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Abstract

Nogood learning has proven to be an effective CSP technigtieat to success in today’s top
SAT solvers. We extend the technique for use in integer arogring and mixed integer pro-
gramming. Our technique generates globally valid cuttitagnes for the 0-1 IP search algorithm
from information learned through constraint propagatiooupnds propagation). Nogoods (cutting
planes) are generated not only from infeasibility but alsof bounding. All of our techniques
are geared toward yielding tighter LP upper bounds, and simadler search trees. Experiments
suggest that our nogood learning does not help in integgranoming because few cutting planes
are generated, and they are weak. We explain why, and iggmtiblem characteristics that affect
the effectiveness. We show how problem structure, such d@sahexclusivity of indicator vari-
ables, or at least one of a set of indicator variables hawriget“on”, can be used to enhance the
technique. We show this also for instances that exhibitipialoccurrences of each of the two
structures. We then generalize the technique to mixedi@ntprogramming. Then we compare
our techniques to Achterberg’s parallel invention of an@dtridentical approach. This compari-
son yields conclusions about what techniques within theoaddearning framework for (mixed)
integer programming are essential for obtaining speeduglli, we lay out several directions for
future research down this new and potentially promisinghaee






1 Introduction

Nogood learning is a powerful technique for reducing sedreé size in constraint satisfaction
problems (CSPs) (e.g., [11, 14, 28, 8]). Whenever an inbdagiis found, reasoning is used to
identify a subset of the variable assignments from the ghthr{ogood) that caused the infeasibil-
ity. The nogood is stored; the rest of the tree search doelawet to consider paths that include
the assignments of that nogood. Modern complete propasitgatisfiability solvers use nogood
learning; it enables them to solve orders of magnitude tgpgeblems (e.g., [21, 24]).

We present a propagation-based nogood learning methodxXednmteger programming (MIP).
Optimization problems are more general than CSPs: they &aabjective to be maximized in
addition to having constraints that must be satisfied. Wadan the most prevalent optimization
framework, mixed integer programming, which is domain petedent and has a very broad range
of applications in scheduling, routing, facility locatiocombinatorial auctions, etc. We designed
the idea in June 2003, and since then have built an implemi@miaf it on top of ILOG CPLEX.
The same idea has been developed independently and ingbéralAchterberg, with an imple-
mentation on top of his MIP solver, SCIP [1]. (We will discubg similarities and differences
between our work and his in the related research sectiore)high-level perspective is that our
techniques hybridize two powerful search paradigms: camgtprogramming and MIP. Other—
complementary—ways of hybridizing the two have also beepgsed (e.g., [7, 17, 13, 6, 16]).

A mixed integer program (MIPis defined as follows.

Definition 1 Given ann-tuplec of rationals, anm-tupleb of rationals, and ann x n matrix A of
rationals, find the:-tuplex such thatdz < b, andc - x is maximized.

If the decision variables are constrained to be integers (7" rather than allowing reals), then
we have arninteger program (IP) If we further require that that the decision variables araty
(x € {0,1}™), then we have 8-1 IP. While (the decision version of) MIP & P-complete, there
are sophisticated techniques that can solve very larganoss in practice. We now briefly review
those techniques. We build our methods on top of them.

In branch-and-boundearch, the best solution found so famcUmbenis stored. Once a node
in the search tree is generated, an upper bound on its valkeemputed by solving a relaxed
version of the problemwhile honoring the commitments made on the search path soTae
most common method for doing this is to solve the problem avbilly relaxing the integrality
constraints of all undecided variables; thiaear program (LP)can be solved fast in practice,
e.g., using the simplex algorithm (or a polynomial worssectime interior-point method). A path
terminates if 1) the upper bound is at most the value of thanrment (search down that path
cannot produce a solution better than the incumbent), 2] Fhis infeasible, or 3) the LP returns
an integral solution. Once all paths have terminated, tbembent is optimal.

A more modern algorithm for solving MIPs Isranch-and-cutsearch, which first achieved
success on the traveling salesman problem [26, 27], andwstim® core of the fastest general-
purpose MIP solvers. Itis like branch-and-bound, excegt ithaddition, the algorithm generates
cutting planeg25]. They are linear constraints that, when added to thblpro at a search node,
result in a tighter LP polytope (while not cutting off the opal integer solution) and thus a lower



upper bound. The lower upper bound in turn can cause eagligrination of search paths, thus
yielding smaller search trees.

The rest of this paper is organized as follows. Section 2gmtssour approach in the context
of 0-1 IPs. Section 3 covers experiments and explains thiempeance. Section 4 shows how
special problem structures can be exploited to enhancestiimigue. Section 5 generalizes our
approach from 0-1 IPs to MIP. Section 6 discusses relatezhrels. Section 7 concludes and lays
out potentially fruitful future directions.

2 Nogood learning for 0-1 IP

The main idea of our approach (for 0-1 integer programmiag® iidentify combinations of vari-
able assignments that cannot be part of an optimal soludory. such combination is aogood
The high-level motivation is that generating and storingouads allows the tree search algorithm
to avoid search paths that would include the variable asségrs of any stored nogood. This
reduces search tree size.

To extend nogood learning from CSPs to optimization (IRyrehare two challenges: generat-
ing nogoods and using them. Each challenge involves sulndleweresting issues. We first present
a method for generating nogoods in this setting throughtcains propagation. We then present
techniques for generating cutting planes for the branahen algorithm from those nogoods.
Overall, our technique leads to tighter LP bounding, and #raaller search trees.

2.1 Propagation rules to detect implications

As a building block, we need rules to detect the implicatioihdecisions made on the search path.
We therefore present an adaptation of constraint propaytdio-1 IP:

First, consider a simple exampler < b,a > 0,z € {0,1}. Clearly, ifb < a, thenz = 0.
Furthermore, ib < 0, then the constraint is not satisfiable by any value.dflore generally, say
we haveanx < ¢(),z € {0, 1}, for some functiorp. If a > 0, we can reason as follows.

e If the upper boundn ¢() is negative, then no assignment:ofvill satisfy the constraint.
e Otherwise, ifa is greater than the upper boundg, thenz — 0.
If a < 0 we can make a similar statement:
e If ais greater than the upper bounds, then no assignment efwill satisfy the constraint.
e Otherwise, if theupper boundn ¢() is negative, then — 1.

This is central to our constraint propagation scheme. Each & variable is fixed, we loop
through all constraints and check to see whether any of thesadonditions are met. If a constraint
is deemed to be unsatisfiable, then we have found a conflidttlare cannot exist a feasible

1Propagation of linear constraints has been explored puslyigin the context of bounds consistency [15].



solution in this node’s subtree. If we have found no conflitist have instead proven that a
variable must be fixed to satisfy the constraint, then we @gage that change as well.
The rest of this subsection lays out this procedure in motaldéach IP constraint can be

written as
Z a;jry < b 1)
JEN
whereN is the index set of variables. In order to examine a partictdaiablez; with respect to
constraint;, the constraint can be rewritten as

azjxj S bl — Z aijxj (2)
JEN\]

This is the same form as the inequality examined above. Now,

QSUA(ZE) = bi— Z A5 (3)
JEN,j#]
= bi— Z |aij|xj+ Z |Clij|l’j (4)
JEN; G#5 JEN; j#]

whereN;" = {j € N :a;; > 0}andN;” = {j € N : a;; < 0}
If we can determine an upper boubg; for this expression, we can use the above process to
perform constraint propagation on the IP. The expression

Uj=bi—s({jli e N, j #53) +5({jli € N7 .j #7}) (5)
yields an upper bound as long as
5,(9) < lagjlz; < 5:(S) (6)
jeS
for all .
With no other knowledge of the problem structure, we can use
5,(5) =) lagll; (7
JES
and
5(8) = lai;lu; (8)
jES

wherel; andu; are the lower and upper bounds oj respectively, at the current node of the
search tree. Since we are dealing with 0-1/JR- 0 andu; = 1 unless the variable; has been
fixed. If z; has been fixed, thdn = u; = z;.

We can now state the constraint propagation procetiure:

2This is very similar to that used for nogood learning in CSIPsan be sped up by watching the set of variables
that are candidates to become implied shortly [8].



for all unsatisified constraints do
for all unfixed* variables; do

if j € N, then
if U;; < 0then we have detectedeonflict
else ifa;; > U;; thenu; « 0

else ifj € N, then
if a;; > U;; then we have detected@onflict
elseifU; <Othenl: — 1

2.2 Implication graph and its maintenance

We also need a way to track the implications that have beererdadng the search path. For
example, say the search has taken a branck- 0 and a branchxs = 0. Say the constraint
propagation process then comes across constrainte, — x3 < 0. Clearly,z; must be 0 because
(r9 = 0,23 = 0). However, we would like to capture more than just= 0; we would also like to
capture the fact that the assignment= 0 was due tqz, = 0, z3 = 0).

To keep track of implications and their causes, our algorittonstructs and maintathan
implication graph a directed graph, in much the same way as a modern DPLL SAErsolVe
add a node to it for each variable assignment (either dueatoching or to implication). We also
add a node whenever we detect a conflict. Denotéethg constraint that caused the assignment or
conflict by implication. For each fixed variabtge with a nonzero coefficient iy we add an edge
from the node corresponding ig to the node we just created. At this point our implicationpdra

looks as follows.

2.3 Nogood identification and cutting plane generation

Whenever a conflict is detected (i.e., the node is ready torbeepl), we use the implication
graph to identifynogoodsi.e., combinations of variable assignments that canngidseof any
feasible solution. Consider drawing a cut in the implicatgraph which separates all decision
nodes from the conflict node. For every edge which crossesutéake the assignment from the

3A constraint isunsatisfiedf it is not yet guaranteed to be true given the set of fixedlietpvariables at the current
node.

“A variable isunfixedif 1; < u;.

5This is easy to maintain with a single graph if depth-firstrseaorder is used. For search algorithms in the
breadth-first family, such as A* (aka. best-first searchi@asate graph is maintained for each active search path (i.e
each node on the open list).



source node of the edge. The resulting set of assignmemstessult in a feasible solution; the

conflict will always be implied. Therefore, this set of agsigents constitutes a nogood. Any such
cut will produce a nogood; several methods for finding stromg have been studied by the SAT
community (e.g., [21, 24]) and can be applied in our settimgady. (In the experiments, we use

the 1UIP technique to generate a nogood.)

Finally, we will use the identified nogood(s) to produce itigtiplane(s) for the 0-1 IP problem.
(These cuts arglobal, that is, they are valid throughout the search tree, not onthe current
subtree. Thus it is not necessary to remove them as the s@anaks outside of the subtree.) We
break the variables involved in the nogood into two sétscontains the variables that are fixed to
0 (by branching or implication), anld, contains the variables that are fixed to 1. Consider the case
where all variables involved in the nogood were fixed to O; veell like to constrain the problem
so that at least one of those variables is nonzero:

a1 9)

Conversely, if all the variables involved in the nogood wéxed to 1, then we would like to
constrain the problem so that for at least one variable, dhgptement of the variable is nonzero:

dl—ay) =1 (10)

JEN1

Putting these together, a nogood generates the cutting plan

Yoa= ) w<1-|Vi (11)

NS JEVI
2.4 A small example
For illustration of the concepts, consider the following 0.

max x1; +1.1xzo +1.2235 424 +25 424

s.t. —I1 —XT2 +x3 > —1
—T3 +X4 > 0
—X3 +xs5 > 0
—Zy +x6 > 0
—xr5 —xg > —1
€ S {0,1}

First, we solve the LP relaxation, which gives us an object&iue of3.7, and solution vector
21 =052 =123 =0.5,24 = 0.5, 25 = 0.5, x5 = 0.5. We branch on, and take the up branch
(z1 = 1). Constraint propagation finds no new assignments (betheédsranch decision itself).

The LP relaxation results in an objective value3af5 and solution vector; = 1,2, =
0.5,23 = 0.5,24 = 0.5,25 = 0.5,z = 0.5. We branch omn,, and take the up branch{ = 1).
Performing constraint propagation en = 1 leads to the implied assignmenf = 1 (by the first

5



x1=0 xl=1 |

constraint in the problem). Propagating = 1 leads to implied assignments = 1 andx; = 1
(by the second and third constraints, respectively). Binal = 1 impliesxzs = 1 by the fourth

constraint, and:; = 1 implieszg = 0 by the fifth constraint. We have thus detected a conflict on
variablexs.

Seramm=="

Now we find cuts in the graph that separate the conflict fromsthece nodes (which corre-

spond to branching decisions). Not all cuts need be gentrast@ur example, say the algorithm
generates three of them:

S mam=="

cut3 cut 2 cutl

We translate the cuts into cutting planes for IP:

e Cut 1 in the graph generates nogopd = 1,z; = 1), which yields the cutting plane
Ty + s < 1.

e Cut 2 generates nogodd; = 1), which yieldszz < 0.

e Cut 3 generates nogoda;, = 1, x, = 1), which yieldsz; + z» < 1. However, this cutting
plane is futile because it contains all of the branchingslens from the search path. Since

search paths are distinct, this combination of variablegyassents would never occur in any
other part of the search tree anyway.

At this point the algorithm has proven that the current nadmfeasible; there is no point in
continuing down this search path. Therefore, the searclemom by popping another node from

6



the open list. Say it pops the node corresponding to path 1, z, = 0.5 Constraint propagation
onx, = 0 yields no new assignments.

If we solve the LP for this nodeithoutthe cutting planes we generated, the LP has an objective
value of3.1 and solution vector; = 1,2, = 0,23 = 0.5,24 = 0.5,25 = 0.5,26 = 0.5. This
would require further branching. However, solving the LRnwthe addition of our cutting planes
yields a tighter relaxation: an objective value3of and solution vector:; = 1,25 = 0,23 =
0,74 = 1,25 = 0,2¢ = 1. The solution is integral, so no further branching down tbeth is
needed. Our cut generation process has thus produceder tighbound that made the search tree
smaller.

2.5 Generating additional conflicts and cutting planes fronpruning by bound

In informed tree search, such as branch-and-cut, nodeslsaba pruned by bounding. Denote
by ¢ the objective function contribution from the variablestthave been decided by branching or
propagation. Denote by an upper bound on the rest of the problem—this is usuallyirddaby
solving the LP involving the undecided variables and meaaguheir contribution to the objective.
Finally, denote byf the current global lower bound (e.g., obtained from the inicent). Then, if
g+ h < f,” the current search node (and the subtree under it which ha®hbeen generated) is
pruned.

Our nogood learning mechanism, as described so far, wy detect conflicts that stem from
infeasibility. Further reduction in tree size can be achieby also detecting conflicts that stem
from bounding.

We address this by considering the current global lower d@asran additional constraint on the
problem: given the objective function ¢;z; and the current global lower bourfd our algorithm
considers thebjective bounding constraint

D e > f (12)

when performing constraint propagation. This simple teqpia will, in effect, treat as infeasible
any assignment that cannot be extended into a solutionsthatier thary. This allows our cutting
plane generation to occur in more nodes of the search trei¢ @sd allows for cutting planes to be

8E.g., depth-first branch-and-cut search would pick thisenod
’If the lower bound comes from an actual incumbent soluticstriat inequality can be used.



generated that could not have been generated with the aaeitsion of our algorithm described
above®

2.6 Generating additional conflicts and cutting planes fromLP infeasibility

We implemented all the techniques presented in the papersith these techniques, conflicts
and cutting planes are generated based on propagationiabhkeabounds.

Another form of propagator that is present in MIP solverds linear program (LP) solver.
Sometimes the LP returns infeasibility even at nodes wherdounds propagator does not catch
the infeasibility. Therefore, one could generate addélaonflicts and cutting planes from LP
infeasibility.

For example, at any node that is pruned during search due tmfeBsibility or objective
constraint violation, one could use the LP to generat@raducibly inconsistent set (11S).e., a
set of constraints that make the LP infeasible such thatyifcamstraint is removed from the set,
the conflict would disappear. Any IIS is a nogood, so one caregge a cutting plane from it.
For 0-1 IP, Davey et al. produce an IIS with the smallest @gewith variable assignments on the
search path, and use that as the cutting plane [9].

Such techniques do not subsume ours. No IIS-based cuttamg plould help in the example
of Section 2.4 because any IIS would include all the decs@mnthe path.

We did not implement any techniques for generating confietd cutting planes from LP
infeasibility because we wanted to keep the run-time perckazode very small. However, that is
a very promising direction for future research. We will cobaek to this in the “Related research”
section and in the “Conclusions and future research” sectio

2.7 Backjumping

We can also generalize the backjumping idea from SAT to miesgjer programming. The main
issue is that, unlike CSPs, optimization problems, suchtageér programs, are typically not solved
using depth-first search. Our solution works as follows, @mes not rely on any particular search
order. If, at any point of the search, we detect a nogood thatiains no decisions or implications
made after théith branching decision in the current path, we determine tieestor,,, of the
current node at depth, and discard) and all its descendants. (This is valid since they are now
known to be infeasible or suboptimal.)

There is an alternative way to accomplish this, which isexasiimplement in the confines of
the leading commercial MIP solvers. Consider the momemh filoe example above whenhas
been identified. Then, instead of explicitly discardingnd its descendants, simply markThen,
whenever a node comes up for expansion from the open listeotrately check whether that node

8Cutting planes generated from the objective bounding caimstcan cut off regions of the polytope that contain
feasible integer solutions. No such points can be optineahranch-and-cut still produces correct results. However,
the leading commercial MIP solvers (CPLEX and XPress-MBuag that no cutting plane is used that cuts off
feasible integer solutions. In such solvers, some funatipn(parts of the preprocessor) needs to be turned off to
accommodate these more aggressive cutting planes.



or any node on the path from that node to the root has been maifkeo, the current node is
infeasible or suboptimal and can be discarded (withoutisglits LP relaxation).

In the experiments, we do not use backjumping. Any node oroffen list that could be
removed via backjumping reasoning will be pruned anywayeadnis popped off of the open list:
the node’s LP will be found infeasible. This is guaranteedh®ypresence of the cutting plane(s)
which would have allowed backjumping in the first pldc&he cost of omitting backjumping is
the need to potentially solve those nodes’ LPs. On the otaed hthe overhead of backjumping
(discussed above) is saved.

3 Experiments and analysis

We conducted experiments by integrating our techniquediif@G CPLEX 9.1. CPLEX’s default
node selection strategy was used in all of the experimentsrder to not confound the findings
with undocumented CPLEX features, we turned off CPLEX'ssphee, cutting plane generation,
and primal heuristics. The platform was a 3.2 GHz Dual ComiBe 4 based machine running
64-bit Fedora Core 3 Linux.

The first test problem was the combinatorial exchange widetrmination problem [31]. It
can be formulated as a MIP, with a binary variable€or each bid, objective coefficients corre-
sponding to the prices of the bids, and quangjfyof each itemy contained in bidj: max Zj DiT;
such thatvi, >, ¢;;z; = 0. We generated instances randomly using the generator deddn
[30] (it uses graph structure to guide the generation; tieeprand quantities can be positive or
negative). We varied problem size from 50 items, 500 bidtifems, 1000 bids. For each size,
we generated 150 instances.

The second problem was modeled after a class of combinaexthanges encountered in
sourcing of truckload transportation services. There iagls buyer who wants to buy one unit of
each item. The items are divided into regions. There is saungber of suppliers; each supplier
places singleton (i.e., non-combinatorial) bids on each sifibset of the items. A supplier can bid
in multiple regions, but only bids on a randomly selectedo$éems in the region. Each bid is an
ask in the exchange, so the price is negative. Finally, tasreonstraints limiting the number of
suppliers that can win any business. There is one such eamstwverall, and one for each region.
The MIP formulation is as above, with the addition of a newaynvariable for each supplier and
for each supplier-region pair, the constraints over thaa@ables, and constraints linking those
binary variables to the bid variables. We varied problera fiam 50 items, 500 bids to 100 items,
1000 bids. For each size, we generated 150 instances.

To test on a problem close to that on which nogood learnindbkas most successful, we ran
experiments on 3SAT instances converted to MIP. Each insthad 100 variables and 430 ran-
domly generated clauses (yielding the hard ratio of 4.3) caveverted each clause (i.e., constraint)
of the 3SAT instance to a MIP constraint in the natural shiayward way. For example, clause
(x1V w7 V —g) is converted into the constraint + (1 — z7) 4+ (1 —x9) > 1. In order to explore
both the optimization power and the constraint satisfagtiower of our approach, we made some

9Even if cutting plane pool management is used to only inckm®e of the cutting planes in the actual LP, the
children of the node will be detected infeasible during ¢ist propagation.
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of the instances optimization instances rather than punstcaint satisfaction instances. Specifi-
cally, a subset of the variables (ranging from 0% to 100% @&néments of 10%, with 100 instances
at each setting) had positive objective coefficients; otlaeiables’ coefficients were 0.

Finally, we tested on all the MIPLIB 3.0 [5] instances thatyohave 0-1 variables and for
which an optimal solution is known. There are 20 such insganc

Surprisingly, nogood learning does not seem to help in Mipravides little reduction in tree
size (Table 1). Fortunately, the time overhead (measuredbbyg all the steps, but not inserting
the generated cutting planes) averaged only 6.2%, 4.7%8%2%nd 12.8% on the four problems.
We now analyze why nogood learning was ineffective.

Tree Path pruned due to Leaf yields nogood |Relevancy

reduction| infeasibility | bound | integrality | infeasibility | bound rate
Exchange 0.024% | 0.001% | 99.94%| 0.060% 45.29% 0.000%| 0.068%
Transport 0.005% | 0.000% | 100.0%| 0.000% 42.80% 0.000%| 0.047%
3SAT 2.730% 10.02% | 89.98%| 0.001% 75.83% 0.026%| 5.371%
MIPLIB 0.017% | 0.008% | 99.99%| 0.000% 37.66% 0.000%| 0.947%

Table 1: Experiments. Relevancy rate = of nodes that hadhat é;me of our cutting planes, how
many had at least one of them binding at the LP optimum.

First, few nogoods are generated. Nodes are rarely prunagddasibility (Table 1), where our
technique is strongest. In the 3SAT-based instances, q@yy infeasibility was more common,
and accordingly our technique was more effective.

When nodes were pruned by bounding, our technique was raldéyto generate a nogood
(Table 1, column 7). The objective bounding constraint neguso many variables to be fixed
before implications can be drawn from it that in practice licadions will rarely be drawn even
when the LP prunes the node by bounding. This stems from fjleetdle including most variables.
The exception is those 3SAT-based instances where a smbmpof the variables were in the
objective. This explains why the implication graph was Islig more effective at determining a
nogood from bounding in 3SAT, particularly the instances\iew variables in the objective.

Second, the generated cutting planes are weak: they dogmifisantly constrain the LP poly-
tope. The cutting planes effectively require at least orees#t of conditions (variable assignments
in the case of 0-1 IP) to be false. So, the larger the set ofittond, the weaker the cutting plane.
On our problems, few inferences can be drawn until a largebauraf variables have been fixed.
This, coupled with the fact that the problems have denseti@nts (i.e., ones with large numbers
of variables), leads to a high in-degree for nodes in theicapbn graph. This leads to a large
number of edges in the conflict cut, and thus a large numbeoraditions in the nogood. There-
fore, by the reasoning above, the cutting plane will be wédilks is reflected by theelevancy rate
in Table 1. The cutting planes are least weak on the 3SATeberstances; this is unsurprising
since the 3SAT constraints are sparse compared to those aitibr problems.

In order to further explore the behavior of our techniques,ran additional experiments on
SAT-based instances. Using the instance generator destwsve, we varied thelause den-
sity (ratio of clauses to variablespbjective function densitffraction of variables that had a
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nonzero objective function coefficient; the nonzero coigffits were uniformly randomly drawn
from (0, 1]), andclause lengtiinumber of literals per clause). 1000 instances were gtatbedt
each data point. The results are shown in Figure 1.
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Figure 1: Average performance on SAT-based instances,amidhwithout nogood learning (NL).
Top: tree size; bottom: run time. Left: clause length 3, ofiye density 10%. Middle: clause
length 3, clause density 4.2. Right: Clause density 4.Zatibje density 10%.

We expected our technique, as described above, to perfdter ba instances which are hard
from a satisfiability perspective (i.e., a large number afemare pruned due to infeasibility) and to
perform worse on instances which are hard from an optinungierspective (i.e., a large number
of nodes are pruned due to bounding). This is exactly whategéhsre:

e As clause density increases, the problem becomes ovetramesl. This leads to a higher
percentage of nodes being pruned due to infeasibility, vimcturn allows us to generate
more cutting planes. This leads to a greater relative resluat tree size. (As usual, the
overall complexity—with and without nogood learning—psak a clause density between
four and five.)

e As objective density increases, more variable assignmasttglly impact the objective
value. This leads to a higher percentage of nodes being grdue to bounding; a situa-
tion in which our current technique was expected to have palative performance, and that
was indeed observed.

Overall, the problem is much harder for integer programn{wigh and without nogood
learning) when there is no objective. In other words, thedidye helps even in finding a
feasible solution. Then, as objective density increasesgomplexity increases slightly.
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e As clause length increases (holding clause density constae problems become less con-
strained. This leads to fewer nodes being pruned by inféi@giland thus our technique, as
described, became relatively less effective. On the othedhthe instances overall became
trivial.

4 Exploiting problem structure

We can achieve stronger constraint propagation (via tigfdands onp than those obtained from
Equation 4) using knowledge of the problem structure. Te&ls to more implications being
drawn, more frequent or earlier conflict detection, andndtiely smaller search trees.

4.1 Mutual exclusivity structure

For example, consider the often occurring case where we &aet of variables defined to be
mutually exclusive in the probler?:
D a<i (13)
JjeJ
Then, foranyconstraint, we can redefine the helper functigyof Equation 7 to get a lower upper
boundU;; on ¢ as follows:

5:(9) = D laglu; + max {|ag;|u;} (14)
jeS\J Jesn

This tighter definition can easily be generalized to sestiwiggth multiple (potentially overlap-
ping) sets/y, ..., J,. where at most one variable in each set can take value 1. Aeregty simple
method of doing this would be the following:

5:09) = D ailuy+ Y max {|ai;|u;} (15)
k=1

GS\UJ jeSNJy
J

We can improve this further with a simple greedy algorithmdonstructing a sef;, which
will then be used in the calculation 8f(.S).

for all J, do

J* = J U s
F=J; jgfb\@{lamuy}

This effectively builds up/; by taking the largest element frorhi, then the largest element d§
that has not yet been taken, then the largest elemeny thfat has not yet been taken, and so on.
The new expression fa%;(.S) is now

5i(S) = Y agluy+ Y il (16)

jes\UJ jegy

10This structure exists, for example, in the clique-baserhfdation of the independent set problem.
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The sets/y, ..., J, are determined statically as a preprocessing step. Theachtreode of the
search tree as we inspect each constraintturn for possible implications, we dynamically run
the greedy algorithm above for constructifigand use the tighter calculation®{.S) above. This
is the approach we use in the experiments below.

The tightness of the bound could be further improved by sgha weighted vertex-packing
problem as each constrains inspected for possible implications at each search nbaevertices
in that problem correspond to the variables in thessehn edge exists between two vertices if the
corresponding variables both occur in some getA maximum-weight vertex-packing gives us
a betterJ. This is in fact the best possible bourdsS) that can be derived solely from this one
constraint and the mutual exclusion knowledge. We do nothiseapproach because the greedy
algorithm for constructing;" is faster.

4.2 Structure where at least one indicator has to be “on”

As another example of a commonly-occurring special strecttonsider the case where we have
a set of variable#( defined such that at least one of them has to be %n”:

> x> (17)

jeEK

Then, for any constrairit redefine the helper function of Equation 8 to get a lower upper bound
U;; on ¢ as follows?*?

> aylly, it K¢ 5
5,(8) =14 IS . . (18)
Z |ai;|l; + I;_Iélllg{‘aij‘}, otherwise
JES\K

This tighter definition can easily be generalized to settiwgh multiple (potentially overlap-

ping) setsk, ..., K, where at least one variable in each set has to take value h.tAs previous
example, we start with a simple method:
Z |aj|l;, ifKgZS
s(8) =14 % (19)

aiill; + min {min{|a;;|}}, otherwise
]ezs\:[(| j|] kE{l,...,r}{jeKk{| ]|}}

Again, we use a more sophisticated version of the approaehbid a new sef* dynami-
cally as follows. We create a graph with a vertex for eachaldel. An edge between two vertices
exists if the corresponding variables both appear in anyeti€,. We run depth-first search in this

1This structure exists, for example, in the set covering [emob
12This assumes that no variableslin have been fixed td at the current search node. If a variablelihhas been
fixed to1, then the knowledge that at least one membék ahust be 1 is not useful.
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graph to identify all maximal connected components in linr@ae. From each such component
we include the minimum-weight vertex in the gét. We now have

Z|aij|ljv ifKZS
(=195 20
s > aglly+ > {lail}, otherwise (20)
JES\K JEK

The setsk, ..., K, are determined statically as a preprocessing step. Theachtreode of the
search tree as we inspect each constramturn for possible implications, we dynamically com-
pute K and use the tighter calculation gf S) above. This is the approach we use in the experi-
ments below.

The tightness of the bound could be further improved by sgla weighted set-covering prob-
lem at each step; each of the séfs, ..., K, corresponds to a set in the problem, each variable
corresponds to a vertex, and the weights of the variablethareoefficients:;;. This is the tightest
bound that can be obtained by using only this one constiant the “at least one variable on in
each seff{,"-knowledge. We do not use this approach because it takgefdhan the one above.

4.3 Co-existing structures

If the problem exhibits the structures of both of the examplleove, then both functiogsands;,
in the revised forms above, should be us&dn important special case of this is the case where
exactly one of a set of variables has to be “on”, which comesis toJ = K.

We conducted an experiment to determine the effectiveneisese techniques that exploit
problem structure. This experiment used exactly the sarteesdd as the first experiment. (Better
results would naturally we achieved on problems that exlhiit@se special structures more pre-
dominantly.) The results are presented in Table 2.

Tree Path pruned due to Leaf yields nogood |Relevancy

reduction| infeasibility | bound | integrality | infeasibility | bound rate
Exchange 0.024% | 0.001% | 99.94%| 0.060% 45.29% 0.000%| 0.068%
Transport 0.016% | 0.000% | 100.0%| 0.000% 42.80% 0.056%| 0.054%
3SAT 2.732% 10.02% | 89.98%| 0.001% 75.83% 0.045%| 5.372%
MIPLIB 0.018% | 0.008% | 99.99%| 0.000% 37.66% 0.001%| 0.947%

Table 2: Experiments exploiting problem structure.

While these experiments show an improvement over the bgedtaim, it is very modest. Thus
the overall result is still disappointing.

The Exchange and MIPLIB instance sets show the least amdeghboge. The special struc-
tures we are looking for occur very rarely in these instan8e&3% of those instances had at least

3Each of the two example structures above can be viewed ambpases of using one knapsack constraint to de-
duce bounds on another, as presented in [33]. However, thalawethod used to determine the bounds is completely
different.
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one occurrence of these special structures. Furthermorenly 10.26% of these instances did a
special structure actually lead to an otherwise undetextaiplication.

The transportation instances show the most improvememhp@dng Tables 1 and 2, one can
see that the exploitation of special structures in the #@lgyorcauses some cutting planes to be
generated even at nodes pruned by bounding.

The SAT-based instances also show some improvement, bsitvgry slight. This can be
explained by noting that only the second type of exploitaitacture discussed above occurs in
these instances. This type of structure requires that theegnof a setk, be contained in a
constraint setS; in the SAT-based problems this cannot occur with any otlestaint except
the objective bounding constraint. Accordingly, the higtiee objective function density of the
instance, the greater was the gain from exploiting the spstriucture.

5 Generalizations

We now generalize our techniques to MIPs (that may incluteger and real-valued variables
in addition to binaries) and to branching rules beyond thbs¢ branch on individual variable
assignments.

The key to the generalization is a generalized notion of aondg Instead of the nogood
consisting of a set of variable assignments, we say thageheralized nogood (GMN)nsists of a
set of conditions. The set of conditions in a GN cannot besBati in any solution that is feasible
and better than the current global lower bound.

Nothing we have presented assumes that branches in thedrbaary; our techniques apply
to multi-child branches.

5.1 Identifying generalized nogoods (GNSs)

The techniques presented so far in this paper for propagatid inferring binary variable assign-
ments are still valid in the presence of integer or real \deis. However, propagating and inferring
integer or real variable assignments and bound changeses@additional consideration, as the
rest of this subsection will discuss.

We first show how to handle branching on bounds on integeabkes. For example, the
search might branch an, < 42 versusr; > 43. Such branching can be handled by changing our
propagation algorithm to be the following. (For simpligitye write the algorithm assuming that
each variable has to be nonnegative. This is without loseoémlity because any MIP can be
changed into a MIP with nonnegative variables by shiftingplblytope into the positive orthant.)

for all unsatisfied constraintsdo
for all unfixed variableg do
if 7 € N;" then
if U;; < a;50; then we have detected@onflict
U,-f- U-?
L{J < wu;thenu: « { ZfJ
ij J J 35

else ifj € N;” then

else if {
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if U;; < a;;u; then we have detected@onflict
else if [%W > [ thenl; {%W
The procedure above works also for branches that do not oomedy one variable, but an
arbitrary hyperplane in the decision variable space. Theeiplane that is added in the branch
decision is simply included into the constraint set of thiédchThe propagation is no different.
In our generalized method, not all nodes in the implicaticep represent variable assign-
ments; some represent half-spaces (a bound change or, ereeally, a hyperplane).
If the branch decision states that moving from a parent tald atvolves adding aollection
of bound changes / hyperplanes (an important case of theefog$pecial Ordered Sdiranch-

ing [4]), then we can simply treat each of them separatelygigie procedure above.

5.2 Generating cutting planes from GNs

When we identify a GN from the implication graph, we are idfgirig a set of hyperplane con-
straints (with variable bounds and variable assignmenspasial cases) that cannot be mutually
satisfied in any feasible solution better than the curremetdound. Thus the analog to conflict
clauses in SAT is no longer direct as it was in 0-1 IP. Therefgenerating useful cutting planes is
more challenging.

From the GN we know that at least one of the contained hypeeptanstraints should be
violated. Therefore, the feasible region of the LP can beiced to be the intersection of the
current feasible region of the LP and any linear relaxatibthe disjunction of the infeasible IP
region of the first constraint, the infeasible IP region af #econd constraint, etc. (The tightest
such relaxation is the convex hull of the disjunction.) Thetiog planes that our method will
generate are facets of the linear relaxation. Not all of therd to be generated for the technique
to be useful in reducing the size of the search tree througitawed LP upper bounding. Any
standard technique frodtisjunctive programmingB] can be used to generate such cutting planes
from the descriptions of the infeasible IP regions.

To see that this is a generalization of our 0-1 IP technigoesider a 0-1 IP in which we
have found a conflict. Say that the nogood generated fromctmflict involves three variables
being fixed to O (i.e., three hyperplane constraints): < 0,z, < 0,23 < 0). The infeasible IP
regions of the three constrains are> 1, x5 > 1, andxzs > 1, respectively. Their disjunction is
{z 21 >1Vaxy>1Vaxy > 1}, which has LP relaxatiom; + =, + x3 > 1. This is the cutting
plane that our generalized method would generate. Thigialgo the same cutting plane that our
original method for 0-1 IPs would generate from the nogoad= 0, 2, = 0, 23 = 0).

6 Related research

No-good recording was first mentioned in the mid-1970s bylrStan and Sussman [32]. Their

idea gave rise to algorithms in 1990 that include backjumggimd nogood recording [23, 11]. The
early work on nogood learning focused on constraint sati®fa problems (CSPs). It tended to not
improve speed much in the propagator-heavy state-of1th€%P solvers, and was by and large
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not incorporated into the commercial CSP solvers. Therealgassome early exploration applying
this technique to constraint optimization problems [22¢pgod learning has been incorporated in
some current constraint optimization solvers, such as PEIS)

In the mid-1990s, nogood learning was extremely succdgsdpplied to SAT [21, 24]. Itis
now a part of all the competitive complete SAT solvers. Wently learned that in 2005, success
with nogood learning has been reported on CSPs more gegnbyallllowing a somewhat richer
notion of nogood, where the nogood not only contains vagi@sisignments but also nonassign-
ments (excluded values of a variable) [19]. That notion oéaeagalized nogood is a special case
of ours, presented in Section 5.

Since 2003, nogood learning has also been applied to festrdiorms of optimization. Chai
and Kuehlmann studied this in CSPs with pseudoboolean reontst (i.e., linear constraints over
binary variables, but potentially with coefficient otheaithl, O, or -1) [8]. Their system was able
to outperform IBM’s OSLv3 (a slower MIP solver, similar inrfation to CPLEX) on constraint
satisfaction problems, but performed far worse than OSLpimozation problems. It is not clear
whether the performance difference on optimization is a@uthé generated cuts being weak or
due to the manner in which their system performs optimizafe linear search over values of
the objective, and running constraint satisfaction at eaath value). Additionally, they found
that OSL with an artificial objective function actually oetformed OSL without an objective on
the same instances. Nogood learning has recently also Imgxiechto problems where one is
trying to maximize the number of constraints satisfied [3,2], with great success. A similar
technique has been described for use in disjunctive pragiagfor planning in an autonomous
space probe [20], with similar results.

The similarity between the concept of a noogod for SAT andtanguplane for MIP is men-
tioned in [12]. However, the discussion is at a high level andnethod for actually generating
such cutting planes is given.

The most closely related work to ours is that of Achterbeilg [idependently and in parallel
with our work, he came up with the same idea of applying nodeathing to MIP. In the rest of
this section, we discuss similarities and differences betwour approach and his.

The method presented by Achterberg for construction andteraance of the implication graph
is nearly identical to ours. Both his approach and ours di@gonds from bounds propagation. His
approach differs from ours in that our implementation dagsinaw nogoods from LP infeasibility
analysis while his does. We proposed using an lIS-basedaa¢slich as Davey'’s [9]) for drawing
nogoods from LP infeasibility, but we did not implement thatause we thought it would increase
solve time at each search node too much to pay off overalltekbbrg presents a novel relatively
fast way of combining LP infeasibility analysis with the itigation graph obtained through bounds
propagation. If an LP infeasibility is reached (or the olijgcconstraint is violated), he takes the
path decisions and greedily tries to remove them one at avinile maintaining the property that
the remaining decisions are in conflict. Then he inserts diconode into the implication graph
and connects it to those remaining decisions.

Another difference is that Achterberg’s work does not tatkesatage of special structure, such
as mutual exclusivity of indicators, or the structure whatréeast one of a set of indicators has to
be “on”.
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Experimentally, Achterberg’s results differ from ours aeding the effectiveness of nogood
learning as applied to 0-1 IP. He runs on two data sets: ats@idcom MIPLIB and a selection
of instances from a chip design verification problem that d@a®nvenient IP formulation. All
instances are run with CPLEX 9, SCIP (his own MIP solver), 8@lP+conflict analysis. In the
experiments, it appears that SCIP tends to have longer spies than CPLEX, but much smaller
search trees. His experiments show significant reductianem size from SCIP to SCIP+CA.
However, on MIPLIB instances the smaller trees did not mgkéou the overhead of generating
the cutting planes. On the other hand, on the chip verifinatistances, SCIP+CA clearly out-
performed SCIP in both tree size and run time. (The use of@\drification modeling problem
is perhaps questionable for measuring the effectivenean optimization technique. It is a pure
constraint satisfaction problem; integer programminghhtgus not be a good choice in the first
place. However, as would be expected, Achterberg’s nogeanhing technique performed the
best on exactly those instances.) There are several hygasther explaining the difference in
performance between our approach and his:

e His approach draws nogoods also from LP infeasibility wbile implementation does not.
The significantly better reduction in tree size suggeststtitmnogoods drawn from LP in-
feasibility play a very important role.

e His implementation features different cut management.ekample, we always generate at
most one cutting plane per search node.

e He shows a tree size reduction when compared to SCIP. We staivthiere is only a tiny
tree size reduction when compared to CPLEX. These may nobion@arable. Similarly, in
terms of run time, CPLEX and SCIP may not be comparable beadtsn

o Different instance sets were used in the experiments.

Achterberg’s generalization from 0-1 IP to MIP is somewhiftecent from ours. For no-
goods containing bound changes of integer variables, reeptg a linearization of the resulting
constraints that, while correct, requires the additionwfileary variables. He points out that the
resulting LP relaxation is weak, and considers the approatkvorthwhile. Instead, he proposes
restricting the algorithm to nogoods that contain only bjnaariables. His linearization also does
not handle nogoods containing conditions other than bobhadges. Our generalized nogood con-
cept allows for arbitrary conditions and integer variabsexl we propose disjunctive programming
as a direction for finding linearization. While our genezall nogood concept in principle allows
for continuous variables as well, Achterberg shows thahéf generalized nogood (he does not
actually use that concept, but we phrase his work using tmisept) contains a bound change on a
continuous variable, then expressing that nogood usirtqnguilanes would require strict inequal-
ities. Strict inequalities cannot be expressed directlyfrbased MIP, so those cases have to go
unaddressed or be approximated. A potentially interestirggtion for future research would be to
apply (or extend) some of the special techniques for hagdiirict inequalities in MIP (e.g., [10])
to this context.
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7 Conclusions and future research

Nogood learning is an effective CSP technique critical tocegs in leading SAT solvers. We
extended the technique for use in combinatorial optimirattin particular, (mixed) integer pro-
gramming (MIP). Our technique generates globally validingtplanes for a MIP from nogoods
learned through constraint propagation. Nogoods are g&tefrom infeasibility and from bound-
ing.

Experimentally, our technique did not speed up CPLEX (altjfotree size was slightly re-
duced). This is due to few cutting planes being generatedtadutting planes being weak. We
explained why.

We also conducted experiments while controlling the raticomstraints to variables, the num-
ber of variables per constraint, and the density of the ¢ibcHardness peaks at an interior value
of the constraints to variables ratio, and the relative sige reduction from our nogood learning
technique improves as that ratio increases. Instanceswitibjective were hardest and instances
with about 10% of the variables in the objective were easiést objective density increased
further, the instances became slightly harder. The regierformance of our nogood learning
technique was best when the objective was nonexistent osespAs clause length increased, the
instances became trivial and clause learning ceased teatectree size.

We showed how our technique can be enhanced by exploitirgedséructure such as mutual
exclusivity of indicator variables or at least one of a seindicator variables having to be “on”.
We also showed how to capitalize on instances where multipteirrences of each of these two
structures are present.

There are a host of potentially fruitful directions for fueuesearch.

First, the difference in performance between our implegm and Achterberg’s suggests
that it is important to draw nogoods not only from propagatimt also from LP infeasibility.
As we presented (but did not yet implement), at any node tharuned during search due to
LP infeasibility or objective constraint violation, oneuwd use the LP to generate areducibly
inconsistent set (IIS)The IIS is a nogood, so one can generate a cutting plane frofor 0-1
IP, Davey et al. produce an IS with the smallest overlap wihable assignments on the search
path, and use that as the cutting plane [9]. (Such technidoe®t subsume ours: no IIS-based
cutting plane would help in the example of Section 2.4 beears/ 1S would include all the
decisions on the path.) Further research on lIS-baseditpats) on Achterberg’s novel technique,
and additional techniques for generating cutting plana® ft P infeasibility analysis would likely
pay off.

For MIPs, we can use the same 11S-based LP technique to deae@ that shares the smallest
number of variable bound changes with the path (thus it vallblprune at many places of the tree
that are not on the current path). Then we can use the teasifpm the generalizations section of
this paper to generate cutting planes from that GN. Futwgeareh includes studying disjunctive
programming techniques in detail for generating linearst@ints that correspond to the GN.
Furthermore, for the case of continuous variables in the iGBMould be potentially interesting to
apply (or extend) some of the special techniques for hagdlinct inequalities in MIP (e.g., [10]).

Second, one should explore additional ways of generatiggods from the implication graph,
as well as generating more than one nogood per search noder turrent implementation, we
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only generated one particular nogood (1-UIP).

Third, our machinery for implication graph constructiomaso be used for dynamic tight-
ening of variable bounds as the search proceeds. Spegifitadl inferences we draw during
constraint propagation can be explicitly applied to the aftiie current node and its descendants.
These bound tightenings are beyond those implied by the laRaton. Thus the technique yields
tighter LP bounds, and smaller search trees. Harvey anarpEiproposed similar techniques for
bound consistency, without experiments [15].

Fourth, one could applifting (i.e., including additional variables, with the largesbyably
valid coefficients, into the constraint) to the cutting anve are generating in order to strengthen
them (i.e., cut off more of the LP polytope). Our cutting marare similar tcknapsack cover
inequalitieg[25], for which lifting is relatively straightforward. Exgriments should be conducted
to determine whether nogood learning enhanced by liftingldrianprove speed.

Fifth, there may be real-world problems where the techrsgw¥en as-is, yield a drastic
speedup; one can construct instances where they reducszedey an arbitrary amount. The ex-
periments suggest more promise when nodes are often pryriatehsibility (rather than bound-
ing or integrality), when the objective is sparse, whenetee lots of constraints compared to the
number of variables, and when the constraints contain felabies each.
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