. That
said, using these compatibility graphs allows us to remove the dependence on the exogeneous
incompatibility factor f ; indeed, it has already been taken into account by the real world in
these graphs! Thus, by including experimental results on this second distribution of graphs,
we hope to show qualitatively if not quantitatively that gains from multi-organ exchange still
hold under a more intricate notion of exogeneous incompatibility rates—because certainly
a fielded multi-organ exchange will encounter unpredictable constraints at run time, as was
the case in the nascency of kidney exchange.

In the experimental results of Section 5, we will refer to those dense compatibility
graphs (sparsified in a parameterized way using f and pK→L) generated in accordance
with Section 4.1 as Dense, and those exogeneously sparse compatibility graphs (sparsified
further only by pK→L) drawn from real data as described in this section as UNOS.

4.4 The Clearing Algorithm

We now briefly discuss a scalable optimal kidney exchange clearing algorithm. An extended
version of the algorithm due to Abraham et al. (2007), built by us, is used in the United
Network for Organ Sharing (UNOS) US-wide kidney exchange; we adapt that algorithm
for our liver and multi-organ exchange experiments based on characteristics of the graphs
generated using the algorithm described above. At a high level, given a compatibility graph
G = (V,E), the algorithm enumerates all chains and cycles of length at most L and chooses
the optimal disjoint set of these cycles and chains according to the objective function of
maximizing match cardinality.

In reality the number of cycles is prohibitively large (cubic in |E| for L = 3, and
exponential in |E| for unbounded chains) to write down in memory. Therefore, solving this
problem hinges on a technique called branch-and-price (Barnhart, Johnson, Nemhauser,
Savelsbergh, & Vance, 1998), a method for incrementally generating only a small part of
the model during tree search, yet guaranteeing optimality by proving that all the promising
variables have been incorporated into the model. Our solver that is used by UNOS—as
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well as in this paper—uses several additional techniques to make kidney exchange clearing
scalable for memory and time (Abraham et al., 2007). It uses empirically and theoretically
motivated heuristics to seed the initial cycle (i.e., decision variable) set used on the model,
and then incrementally brings cycles into the model depending on their shadow price, a
quantitative estimate of a cycle’s utility given the current model. Optimality is proven when
no cycles can possibly increase the objective. The algorithm also uses specific branching
heuristics and primal heuristics to construct feasible initial integral solutions at each branch.
If these integral solutions match the (restricted, possibly fractional) LP solution, then the
subtree can be pruned and optimality potentially proven.

4.4.1 A Liver-Specific Cycle Seeding Heuristic

The selection of the initial seed columns—representing individual cycles or chains—is a
heuristic process. The prior algorithm uses the cycles from two heuristically-generated
feasible solutions (very few such cycles) and hundreds of thousands of randomly selected
cycles from C(L). Since enumerating C(L) in its entirety is a costly ordeal, their sampling
relies on a series of random walks. Starting at a randomly chosen vertex, a random walk
takes steps to new vertices. At each step, if an edge exists leading back to the initial vertex,
the corresponding cycle is added to the set of seed cycles and a new start vertex is chosen.
This results in a randomized, but not uniformly random, sampling of all cycles.

We define a different sampling method for the cycle seeding problem. Our generated
liver compatibility graphs tended to have many more vertices with low out-degree than the
corresponding kidney exchange graphs. These candidates are difficult to match. With this in
mind, we conduct a biased random walk sampling in the same spirit as the prior algorithm,
except weighting the selection of the randomized start vertex inversely proportional to its
out-degree. This biased sampling of the set of all cycles motivates the solver to branch on
hard-to-match candidate-donor pairs. This can be done efficiently through an initial sorting
of the vertices by out-degree, a process whose one-time O(|V | log |V |) run time is negligible
compared to the NP-hard clearing problem.

5. Experimental Results

We now provide computational results for a hypothetical nationwide liver or multi-organ
exchange, using the realistic data generated above. First, we describe timing and matching
results in the static case, where the algorithm sees the problem in its entirety up front.
Second, we describe results for the dynamic case, where candidate-donor pairs arrive in the
pool over time and are either matched or expire while waiting. We show results at sizes
mirroring an estimated steady-state size of a US-wide liver exchange. Finally, we explore
the possibility of a multi-organ exchange, where both liver- and kidney-needing candidates
can swap donors in the same pool. This results in more lives being saved than would be by
running two separate nationwide liver and kidney exchanges.

5.1 Static Liver Exchange Experiments

In the static case, the generator outputs a single graph and the optimization engine solves
the clearing problem on this graph exactly once. Figure 8 shows timing results on liver
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exchange graphs of various sizes |V | and exogenous incompatibility rates f drawn from
the Dense distribution. Intuitively, when f is low (or zero), the optimizer must consider
many more edges than when f is high, resulting in longer run times for denser graphs. As
expected, the computation time increases drastically with graph size—although our solver
is still able to solve large problems to optimality.
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Figure 8: Median match run time (left) and median percentage of candidates matched
(right), varying incompatibility rate f and graph size |V |, with first and third
quartile error bars, for Dense compatibility graphs.

Figure 8 also shows the percentage of candidates matched (the number of candidates
matched by the algorithm divided by the total number of candidates in the pool) as a func-
tion of compatibility graph size |V | and exogenous incompatibility rate f . Intuitively, when
f is held low, the percentage of candidates matched is higher than when the incompatibil-
ity rate is high. Of interest is the match behavior as |V | increases. Regardless of f , the
percentage of candidates matched increases with the size of the underlying compatibility
graph. This behavior is similar to that seen in kidney exchange and motivates the need for
a large (nationwide or international) liver exchange.

5.1.1 Addressing the Needs of Society

The estimated steady-state size of the nationwide kidney exchange is 10,000 candidate-
donor pairs (Abraham et al., 2007). The rate of live liver donation is 1/8th of the rate of
live kidney donation—5% of all liver transplants in the US involve live donors, compared
to 40% for kidneys (Brown, 2008)—although this number would hopefully increase due to
the publicity of a successful exchange. We will conservatively estimate a factor of 1/2 as
many live liver donors as kidney donors in steady-state. With 101,257 candidates currently
waiting for a kidney and 15,268 candidates waiting for a liver in the US—and half as many
live donors available—the steady-state for a US-wide liver exchange can be estimated at
approximately half of 15,268 / 101,257 ≈ 7.5% of 10,000, or roughly 750 candidates. So,
our clearing algorithm should be able to handle batch runs of a nationwide liver exchange.
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5.2 Dynamic Liver Exchange Experiments

In the dynamic case, a variable number of candidates enter and leave the pool over a period
of multiple time units. While the fielded UNOS nationwide kidney exchange and others
currently operate under the static paradigm described earlier, recent work in the kidney
exchange community has shown that optimizing in the dynamic setting leads to both more
realistic and higher cardinality matchings over time (Awasthi & Sandholm, 2009; Ünver,
2010; Dickerson, Procaccia, & Sandholm, 2012a; Ashlagi et al., 2013; Anshelevich, Chhabra,
Das, & Gerrior, 2013; Anderson, Ashlagi, Gamarnik, & Kanoria, 2015a; Akbarpour, Li, &
Gharan, 2014; Dickerson & Sandholm, 2015). Regardless of the optimization method used,
organ exchange is inherently dynamic, with candidates and donors arriving and departing
over time; we work in such a setting here.

We start with a pool of |V | = 400 pairs assumed to contain highly-sensitized patients
who built up in the system over time. These are matched myopically at each time period,
including the final time period. Given a matched cycle by the algorithm, we then simu-
late that transplant actually succeeding in real life via an exogenous parameter set to 0.7.
This post-match, pre-transplant failure probability is drawn from real data, as motivated
by Dickerson et al. (2018). If any edge in a cycle fails, that entire cycle fails, and all can-
didates are returned to the pool (with the failed edge or edges removed). We simulate
candidates leaving the pool (either through finding a transplant or dying). While 12% of
patients in need of a kidney will be alive after 10 years via dialysis while waiting for a
kidney (HHS/HRSA/HSB/DOT, 2011), no such treatment exists for livers; thus, life ex-
pectancy drops to 1–2 years, which we simulate. In expectation |Vnew | = 233 new candidates
arrive in the pool per month, and the algorithm continues. We test over 24 months.
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Figure 9: Number of candidates matched per time period in a dynamic setting over T = 24
months, for exogeneous incompatibility rates f ∈ {0.5, 0.7, 0.9}, for compatibility
graphs drawn from the Dense distribution.

Figure 9 shows the number of candidates matched by the clearing engine at each time
period for dynamic graphs drawn from the Dense distribution with exogeneous incompat-
ibility rate f ∈ {0.5, 0.7, 0.9}. Shown in the figure is the number of candidates matched by
the algorithm, but before the virtual post-match failures are taken into account. Initially,
there is a period of a few months during which the dynamic pool builds density as more
candidate-donor pairs enter, followed by a relatively constant steady state. Intuitively, those
simulated graphs with lower incompatibility rates f result in a larger number of matches
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per time period and overall, which qualitatively aligns with the static results of Section 5.1.
Clearing times ranged between two and three minutes per time period.

5.3 Dynamic Bi-Organ Exchange Experiments

In this section, we expand beyond simulating a dynamic liver exchange to the novel concept
of multi-organ exchange. In the long run, one could imagine exchanges of multiple different
kinds of organs. However, to our knowledge, only kidneys and livers have ever been swapped
(and only separately). Ongoing work by Ergin, Sönmez, and Ünver (2014) is attempting to
exchange lungs, another related but different organ exchange problem (e.g., typically two
donors are required per candidate); it is likely that the first such hand-organized exchange
will take place in Japan. Therefore, in this section we will focus on kidneys and livers. We
show that combining an independent nationwide liver exchange with a nationwide kidney
exchange into a joint kidney-liver exchange results in a statistically significant increase in
the number of organ transplants, which aligns with Propositions 1, 2, and 3.

We simulate a demographically accurate bi-organ exchange featuring candidates in need
of either a kidney or a liver who can swap donors in a combined candidate-donor pool.
Approximately 85% of the candidates in the simulated pool need kidneys, while the other
15% need livers, as determined by OPTN waitlist data. We mimic the experiments in the
previous section, with a starting pool size of |V | = 400 candidates who are highly sensitized
and are assumed to have built up in the pool over time; we also include 100 altruistic
kidney donors who enter the combined pool at an expected constant rate. We use the same
post-match failure rate (0.7) as in the previous section, and simulate candidate-donor pairs
entering and exiting the pool in a similar fashion. For Dense experiments, to generate the
candidates, we draw from the two different US distributions based on whether the candidate
needs a kidney or a liver. Naturally, donors are drawn from the same US distribution in
the two cases. For UNOS experiments, we draw from the UNOS generator as described in
Section 4.3. We test over 24 months.
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Figure 10: Number of matches per time period in independent liver and kidney exchanges
and a combined multi-organ exchange in a dynamic setting over T = 24 months,
for graphs drawn from the Dense distribution with f ∈ {0.5, 0.7, 0.9} and
pK→L = 0.5

Figure 10 shows the number of candidates matched each month in the combined bi-
organ exchange, as well as the aggregate number of candidates matched while keeping both
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liver- and kidney-needing candidates in separate pools. We set pK→L = 0.5, but relax
this assumption later. Clearly evident is the loss of life resulting from keeping both the
liver and kidney pools independent, with the bi-organ exchange matching roughly 40 more
candidates per month, depending on exogeneous incompatibility rate f , when compared to
the two independent exchanges.

When we compare the total number of matches made over the entire period simulated
above, the difference in lives saved between two independent pools and the combined bi-
organ pool is more stark. In the experiments of Figure 10 with pK→L = 0.5, the combined
bi-organ pool produced roughly 20% more matches than the sum of the two independent
organ pools—specifically, 19.3%, 18.8%, and 21.8% for each of f = 0.5, f = 0.7, and
f = 0.9, respectively. Independent samples t-tests revealed that the difference between the
aggregate number of lives saved using independent, simultaneous liver and kidney exchanges
and using a combined multi-organ exchange was significant (t(73) = 44.141, t(42) = 38.872,
and t(81) = 41.651 for each of f = 0.5, f = 0.7, and f = 0.9, respectively, with two-
tailed p � 0.0001 for each). Qualitatively, this behavior is repeated for other values of
pK→L ∈ (0, 1.0], which we explore next.
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Figure 11: Percentage gain in number of matches over two independent exchanges for a
combined exchange as pK→L increases, for generated graphs from the Dense
distribution and f ∈ {0.5, 0.7, 0.9}.

Figure 11 shows the percentage gain in total number of matches of a combined exchange
over two independent exchanges as pK→L, the probability of a kidney-paired donor being
willing to donate a liver lobe, increases. As expected, higher rates of pK→L result in better
aggregate matching performance due to chains triggered by kidney-yielding altruists having
more options to thread into the liver pool, and as longer (i.e., more valuable) chains. The
effect of the exogeneous incompatibility rate f on the immediacy of this increase in match
performance is noticeable; the relatively dense f = 0.5 Dense graphs appear to maximize
the use of chains for very low values of pK→L = 0.1, while the sparser compatibility graphs
see an increase across the entire range of values for pK→L > 0.

Finally, Figure 12 shows similar results on dynamic graphs taken from the UNOS distri-
bution of graphs. While the absolute efficiency gains are less than in the Dense experiments,
gains of up to 7.6% are witnessed. This lower gain may be due in part to other intricacies
specific to the UNOS generator, which mimics some of the operational constraints of the
fielded UNOS exchange. For example, pairs have the ability to specify a maximum cycle
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Figure 12: Percentage gain in number of matches over two independent exchanges for a
combined exchange as pK→L increases, for generated graphs from the UNOS
distribution.

or chain length in which they would be willing to participate; indeed, some pairs express a
preference not to participate in chains at all, which we honor in these simulations. If pairs
in the liver pool choose not to participate in chains, then the gains seen from combining
pools will be lower than those that would be seen if all pairs chose to participate in all
potential matching structures. Donors also are associated with specific transplant centers
and can specify maximum travel distance or a list of (un)acceptable transplant centers
where a donation can take place; many donors in the UNOS pool take advantage of this
expressiveness, which further constrains the set of possible matches in graphs drawn from
the UNOS distribution.

Additional experimental results and statistical significance testing for the data in Fig-
ures 10, 11 and 12 are presented in Appendix B.

The curves in Figures 11 and 12 are in part a function of the number of altruistic donors
available in the pool. A greater number of altruists would result in lower necessary values of
pK→L. Participation rates of altruists in kidney exchange are still in flux, the value of pK→L
is not yet known, and the level and type of sparsity of a real-world multi-organ exchange
cannot truly be determined until one has been fielded; that said, the results of Figure 11
and 12 conclusively support the gain in number of matches from combining exchanges across
a large variety of values for these unknown parameters.

6. Conclusions and Future Work

We explored the possibility of extending large-scale organ exchange to include liver lobes,
either in conjunction with, or independently of, presently fielded kidney exchange. On
demographically accurate data, vetted kidney exchange clearing algorithms (with a small
change) can also clear liver exchanges at a projected US nationwide size. We explored the
prospect of multi-organ exchange, where candidates needing either a liver or kidney can
swap willing donors in the same pool. We showed that such a combination matches linearly
more candidates than maintaining two separate exchanges; this linear gain is a product of
altruistic kidney donors creating chains that thread through the liver pool. We supported
experimentally on demographically accurate multi-organ exchanges with high statistical
significance.
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This paper is intended as a first foray into automated liver and multi-organ exchange.
As such, there is much room for future research (much of which is applicable to other organ
exchange and even to barter exchanges beyond organs), and is motivated by experiences
fielding the nationwide kidney exchange. One direction of future work is to take on the slow
and politics-laden task of founding a liver exchange, or including livers in currently fielded
kidney exchanges. Recent and ongoing work by Ergin et al. (2014) is attempting to do this
for a lung exchange, another related but different organ exchange problem (e.g., typically
two donors are required per candidate), with the first trial likely to occur in Japan. Recent
work by Luo and Tang (2015) approaches lung exchange from a game-theoretic point of
view. Another direction is to develop scalable computational methods for the dynamic
problem; even for kidneys, the best current techniques are for simplified models (Ünver,
2010; Ashlagi et al., 2013; Anshelevich et al., 2013; Anderson et al., 2015a; Akbarpour
et al., 2014) or face computational challenges (Awasthi & Sandholm, 2009; Dickerson et al.,
2012a; Dickerson & Sandholm, 2015). Indeed, due to the shorter expected maximum waiting
time for candidates in need of a liver, such dynamic models may result in greater relative
gains in number of matches compared to static models.

Even for the static problem, scalability problems tend to get worse with the inclusion
of donation chains started by altruistic donors. The cycle cap L no longer applies to chains
since they do not require simultaneous execution. Recent work explores this innovation,
and hits computational limits experimentally with long chains (Ashlagi et al., 2012, 2011;
Dickerson et al., 2012a, 2012b; Gentry & Segev, 2011; Gentry, Montgomery, Swihart, &
Segev, 2009; Anderson, 2014; Glorie, van de Klundert, & Wagelmans, 2014; Ding, Ge,
He, & Ryan, 2015; Dickerson et al., 2016). We do not expect altruistic donors in liver
exchange due to increased risk for the donor compared to kidney donation, complicating
the ethical considerations of even allowing altruistic donors in the pool (Woodle, Daller,
Aeder, Shapiro, Sandholm, Casingal, Goldfarb, Lewis, Goebel, & Siegler, 2010). However,
that remains to be seen. In any case, one could include chains started by kidney-donating
altruists into a bi-organ exchange—as we do in this paper—if the scalability and ethical
challenges of such multi-organ chains can be adequately addressed.

Finally, this paper (and most papers on kidney exchange) deals with optimizing algo-
rithmic organ matches; in reality, most algorithmic matches in fielded kidney exchanges do
not result in an actual transplant. We expect this would be the case in liver and multi-
organ exchange as well, although the exact failure rates for liver and multi-organ exchanges
would be different than the observed failure rates in currently fielded kidney exchanges
due to the medical and logistical differences in the organs and the transplant processes.
Making organ exchange failure-aware is a critical step toward improving yield; recent work
explores this notion (Blum, Gupta, Procaccia, & Sharma, 2013; Anderson, 2014; Anderson,
Ashlagi, Gamarnik, & Roth, 2015b; Blum, Dickerson, Haghtalab, Procaccia, Sandholm,
& Sharma, 2015; Dickerson et al., 2016, 2018) to both theoretically and empirically max-
imize the expected number of actual transplants (possibly with respect to some fairness
constraints (Dickerson et al., 2014b; Li, Liu, Huang, & Tang, 2014; Sönmez & Ünver, 2015;
McElfresh & Dickerson, 2018) that could try to balance factors including the increased
risk of liver versus kidney donation) stemming from an algorithmic match. Recent work
by Glorie (2012) is an initial foray into learning a better estimate of the probability of a
transplant failure between a patient and a donor, but much is left to be done.
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Regardless, the urgent societal need for liver exchange is there today, and we hope to
be able to address it through a dedicated or combined liver- or multi-organ exchange.
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Appendix A. A Parameterized, Realistic Compatibility Graph Generator

In this section, we provide a more in-depth enumeration of the steps taken to generate re-
alistic liver or multi-organ exchange compatibility graphs; a shorter explanation was given
in the main paper in Section 4.1. Section A.1 describes the process of drawing data from
reliable sources (here, specific to the US), while Section A.2 shows how we feed this gen-
erated data into a graph creation algorithm that probabilistically determines the existence
of compatible and incompatible candidate-donor pairs, as well as compatibility constraints
between different candidate-donor pairs. As noted in the main paper, in the large and
with high probability, graphs generated by this algorithm will mimic the demographics that
would prevail in a large-scale fielded exchange in the US. (Plugging different raw data (e.g.,
gender, age, weight, blood type distributions) into the generator algorithm would provide
realistic generation of non-US compatibility graphs.) Our generator is a generalization of
(i.e., more powerful than) the current standard generator proposed by Saidman et al. (2006).

A.1 Sampling from Real-World Data

Current medical knowledge is incapable of exactly predicting the compatibility of a particu-
lar donor and candidate. However, many attributes are known that can guide doctors—and
algorithms—toward a realistic quantification of the chance of organ rejection. In this sec-
tion, we describe these factors and the open source data sets that our algorithm uses to
realistically sample the US population. In the discussions ahead, we use “OPTN” to refer
to the data available from the Organ Procurement and Transplantation Network.10 All
OPTN data is current as of November 11, 2011.

10. http://optn.transplant.hrsa.gov/data/
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A.1.1 Gender

While a donor of one gender can donate an organ to a candidate of another gender, we must
take gender into account during graph generation. This is because other traits that affect
the probability of a transplant’s success (e.g., weight or age) depend on a person’s gender.
We draw candidate genders from the OPTN data set, and donor genders from the greater
US population through the 2010 US Census report.11 Table 1 shows the distributions of
liver-needing candidates and the natural US population as donors. Men are very over-
represented in the candidate pool. (Note that similar distributions can be obtained for
kidney-needing candidates, and used in a multi-organ generator.)

Male Female

Candidate 61.71 38.29

Donor 48.53 51.47

Table 1: Distribution of (liver) candidate and donor genders, drawn from OPTN and 2010
US Census data, respectively.

A.1.2 Blood Type

A candidate and donor must be ABO blood type compatible (e.g., an A-type donor is
compatible with A- and AB-type candidates), although blood type suppression through
drugs is a recent advance that has the potential to remove this constraint (Takahashi, 2007).
We draw candidate blood types from the OPTN distribution (dependent on gender), and
donor blood types from the overall US.12 The OPTN distribution is roughly equal across
genders, and both distributions are roughly equal to each other. Nevertheless, it is important
to have this parameterized capability in the generator in the event that, for instance, some
“harder” blood type (e.g., AB) gets over-represented in the candidate pool. Table 2 shows
the exact distribution and the ABO-compatibility matrix, with percentages shown for liver-
needing candidates.

A.1.3 Age

Age plays a role in transplantation, but we were unable to find any specific quantification of
the amount by which increased donor or candidate age (or, in the case of children, decreased
candidate age) affects this success rate. Even without this information, age is important to
model because it will allow us to generate a realistic distribution of candidate and donor
weights, a trait whose effect is easily quantified. We sample ages (dependent on gender)
for candidates from the OPTN pool and for the donors from the 2010 US Census at a
granularity level of one year. To save space, Table 3 does not separate the population
into one-year segments as rows, while our generator does. In our generator we also take

11. http://www.census.gov/compendia/statab/cats/population.html

12. http://bloodcenter.stanford.edu/about_blood/blood_types.html
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Donor Candidate

ABO O A B AB

O 3 3 3 3

A 7 3 7 3

B 7 7 3 3

AB 7 7 7 3

Male Female

ABO Cand. Donor Cand. Donor

O 47.83 44 48.91 44

A 38.39 42 37.08 42

B 11.37 10 11.41 10

AB 2.40 4 2.58 4

Table 2: Left: ABO blood type compatibility matrix. Marks indicate a donor (row) as
ABO-compatible with a candidate (column). Right: ABO percentages for candi-
dates and donors.

into account the constraint that organ donors must be 18 years old, and we normalize the
distributions accordingly.

Male Female

Age Candidate Donor Candidate Donor

< 1 0.259 – 0.465 –

1–5 0.837 – 1.220 –

5–10 0.568 – 1.075 –

11–17 0.717 – 1.444 –

18–34 4.193 31.883 5.554 29.357

35–49 14.851 27.798 14.976 26.617

50–64 64.851 25.066 57.079 25.053

≥ 65 13.725 15.252 18.186 18.972

Table 3: Probability distribution of ages, respective of candidate and donor gender.

A.1.4 Weight

Unlike in kidney exchange, the physical weight of both the candidate and donor play an
enormous role in the feasibility of liver transplantation.13 Intuitively, the size of a liver is
generally proportional to the size of the person who grew it. In live liver donation, the
donor’s liver is cut in two (one lobe is removed). For both donor and candidate to remain
healthy, the slice of liver left in the donor must be large enough to maintain her life, and the
slice of liver given to the candidate must be large enough to maintain his. Thus, a general

13. Large weight differences between donor and candidate can factor into kidney exchange as well, but
this has not been taken into account in either the current state of the art generator or the weighting
algorithms used in the fielded US-wide kidney exchange.
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rule of thumb that the donor must weigh as much as (or more than) the candidate is in
place in live liver donation. We adopt that convention for liver exchange.

Given the age and gender (generated separately from OPTN data for candidate and
US Census data for donors, as described earlier), we sample from a fine-grained table
of weights recently released by the Center for Disease Control (McDowell et al., 2008).
This data, given on a by-year basis until age 20 and in increments of 5 years thereafter,
includes mean weights, sample errors, and sample sizes. From this, we calculate a standard
deviation and sample from a normal distribution with this mean and standard deviation.
While there are issues with this method—most notably that the candidate weights may be
drawn from a different distribution than the general US public, and that human weights are
not distributed normally but are skewed toward weighing more—we feel that this sampling
approach provides a reasonable starting point for future generation techniques. The full
table of weights is omitted due to space.

A.1.5 HLA Antibodies and Antigens

In kidney exchange, tissue type (HLA antibodies and antigens) are another very important
determinant of compatibility. A candidate and donor sharing antigen encoding on the
same locus possibly results in a positive virtual crossmatch across antigens. A positive
virtual crossmatch means that the system can detect incompatibility. In kidney exchange
graph generation, this is quantified by the probability that the candidate is not tissue-
type compatible with a randomly drawn donor. This probability is called %PRA for panel
reactivity antibody (Saidman et al., 2006). Furthermore, tissue type can change over time,
resulting in the need for contingency plans after the time of algorithmic matching but before
the surgery. For example, if the candidate comes down with a cold or flu days before surgery,
the surgery may need to be rescheduled or permanently canceled.

In liver exchange, %PRA plays less of a role due to the use of suppressant drugs. As
such, while the generator supports %PRA (and can use sampled data from the OPTN
databases14), we exclude %PRA in our liver experiments. However, %PRA is included in
our multi-organ experiments for kidney candidates.

A.2 Generator Algorithm

We now give the method for generating the compatibility graph from data sampled from
the sources given in the previous section. Note that the probability distributions from the
previous section (and the organs to which they pertain) can be swapped without affecting
the correctness of the algorithm beyond the “is compatible” checks described below.

Algorithm 1 gives a two-step process for generating a compatibility graph G = (V,E),
given a number n, such that |V | = n. First, sample from real-world data until n incompat-
ible candidate-donor pairs are generated. When generating a liver exchange, one would set
the algorithm to sample from the liver data given above; however, when generating a multi-
organ exchange consisting of livers and kidneys, one would include the proper proportions
of kidney and liver candidates and sample from the appropriate real-world data per organ.

14. The relationship (e.g., parent-child, spousal) between candidate and donor can yield information on HLA
compatibility (e.g., due to inheritance of HLA from each parent or changes in HLA antibodies due to
pregnancy), and is supported by the generator of Saidman et al. (2006) and our generator.
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Algorithm 1: Compatibility graph generator

Input: Integer n, real number f , real-world data
Output: Compatibility graph G = (V,E) s.t. |V | = n
begin

G := (V = ∅, E = ∅)
while |V | < n do

c = candidate, d = donor
c.drawOrganType()
{c, d}.drawGender()
{c, d}.drawBlood(gender)
{c, d}.drawAge(gender)
{c, d}.drawTissueType(gender)
{c, d}.drawWeight(gender , age)
if ¬isCompatible(c, d) then

V = V ∪ {vc,d}

for vi, vj ∈ V s.t. Vi 6= Vj do
if isCompatible(vcj , v

d
i ) and x ∈ U [0, 1] > f then

if isWilling(vi, vj) then
E = E ∪ {(vi, vj)}

return directed compatibility graph G

When we ran the liver and multi-organ experiments in Section 5, the kidney waitlist was
5.84 times longer than the liver waitlist, which was reflected in this algorithm. (When this
paper was submitted, the kidney waitlist was 6.50 times longer than the liver waitlist.)

If needed, the algorithm can easily be augmented to keep track of any compatible
candidate-donor pairs generated. As is common practice in kidney exchange, these pairs
are assumed to match on their own, and do not enter the pool. Recent kidney exchange
research suggests that incentivizing even compatible pairs to join a nationwide exchange
could result in better matchings (Rees et al., 2009; Ashlagi & Roth, 2014). Other addi-
tions could be made to the algorithm as data becomes available (e.g., correlating donor
and candidate characteristics under the assumption that a donor may likely come from the
candidate’s family).

After n incompatible candidate-donor pairs are generated, the algorithm steps through
each pair vi, vj of candidate-donor pairs and, if the latter’s candidate vcj is compatible with

the former’s donor vdi , then a directed edge is added from vi to vj . Note the inclusion of
an exogenous “incompatibility factor” f ∈ [0, 1] that, if prescribed, randomly determines
an edge failure even in the case of a compatibility success. This factor is common in the
kidney literature (Ashlagi et al., 2011), and is used to account for incompleteness of medical
knowledge and, during simulation, temporal fluctuations in candidate-donor compatibility.

Algorithm 1 calls a function isCompatible(c,d). In the liver case, this checks whether
two patients are ABO-compatible and whether the donor’s weight is greater than or equal
to the candidate’s weight. In the kidney case, this checks whether two patients are ABO-
compatible and whether a virtual crossmatch based on tissue type returns negative. As
better medical knowledge and data become available, this function can be generalized to take
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f = 0.5 Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 90 5143.7 (129.9) – – – – –

0.1 41 – – 6059.4 (155.0) 17.80% 34.884 � 0.001 0.0 � 0.001

0.2 53 – – 6109.3 (153.3) 18.77% 39.825 � 0.001 0.0 � 0.001

0.3 63 – – 6110.4 (149.0) 18.79% 42.332 � 0.001 0.0 � 0.001

0.4 79 – – 6102.4 (143.9) 18.64% 45.240 � 0.001 0.0 � 0.001

0.5 73 – – 6137.5 (155.7) 19.32% 44.141 � 0.001 0.0 � 0.001

0.6 83 – – 6114.5 (126.2) 18.87% 49.491 � 0.001 0.0 � 0.001

0.7 81 – – 6156.4 (153.2) 19.69% 46.472 � 0.001 0.0 � 0.001

0.8 77 – – 6140.8 (140.3) 19.38% 47.364 � 0.001 0.0 � 0.001

0.9 79 – – 6182.7 (143.7) 20.20% 49.060 � 0.001 0.0 � 0.001

1.0 81 – – 6135.3 (133.2) 19.28% 48.953 � 0.001 0.0 � 0.001

Table 4: Statistical significance testing for Dense distribution graphs with f = 0.5.

new compatibility aspects into account. The algorithm also calls a function isWilling(vi,
vj), which returns true if the donor at vi is willing to give an organ of the type needed by
the patient in vj . This corresponds to, e.g., the probabilities pK→L and pL→K used in this
paper’s theoretical and experimental sections.

Appendix B. Additional Experimental Results

In this section, we provide statistical significance testing for the dynamic bi-organ exper-
iments of Section 5.3. The tables are organized as follows. Each table corresponds to a
different distribution of compatibility graphs. Tables 4, 5, and 6 give results for Dense
graphs with exogeneous incompatibility rates f = 0.5, f = 0.7, and f = 0.9, respectively.
These tables support Figures 10 and 11 in the body of the paper. Table 7 gives results for
the UNOS family of graphs. This table supports Figure 12 in the body of the paper.

Each row in a table corresponds to a different value of pK→L; the value of pK→L is
specified in the first column of the table. From left to right, the columns represent: n, the
number of independent runs used to support the results in this row; the average number
of patients matched in total for an independent liver and independent kidney exchange;
the standard deviation of the previous; the average number of patients matched in total
for a combined bi-organ exchange; the standard deviation of the previous; the percentage
gain in number of matched patients achieved by combining exchanges; t-statistic from an
independent samples t-test; the associated two-tailed p-value for the previous; U -statistic
from a Mann-Whitney U test (roughly, a non-parametric version of the independent samples
t-test); and the associated one-tailed p-value for the previous.
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f = 0.7 Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 99 4979.6 (127.6) – – – – –

0.1 90 – – 5655.3 (146.6) 13.57% 33.685 � 0.001 0.0 � 0.001

0.2 69 – – 5819.3 (116.5) 16.86% 43.215 � 0.001 0.0 � 0.001

0.3 50 – – 5838.9 (134.3) 17.25% 37.874 � 0.001 0.0 � 0.001

0.4 35 – – 5898.4 (143.0) 18.45% 35.188 � 0.001 0.0 � 0.001

0.5 42 – – 5914.6 (134.5) 18.78% 38.872 � 0.001 0.0 � 0.001

0.6 32 – – 5964.0 (119.9) 19.77% 38.196 � 0.001 0.0 � 0.001

0.7 33 – – 6011.4 (175.6) 20.72% 36.094 � 0.001 0.0 � 0.001

0.8 36 – – 6006.9 (134.4) 20.63% 40.476 � 0.001 0.0 � 0.001

0.9 40 – – 6010.4 (152.2) 20.70% 40.419 � 0.001 0.0 � 0.001

1.0 36 – – 6051.4 (156.8) 21.52% 40.192 � 0.001 0.0 � 0.001

Table 5: Statistical significance testing for Dense distribution graphs with f = 0.7.

f = 0.9 Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 79 3708.4 (113.2) – – – – –

0.1 79 – – 4089.6 (113.3) 10.28% 21.018 � 0.001 19.5 � 0.001

0.2 81 – – 4298.0 (108.0) 15.90% 33.501 � 0.001 0.0 � 0.001

0.3 82 – – 4396.4 (121.8) 18.55% 36.866 � 0.001 0.0 � 0.001

0.4 81 – – 4430.6 (133.8) 19.47% 36.577 � 0.001 0.0 � 0.001

0.5 81 – – 4514.9 (129.4) 21.75% 41.651 � 0.001 0.0 � 0.001

0.6 81 – – 4591.5 (139.0) 23.81% 43.721 � 0.001 0.0 � 0.001

0.7 78 – – 4603.2 (133.8) 24.13% 44.977 � 0.001 0.0 � 0.001

0.8 78 – – 4641.6 (153.0) 25.16% 43.200 � 0.001 0.0 � 0.001

0.9 78 – – 4675.2 (112.6) 26.07% 53.307 � 0.001 0.0 � 0.001

1.0 79 – – 4695.1 (121.2) 26.61% 52.553 � 0.001 0.0 � 0.001

Table 6: Statistical significance testing for Dense distribution graphs with f = 0.9.
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UNOS Independent Combined t-test Mann-Whitney

pK→L n Avg. # Stdev Avg. # Stdev % Gain t p U p

0.0 82 4003.8 (108.3) – – – – –

0.1 86 – – 4099.5 (108.3) 2.39% 5.689 � 0.001 1959.5 � 0.001

0.2 84 – – 4162.9 (124.6) 3.97% 8.719 � 0.001 1154.5 � 0.001

0.3 80 – – 4211.5 (119.3) 5.19% 11.538 � 0.001 617.5 � 0.001

0.4 79 – – 4210.4 (109.2) 5.16% 11.978 � 0.001 561.0 � 0.001

0.5 74 – – 4252.8 (103.6) 6.22% 14.539 � 0.001 306.5 � 0.001

0.6 76 – – 4263.4 (115.3) 6.48% 14.501 � 0.001 303.0 � 0.001

0.7 76 – – 4304.1 (112.8) 7.50% 16.961 � 0.001 185.5 � 0.001

0.8 62 – – 4313.6 (124.6) 7.74% 15.813 � 0.001 143.0 � 0.001

0.9 67 – – 4298.3 (121.2) 7.36% 15.544 � 0.001 181.0 � 0.001

1.0 68 – – 4304.3 (120.7) 7.51% 15.949 � 0.001 163.0 � 0.001

Table 7: Statistical significance testing for UNOS distribution graphs.
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nonsimultaneous, extended, altruistic-donor chain. New England Journal of Medicine,
360 (11), 1096–1101.

Roth, A., Sönmez, T., & Ünver, U. (2004). Kidney exchange. Quarterly Journal of Eco-
nomics, 119 (2), 457–488.
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Saidman, S. L., Roth, A., Sönmez, T., Ünver, U., & Delmonico, F. (2006). Increasing the
opportunity of live kidney donation by matching for two and three way exchanges.
Transplantation, 81 (5), 773–782.

Segev, D. L., & Montgomery, R. A. (2010). The application of paired donation to live donor
liver transplantation. Liver Transplantation, 16 (4), 423–425.
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