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Abstract

Nogood learning has proven to be an effective CSP technique critical to success in today’s top
SAT solvers. We extend the technique for use in integer programming and mixed integer pro-
gramming. Our technique generates globally valid cutting planes for the 0-1 IP search algorithm
from information learned through constraint propagation (bounds propagation). Nogoods (cutting
planes) are generated not only from infeasibility but also from bounding. All of our techniques
are geared toward yielding tighter LP upper bounds, and thussmaller search trees. Experiments
suggest that our nogood learning does not help in integer programming because few cutting planes
are generated, and they are weak. We explain why, and identify problem characteristics that affect
the effectiveness. We show how problem structure, such as mutual exclusivity of indicator vari-
ables, or at least one of a set of indicator variables having to be “on”, can be used to enhance the
technique. We show this also for instances that exhibit multiple occurrences of each of the two
structures. We then generalize the technique to mixed-integer programming. Then we compare
our techniques to Achterberg’s parallel invention of an almost identical approach. This compari-
son yields conclusions about what techniques within the nogood learning framework for (mixed)
integer programming are essential for obtaining speedup. Finally, we lay out several directions for
future research down this new and potentially promising avenue.





1 Introduction

Nogood learning is a powerful technique for reducing searchtree size in constraint satisfaction
problems (CSPs) (e.g., [11, 14, 28, 8]). Whenever an infeasibility is found, reasoning is used to
identify a subset of the variable assignments from the path (the nogood) that caused the infeasibil-
ity. The nogood is stored; the rest of the tree search does nothave to consider paths that include
the assignments of that nogood. Modern complete propositional satisfiability solvers use nogood
learning; it enables them to solve orders of magnitude larger problems (e.g., [21, 24]).

We present a propagation-based nogood learning method for mixed integer programming (MIP).
Optimization problems are more general than CSPs: they havean objective to be maximized in
addition to having constraints that must be satisfied. We focus on the most prevalent optimization
framework, mixed integer programming, which is domain independent and has a very broad range
of applications in scheduling, routing, facility location, combinatorial auctions, etc. We designed
the idea in June 2003, and since then have built an implementation of it on top of ILOG CPLEX.
The same idea has been developed independently and in parallel by Achterberg, with an imple-
mentation on top of his MIP solver, SCIP [1]. (We will discussthe similarities and differences
between our work and his in the related research section.) The high-level perspective is that our
techniques hybridize two powerful search paradigms: constraint programming and MIP. Other—
complementary—ways of hybridizing the two have also been proposed (e.g., [7, 17, 13, 6, 16]).

A mixed integer program (MIP)is defined as follows.

Definition 1 Given ann-tuplec of rationals, anm-tupleb of rationals, and anm× n matrixA of
rationals, find then-tuplex such thatAx ≤ b, andc · x is maximized.

If the decision variables are constrained to be integers (x ∈ Zn rather than allowing reals), then
we have aninteger program (IP). If we further require that that the decision variables are binary
(x ∈ {0, 1}n), then we have a0-1 IP. While (the decision version of) MIP isNP-complete, there
are sophisticated techniques that can solve very large instances in practice. We now briefly review
those techniques. We build our methods on top of them.

In branch-and-boundsearch, the best solution found so far (incumbent) is stored. Once a node
in the search tree is generated, an upper bound on its value iscomputed by solving a relaxed
version of the problem,while honoring the commitments made on the search path so far. The
most common method for doing this is to solve the problem while only relaxing the integrality
constraints of all undecided variables; thatlinear program (LP)can be solved fast in practice,
e.g., using the simplex algorithm (or a polynomial worst-case time interior-point method). A path
terminates if 1) the upper bound is at most the value of the incumbent (search down that path
cannot produce a solution better than the incumbent), 2) theLP is infeasible, or 3) the LP returns
an integral solution. Once all paths have terminated, the incumbent is optimal.

A more modern algorithm for solving MIPs isbranch-and-cutsearch, which first achieved
success on the traveling salesman problem [26, 27], and is now the core of the fastest general-
purpose MIP solvers. It is like branch-and-bound, except that in addition, the algorithm generates
cutting planes[25]. They are linear constraints that, when added to the problem at a search node,
result in a tighter LP polytope (while not cutting off the optimal integer solution) and thus a lower
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upper bound. The lower upper bound in turn can cause earlier termination of search paths, thus
yielding smaller search trees.

The rest of this paper is organized as follows. Section 2 presents our approach in the context
of 0-1 IPs. Section 3 covers experiments and explains the performance. Section 4 shows how
special problem structures can be exploited to enhance the technique. Section 5 generalizes our
approach from 0-1 IPs to MIP. Section 6 discusses related research. Section 7 concludes and lays
out potentially fruitful future directions.

2 Nogood learning for 0-1 IP

The main idea of our approach (for 0-1 integer programming) is to identify combinations of vari-
able assignments that cannot be part of an optimal solution.Any such combination is anogood.
The high-level motivation is that generating and storing nogoods allows the tree search algorithm
to avoid search paths that would include the variable assignments of any stored nogood. This
reduces search tree size.

To extend nogood learning from CSPs to optimization (IP), there are two challenges: generat-
ing nogoods and using them. Each challenge involves subtle and interesting issues. We first present
a method for generating nogoods in this setting through constraint propagation. We then present
techniques for generating cutting planes for the branch-and-cut algorithm from those nogoods.
Overall, our technique leads to tighter LP bounding, and thus smaller search trees.

2.1 Propagation rules to detect implications

As a building block, we need rules to detect the implicationsof decisions made on the search path.
We therefore present an adaptation of constraint propagation to 0-1 IP.1

First, consider a simple example:ax ≤ b, a ≥ 0, x ∈ {0, 1}. Clearly, if b < a, thenx = 0.
Furthermore, ifb < 0, then the constraint is not satisfiable by any value ofx. More generally, say
we haveax ≤ φ(), x ∈ {0, 1}, for some functionφ. If a ≥ 0, we can reason as follows.

• If the upper boundonφ() is negative, then no assignment ofx will satisfy the constraint.

• Otherwise, ifa is greater than the upper bound ofφ(), thenx← 0.

If a < 0 we can make a similar statement:

• If a is greater than the upper bound ofφ(), then no assignment ofx will satisfy the constraint.

• Otherwise, if theupper boundonφ() is negative, thenx← 1.

This is central to our constraint propagation scheme. Each time a variable is fixed, we loop
through all constraints and check to see whether any of the above conditions are met. If a constraint
is deemed to be unsatisfiable, then we have found a conflict, and there cannot exist a feasible

1Propagation of linear constraints has been explored previously, in the context of bounds consistency [15].
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solution in this node’s subtree. If we have found no conflicts, but have instead proven that a
variable must be fixed to satisfy the constraint, then we propagate that change as well.

The rest of this subsection lays out this procedure in more detail. Each IP constrainti can be
written as

∑

j∈N

aijxj ≤ bi (1)

whereN is the index set of variables. In order to examine a particular variablexĵ with respect to
constrainti, the constraint can be rewritten as

aiĵxĵ ≤ bi −
∑

j∈N\ĵ

aijxj (2)

This is the same form as the inequality examined above. Now,

φiĵ(x) = bi −
∑

j∈N,j 6=ĵ

aijxj (3)

= bi −
∑

j∈N+

i ,j 6=ĵ

|aij|xj +
∑

j∈N−

i ,j 6=ĵ

|aij |xj (4)

whereN+

i = {j ∈ N : aij > 0} andN−
i = {j ∈ N : aij < 0}.

If we can determine an upper boundUij for this expression, we can use the above process to
perform constraint propagation on the IP. The expression

Uiĵ = bi − si({j|j ∈ N+

i , j 6= ĵ}) + si({j|j ∈ N−
i , j 6= ĵ}) (5)

yields an upper bound as long as

si(S) ≤
∑

j∈S

|aij|xj ≤ si(S) (6)

for all x.
With no other knowledge of the problem structure, we can use

si(S) =
∑

j∈S

|aij |lj (7)

and
si(S) =

∑

j∈S

|aij |uj (8)

wherelj anduj are the lower and upper bounds onxj , respectively, at the current node of the
search tree. Since we are dealing with 0-1 IP,li = 0 andui = 1 unless the variablexi has been
fixed. If xi has been fixed, thenli = ui = xi.

We can now state the constraint propagation procedure:2

2This is very similar to that used for nogood learning in CSPs.It can be sped up by watching the set of variables
that are candidates to become implied shortly [8].
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for all unsatisified3 constraintsi do
for all unfixed4 variableŝj do

if ĵ ∈ N+

i then
if Uiĵ < 0 then we have detected aconflict
else ifaiĵ > Uiĵ then uĵ ← 0

else if ĵ ∈ N−
i then

if aiĵ > Uiĵ then we have detected aconflict
else ifUiĵ < 0 then lĵ ← 1

2.2 Implication graph and its maintenance

We also need a way to track the implications that have been made during the search path. For
example, say the search has taken a branchx2 = 0 and a branchx3 = 0. Say the constraint
propagation process then comes across constraintx1−x2−x3 ≤ 0. Clearly,x1 must be 0 because
〈x2 = 0, x3 = 0〉. However, we would like to capture more than justx1 = 0; we would also like to
capture the fact that the assignmentx1 = 0 was due to〈x2 = 0, x3 = 0〉.

To keep track of implications and their causes, our algorithm constructs and maintains5 an
implication graph, a directed graph, in much the same way as a modern DPLL SAT solver. We
add a node to it for each variable assignment (either due to branching or to implication). We also
add a node whenever we detect a conflict. Denote byi the constraint that caused the assignment or
conflict by implication. For each fixed variablexj with a nonzero coefficient ini, we add an edge
from the node corresponding toxj to the node we just created. At this point our implication graph
looks as follows.

2.3 Nogood identification and cutting plane generation

Whenever a conflict is detected (i.e., the node is ready to be pruned), we use the implication
graph to identifynogoods, i.e., combinations of variable assignments that cannot bepart of any
feasible solution. Consider drawing a cut in the implication graph which separates all decision
nodes from the conflict node. For every edge which crosses thecut, take the assignment from the

3A constraint isunsatisfiedif it is not yet guaranteed to be true given the set of fixed/implied variables at the current
node.

4A variable isunfixedif lj < uj.
5This is easy to maintain with a single graph if depth-first search order is used. For search algorithms in the

breadth-first family, such as A* (aka. best-first search), a separate graph is maintained for each active search path (i.e.,
each node on the open list).
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source node of the edge. The resulting set of assignments cannot result in a feasible solution; the
conflict will always be implied. Therefore, this set of assignments constitutes a nogood. Any such
cut will produce a nogood; several methods for finding strongcuts have been studied by the SAT
community (e.g., [21, 24]) and can be applied in our setting directly. (In the experiments, we use
the 1UIP technique to generate a nogood.)

Finally, we will use the identified nogood(s) to produce cutting plane(s) for the 0-1 IP problem.
(These cuts areglobal, that is, they are valid throughout the search tree, not onlyin the current
subtree. Thus it is not necessary to remove them as the searchmoves outside of the subtree.) We
break the variables involved in the nogood into two sets:V0 contains the variables that are fixed to
0 (by branching or implication), andV1 contains the variables that are fixed to 1. Consider the case
where all variables involved in the nogood were fixed to 0; we would like to constrain the problem
so that at least one of those variables is nonzero:

∑

j∈N0

xj ≥ 1 (9)

Conversely, if all the variables involved in the nogood werefixed to 1, then we would like to
constrain the problem so that for at least one variable, the complement of the variable is nonzero:

∑

j∈N1

(1− xj) ≥ 1 (10)

Putting these together, a nogood generates the cutting plane
∑

j∈V0

xj −
∑

j∈V1

xj ≤ 1− |V1| (11)

2.4 A small example

For illustration of the concepts, consider the following 0-1 IP.

max x1 +1.1x2 +1.2x3 +x4 +x5 +x6

s.t. −x1 −x2 +x3 ≥ −1
−x3 +x4 ≥ 0
−x3 +x5 ≥ 0

−x4 +x6 ≥ 0
−x5 −x6 ≥ −1

xj ∈ {0, 1}

First, we solve the LP relaxation, which gives us an objective value of3.7, and solution vector
x1 = 0.5, x2 = 1, x3 = 0.5, x4 = 0.5, x5 = 0.5, x6 = 0.5. We branch onx1, and take the up branch
(x1 = 1). Constraint propagation finds no new assignments (besidesthe branch decision itself).

The LP relaxation results in an objective value of3.65 and solution vectorx1 = 1, x2 =
0.5, x3 = 0.5, x4 = 0.5, x5 = 0.5, x6 = 0.5. We branch onx2, and take the up branch (x2 = 1).
Performing constraint propagation onx2 = 1 leads to the implied assignmentx3 = 1 (by the first
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constraint in the problem). Propagatingx3 = 1 leads to implied assignmentsx4 = 1 andx5 = 1
(by the second and third constraints, respectively). Finally, x4 = 1 impliesx6 = 1 by the fourth
constraint, andx5 = 1 impliesx6 = 0 by the fifth constraint. We have thus detected a conflict on
variablex6.

Now we find cuts in the graph that separate the conflict from thesource nodes (which corre-
spond to branching decisions). Not all cuts need be generated; in our example, say the algorithm
generates three of them:

We translate the cuts into cutting planes for IP:

• Cut 1 in the graph generates nogood〈x4 = 1, x5 = 1〉, which yields the cutting plane
x4 + x5 ≤ 1.

• Cut 2 generates nogood〈x3 = 1〉, which yieldsx3 ≤ 0.

• Cut 3 generates nogood〈x1 = 1, x2 = 1〉, which yieldsx1 + x2 ≤ 1. However, this cutting
plane is futile because it contains all of the branching decisions from the search path. Since
search paths are distinct, this combination of variable assignments would never occur in any
other part of the search tree anyway.

At this point the algorithm has proven that the current node is infeasible; there is no point in
continuing down this search path. Therefore, the search moves on by popping another node from
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the open list. Say it pops the node corresponding to pathx1 = 1, x2 = 0.6 Constraint propagation
onx2 = 0 yields no new assignments.

If we solve the LP for this nodewithoutthe cutting planes we generated, the LP has an objective
value of3.1 and solution vectorx1 = 1, x2 = 0, x3 = 0.5, x4 = 0.5, x5 = 0.5, x6 = 0.5. This
would require further branching. However, solving the LP with the addition of our cutting planes
yields a tighter relaxation: an objective value of3.0 and solution vectorx1 = 1, x2 = 0, x3 =
0, x4 = 1, x5 = 0, x6 = 1. The solution is integral, so no further branching down thatpath is
needed. Our cut generation process has thus produced a tighter LP bound that made the search tree
smaller.

2.5 Generating additional conflicts and cutting planes frompruning by bound

In informed tree search, such as branch-and-cut, nodes can also be pruned by bounding. Denote
by g the objective function contribution from the variables that have been decided by branching or
propagation. Denote byh an upper bound on the rest of the problem–this is usually obtained by
solving the LP involving the undecided variables and measuring their contribution to the objective.
Finally, denote byf the current global lower bound (e.g., obtained from the incumbent). Then, if
g + h ≤ f ,7 the current search node (and the subtree under it which has not yet been generated) is
pruned.

Our nogood learning mechanism, as described so far, will only detect conflicts that stem from
infeasibility. Further reduction in tree size can be achieved by also detecting conflicts that stem
from bounding.

We address this by considering the current global lower bound as an additional constraint on the
problem: given the objective function

∑

cjxj and the current global lower boundf , our algorithm
considers theobjective bounding constraint

∑

cjxj ≥ f (12)

when performing constraint propagation. This simple technique will, in effect, treat as infeasible
any assignment that cannot be extended into a solution that is better thanf . This allows our cutting
plane generation to occur in more nodes of the search tree andit also allows for cutting planes to be

6E.g., depth-first branch-and-cut search would pick this node.
7If the lower bound comes from an actual incumbent solution, astrict inequality can be used.
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generated that could not have been generated with the vanilla version of our algorithm described
above.8

2.6 Generating additional conflicts and cutting planes fromLP infeasibility

We implemented all the techniques presented in the paper so far. With these techniques, conflicts
and cutting planes are generated based on propagation of variable bounds.

Another form of propagator that is present in MIP solvers is the linear program (LP) solver.
Sometimes the LP returns infeasibility even at nodes where the bounds propagator does not catch
the infeasibility. Therefore, one could generate additional conflicts and cutting planes from LP
infeasibility.

For example, at any node that is pruned during search due to LPinfeasibility or objective
constraint violation, one could use the LP to generate anirreducibly inconsistent set (IIS), i.e., a
set of constraints that make the LP infeasible such that if any constraint is removed from the set,
the conflict would disappear. Any IIS is a nogood, so one can generate a cutting plane from it.
For 0-1 IP, Davey et al. produce an IIS with the smallest overlap with variable assignments on the
search path, and use that as the cutting plane [9].

Such techniques do not subsume ours. No IIS-based cutting plane would help in the example
of Section 2.4 because any IIS would include all the decisions on the path.

We did not implement any techniques for generating conflictsand cutting planes from LP
infeasibility because we wanted to keep the run-time per search node very small. However, that is
a very promising direction for future research. We will comeback to this in the “Related research”
section and in the “Conclusions and future research” section.

2.7 Backjumping

We can also generalize the backjumping idea from SAT to mixedinteger programming. The main
issue is that, unlike CSPs, optimization problems, such as integer programs, are typically not solved
using depth-first search. Our solution works as follows, anddoes not rely on any particular search
order. If, at any point of the search, we detect a nogood that contains no decisions or implications
made after thekth branching decision in the current path, we determine the ancestor,η, of the
current node at depthk, and discardη and all its descendants. (This is valid since they are now
known to be infeasible or suboptimal.)

There is an alternative way to accomplish this, which is easier to implement in the confines of
the leading commercial MIP solvers. Consider the moment from the example above whenη has
been identified. Then, instead of explicitly discardingη and its descendants, simply markη. Then,
whenever a node comes up for expansion from the open list, immediately check whether that node

8Cutting planes generated from the objective bounding constraint can cut off regions of the polytope that contain
feasible integer solutions. No such points can be optimal, so branch-and-cut still produces correct results. However,
the leading commercial MIP solvers (CPLEX and XPress-MP) assume that no cutting plane is used that cuts off
feasible integer solutions. In such solvers, some functionality (parts of the preprocessor) needs to be turned off to
accommodate these more aggressive cutting planes.
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or any node on the path from that node to the root has been marked; if so, the current node is
infeasible or suboptimal and can be discarded (without solving its LP relaxation).

In the experiments, we do not use backjumping. Any node on theopen list that could be
removed via backjumping reasoning will be pruned anyway once it is popped off of the open list:
the node’s LP will be found infeasible. This is guaranteed bythe presence of the cutting plane(s)
which would have allowed backjumping in the first place.9 The cost of omitting backjumping is
the need to potentially solve those nodes’ LPs. On the other hand, the overhead of backjumping
(discussed above) is saved.

3 Experiments and analysis

We conducted experiments by integrating our techniques into ILOG CPLEX 9.1. CPLEX’s default
node selection strategy was used in all of the experiments. In order to not confound the findings
with undocumented CPLEX features, we turned off CPLEX’s presolve, cutting plane generation,
and primal heuristics. The platform was a 3.2 GHz Dual Core Pentium 4 based machine running
64-bit Fedora Core 3 Linux.

The first test problem was the combinatorial exchange winnerdetermination problem [31]. It
can be formulated as a MIP, with a binary variablexj for each bid, objective coefficientspj corre-
sponding to the prices of the bids, and quantityqij of each itemi contained in bidj: max

∑

j pjxj

such that∀i,
∑

j qijxj = 0. We generated instances randomly using the generator described in
[30] (it uses graph structure to guide the generation; the prices and quantities can be positive or
negative). We varied problem size from 50 items, 500 bids to 100 items, 1000 bids. For each size,
we generated 150 instances.

The second problem was modeled after a class of combinatorial exchanges encountered in
sourcing of truckload transportation services. There is a single buyer who wants to buy one unit of
each item. The items are divided into regions. There is some number of suppliers; each supplier
places singleton (i.e., non-combinatorial) bids on each ofa subset of the items. A supplier can bid
in multiple regions, but only bids on a randomly selected setof items in the region. Each bid is an
ask in the exchange, so the price is negative. Finally, thereare constraints limiting the number of
suppliers that can win any business. There is one such constraint overall, and one for each region.
The MIP formulation is as above, with the addition of a new binary variable for each supplier and
for each supplier-region pair, the constraints over those variables, and constraints linking those
binary variables to the bid variables. We varied problem size from 50 items, 500 bids to 100 items,
1000 bids. For each size, we generated 150 instances.

To test on a problem close to that on which nogood learning hasbeen most successful, we ran
experiments on 3SAT instances converted to MIP. Each instance had 100 variables and 430 ran-
domly generated clauses (yielding the hard ratio of 4.3). Weconverted each clause (i.e., constraint)
of the 3SAT instance to a MIP constraint in the natural straightforward way. For example, clause
(x1 ∨¬x7 ∨¬x9) is converted into the constraintx1 +(1−x7)+ (1−x9) ≥ 1. In order to explore
both the optimization power and the constraint satisfaction power of our approach, we made some

9Even if cutting plane pool management is used to only includesome of the cutting planes in the actual LP, the
children of the node will be detected infeasible during constraint propagation.
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of the instances optimization instances rather than pure constraint satisfaction instances. Specifi-
cally, a subset of the variables (ranging from 0% to 100% in increments of 10%, with 100 instances
at each setting) had positive objective coefficients; othervariables’ coefficients were 0.

Finally, we tested on all the MIPLIB 3.0 [5] instances that only have 0-1 variables and for
which an optimal solution is known. There are 20 such instances.

Surprisingly, nogood learning does not seem to help in MIP: it provides little reduction in tree
size (Table 1). Fortunately, the time overhead (measured bydoing all the steps, but not inserting
the generated cutting planes) averaged only 6.2%, 4.7%, 25.3%, and 12.8% on the four problems.
We now analyze why nogood learning was ineffective.

Tree Path pruned due to Leaf yields nogood Relevancy
reduction infeasibility bound integrality infeasibility bound rate

Exchange 0.024% 0.001% 99.94% 0.060% 45.29% 0.000% 0.068%
Transport 0.005% 0.000% 100.0% 0.000% 42.80% 0.000% 0.047%
3SAT 2.730% 10.02% 89.98% 0.001% 75.83% 0.026% 5.371%
MIPLIB 0.017% 0.008% 99.99% 0.000% 37.66% 0.000% 0.947%

Table 1: Experiments. Relevancy rate = of nodes that had at least one of our cutting planes, how
many had at least one of them binding at the LP optimum.

First, few nogoods are generated. Nodes are rarely pruned byinfeasibility (Table 1), where our
technique is strongest. In the 3SAT-based instances, pruning by infeasibility was more common,
and accordingly our technique was more effective.

When nodes were pruned by bounding, our technique was rarelyable to generate a nogood
(Table 1, column 7). The objective bounding constraint requires so many variables to be fixed
before implications can be drawn from it that in practice implications will rarely be drawn even
when the LP prunes the node by bounding. This stems from the objective including most variables.
The exception is those 3SAT-based instances where a small portion of the variables were in the
objective. This explains why the implication graph was slightly more effective at determining a
nogood from bounding in 3SAT, particularly the instances with few variables in the objective.

Second, the generated cutting planes are weak: they do not significantly constrain the LP poly-
tope. The cutting planes effectively require at least one ofa set of conditions (variable assignments
in the case of 0-1 IP) to be false. So, the larger the set of conditions, the weaker the cutting plane.
On our problems, few inferences can be drawn until a large number of variables have been fixed.
This, coupled with the fact that the problems have dense constraints (i.e., ones with large numbers
of variables), leads to a high in-degree for nodes in the implication graph. This leads to a large
number of edges in the conflict cut, and thus a large number of conditions in the nogood. There-
fore, by the reasoning above, the cutting plane will be weak.This is reflected by therelevancy rate
in Table 1. The cutting planes are least weak on the 3SAT-based instances; this is unsurprising
since the 3SAT constraints are sparse compared to those in the other problems.

In order to further explore the behavior of our techniques, we ran additional experiments on
SAT-based instances. Using the instance generator discussed above, we varied theclause den-
sity (ratio of clauses to variables),objective function density(fraction of variables that had a
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nonzero objective function coefficient; the nonzero coefficients were uniformly randomly drawn
from (0, 1]), andclause length(number of literals per clause). 1000 instances were generated at
each data point. The results are shown in Figure 1.
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Figure 1: Average performance on SAT-based instances, withand without nogood learning (NL).
Top: tree size; bottom: run time. Left: clause length 3, objective density 10%. Middle: clause
length 3, clause density 4.2. Right: Clause density 4.2, objective density 10%.

We expected our technique, as described above, to perform better on instances which are hard
from a satisfiability perspective (i.e., a large number of nodes are pruned due to infeasibility) and to
perform worse on instances which are hard from an optimization perspective (i.e., a large number
of nodes are pruned due to bounding). This is exactly what we see here:

• As clause density increases, the problem becomes over-constrained. This leads to a higher
percentage of nodes being pruned due to infeasibility, which in turn allows us to generate
more cutting planes. This leads to a greater relative reduction in tree size. (As usual, the
overall complexity—with and without nogood learning—peaks at a clause density between
four and five.)

• As objective density increases, more variable assignmentsactually impact the objective
value. This leads to a higher percentage of nodes being pruned due to bounding; a situa-
tion in which our current technique was expected to have poorrelative performance, and that
was indeed observed.

Overall, the problem is much harder for integer programming(with and without nogood
learning) when there is no objective. In other words, the objective helps even in finding a
feasible solution. Then, as objective density increases, the complexity increases slightly.
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• As clause length increases (holding clause density constant), the problems become less con-
strained. This leads to fewer nodes being pruned by infeasibility, and thus our technique, as
described, became relatively less effective. On the other hand, the instances overall became
trivial.

4 Exploiting problem structure

We can achieve stronger constraint propagation (via tighter bounds onφ than those obtained from
Equation 4) using knowledge of the problem structure. This leads to more implications being
drawn, more frequent or earlier conflict detection, and ultimately smaller search trees.

4.1 Mutual exclusivity structure

For example, consider the often occurring case where we havea set of variablesJ defined to be
mutually exclusive in the problem:10

∑

j∈J

xj ≤ 1 (13)

Then, foranyconstrainti, we can redefine the helper functionsi of Equation 7 to get a lower upper
boundUij onφ as follows:

si(S) =
∑

j∈S\J

|aij|uj + max
j∈S∩J

{|aij|uj} (14)

This tighter definition can easily be generalized to settings with multiple (potentially overlap-
ping) setsJ1, . . . , Jr where at most one variable in each set can take value 1. An extremely simple
method of doing this would be the following:

si(S) =
∑

j∈S\
S

J

|aij|uj +
r

∑

k=1

max
j∈S∩Jk

{|aij|uj} (15)

We can improve this further with a simple greedy algorithm for constructing a setJ∗
i , which

will then be used in the calculation ofsi(S).

J∗
i = ∅

for all Jk do
J∗

i = J∗
i ∪ max

j∈Jk\J
∗

i

{|aij |uj}

This effectively builds upJ∗
i by taking the largest element fromJ1, then the largest element ofJ2

that has not yet been taken, then the largest element ofJ3 that has not yet been taken, and so on.
The new expression forsi(S) is now

si(S) =
∑

j∈S\
S

J

|aij|uj +
∑

j∈J∗

i

|aij|uj (16)

10This structure exists, for example, in the clique-based formulation of the independent set problem.
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The setsJ1, . . . , Jr are determined statically as a preprocessing step. Then at each node of the
search tree as we inspect each constrainti in turn for possible implications, we dynamically run
the greedy algorithm above for constructingJ∗

i and use the tighter calculation ofsi(S) above. This
is the approach we use in the experiments below.

The tightness of the bound could be further improved by solving a weighted vertex-packing
problem as each constrainti is inspected for possible implications at each search node.The vertices
in that problem correspond to the variables in the setS. An edge exists between two vertices if the
corresponding variables both occur in some setJk. A maximum-weight vertex-packing gives us
a betterJ∗

i . This is in fact the best possible boundsi(S) that can be derived solely from this one
constraint and the mutual exclusion knowledge. We do not usethis approach because the greedy
algorithm for constructingJ∗

i is faster.

4.2 Structure where at least one indicator has to be “on”

As another example of a commonly-occurring special structure, consider the case where we have
a set of variablesK defined such that at least one of them has to be “on”:11

∑

j∈K

xj ≥ 1 (17)

Then, for any constrainti, redefine the helper functionsi of Equation 8 to get a lower upper bound
Uij onφ as follows:12

si(S) =















∑

j∈S

|aij |lj, if K 6⊆ S

∑

j∈S\K

|aij |lj + min
j∈K
{|aij |}, otherwise

(18)

This tighter definition can easily be generalized to settings with multiple (potentially overlap-
ping) setsK1, . . . , Kr where at least one variable in each set has to take value 1. As in the previous
example, we start with a simple method:

si(S) =















∑

j∈S

|aij|lj, if K 6⊆ S

∑

j∈S\K

|aij |lj + min
k∈{1,...,r}

{min
j∈Kk

{|aij |}}, otherwise
(19)

Again, we use a more sophisticated version of the approach. We build a new setK∗
i dynami-

cally as follows. We create a graph with a vertex for each variable. An edge between two vertices
exists if the corresponding variables both appear in any onesetKk. We run depth-first search in this

11This structure exists, for example, in the set covering problem.
12This assumes that no variables inM have been fixed to1 at the current search node. If a variable inM has been

fixed to1, then the knowledge that at least one member ofK must be 1 is not useful.
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graph to identify all maximal connected components in linear time. From each such component
we include the minimum-weight vertex in the setK∗

i . We now have

si(S) =















∑

j∈S

|aij|lj , if K 6⊆ S

∑

j∈S\K

|aij|lj +
∑

j∈K∗

i

{|aij|}, otherwise
(20)

The setsK1, . . . , Kr are determined statically as a preprocessing step. Then at each node of the
search tree as we inspect each constrainti in turn for possible implications, we dynamically com-
puteK∗

i and use the tighter calculation ofsi(S) above. This is the approach we use in the experi-
ments below.

The tightness of the bound could be further improved by solving a weighted set-covering prob-
lem at each step; each of the setsK1, . . . , Kr corresponds to a set in the problem, each variable
corresponds to a vertex, and the weights of the variables arethe coefficientsaij. This is the tightest
bound that can be obtained by using only this one constrainti and the “at least one variable on in
each setKk”-knowledge. We do not use this approach because it takes longer than the one above.

4.3 Co-existing structures

If the problem exhibits the structures of both of the examples above, then both functionssi andsi,
in the revised forms above, should be used.13 An important special case of this is the case where
exactly one of a set of variables has to be “on”, which corresponds toJ = K.

We conducted an experiment to determine the effectiveness of these techniques that exploit
problem structure. This experiment used exactly the same data set as the first experiment. (Better
results would naturally we achieved on problems that exhibit these special structures more pre-
dominantly.) The results are presented in Table 2.

Tree Path pruned due to Leaf yields nogood Relevancy
reduction infeasibility bound integrality infeasibility bound rate

Exchange 0.024% 0.001% 99.94% 0.060% 45.29% 0.000% 0.068%
Transport 0.016% 0.000% 100.0% 0.000% 42.80% 0.056% 0.054%
3SAT 2.732% 10.02% 89.98% 0.001% 75.83% 0.045% 5.372%
MIPLIB 0.018% 0.008% 99.99% 0.000% 37.66% 0.001% 0.947%

Table 2: Experiments exploiting problem structure.

While these experiments show an improvement over the base algorithm, it is very modest. Thus
the overall result is still disappointing.

The Exchange and MIPLIB instance sets show the least amount of change. The special struc-
tures we are looking for occur very rarely in these instances. 9.73% of those instances had at least

13Each of the two example structures above can be viewed as special cases of using one knapsack constraint to de-
duce bounds on another, as presented in [33]. However, the actual method used to determine the bounds is completely
different.
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one occurrence of these special structures. Furthermore, on only 10.26% of these instances did a
special structure actually lead to an otherwise undetectable implication.

The transportation instances show the most improvement. Comparing Tables 1 and 2, one can
see that the exploitation of special structures in the algorithm causes some cutting planes to be
generated even at nodes pruned by bounding.

The SAT-based instances also show some improvement, but it is very slight. This can be
explained by noting that only the second type of exploitablestructure discussed above occurs in
these instances. This type of structure requires that the entirety of a setKk be contained in a
constraint setS; in the SAT-based problems this cannot occur with any other constraint except
the objective bounding constraint. Accordingly, the higher the objective function density of the
instance, the greater was the gain from exploiting the special structure.

5 Generalizations

We now generalize our techniques to MIPs (that may include integer and real-valued variables
in addition to binaries) and to branching rules beyond thosethat branch on individual variable
assignments.

The key to the generalization is a generalized notion of a nogood. Instead of the nogood
consisting of a set of variable assignments, we say that thegeneralized nogood (GN)consists of a
set of conditions. The set of conditions in a GN cannot be satisfied in any solution that is feasible
and better than the current global lower bound.

Nothing we have presented assumes that branches in the tree are binary; our techniques apply
to multi-child branches.

5.1 Identifying generalized nogoods (GNs)

The techniques presented so far in this paper for propagating and inferring binary variable assign-
ments are still valid in the presence of integer or real variables. However, propagating and inferring
integer or real variable assignments and bound changes requires additional consideration, as the
rest of this subsection will discuss.

We first show how to handle branching on bounds on integer variables. For example, the
search might branch onxj ≤ 42 versusxj ≥ 43. Such branching can be handled by changing our
propagation algorithm to be the following. (For simplicity, we write the algorithm assuming that
each variable has to be nonnegative. This is without loss of generality because any MIP can be
changed into a MIP with nonnegative variables by shifting the polytope into the positive orthant.)

for all unsatisfied constraintsi do
for all unfixed variableŝj do

if ĵ ∈ N+

i then
if Uiĵ < aiĵlĵ then we have detected aconflict

else if
⌊

U
iĵ

a
iĵ

⌋

< uĵ then uĵ ←
⌊

U
iĵ

a
iĵ

⌋

else if ĵ ∈ N−
i then

15



if Uiĵ < aiĵuĵ then we have detected aconflict

else if
⌈

U
iĵ

a
iĵ

⌉

> lĵ then lĵ ←
⌈

U
iĵ

a
iĵ

⌉

The procedure above works also for branches that do not concern only one variable, but an
arbitrary hyperplane in the decision variable space. The hyperplane that is added in the branch
decision is simply included into the constraint set of the child. The propagation is no different.

In our generalized method, not all nodes in the implication graph represent variable assign-
ments; some represent half-spaces (a bound change or, more generally, a hyperplane).

If the branch decision states that moving from a parent to a child involves adding acollection
of bound changes / hyperplanes (an important case of the former isSpecial Ordered Setbranch-
ing [4]), then we can simply treat each of them separately using the procedure above.

5.2 Generating cutting planes from GNs

When we identify a GN from the implication graph, we are identifying a set of hyperplane con-
straints (with variable bounds and variable assignments asspecial cases) that cannot be mutually
satisfied in any feasible solution better than the current lower bound. Thus the analog to conflict
clauses in SAT is no longer direct as it was in 0-1 IP. Therefore, generating useful cutting planes is
more challenging.

From the GN we know that at least one of the contained hyperplane constraints should be
violated. Therefore, the feasible region of the LP can be reduced to be the intersection of the
current feasible region of the LP and any linear relaxation of the disjunction of the infeasible IP
region of the first constraint, the infeasible IP region of the second constraint, etc. (The tightest
such relaxation is the convex hull of the disjunction.) The cutting planes that our method will
generate are facets of the linear relaxation. Not all of themneed to be generated for the technique
to be useful in reducing the size of the search tree through improved LP upper bounding. Any
standard technique fromdisjunctive programming[3] can be used to generate such cutting planes
from the descriptions of the infeasible IP regions.

To see that this is a generalization of our 0-1 IP technique, consider a 0-1 IP in which we
have found a conflict. Say that the nogood generated from thisconflict involves three variables
being fixed to 0 (i.e., three hyperplane constraints):〈x1 ≤ 0, x2 ≤ 0, x3 ≤ 0〉. The infeasible IP
regions of the three constrains arex1 ≥ 1, x2 ≥ 1, andx3 ≥ 1, respectively. Their disjunction is
{x : x1 ≥ 1 ∨ x2 ≥ 1 ∨ x3 ≥ 1}, which has LP relaxationx1 + x2 + x3 ≥ 1. This is the cutting
plane that our generalized method would generate. This is the also the same cutting plane that our
original method for 0-1 IPs would generate from the nogood〈x1 = 0, x2 = 0, x3 = 0〉.

6 Related research

No-good recording was first mentioned in the mid-1970s by Stallman and Sussman [32]. Their
idea gave rise to algorithms in 1990 that include backjumping and nogood recording [23, 11]. The
early work on nogood learning focused on constraint satisfaction problems (CSPs). It tended to not
improve speed much in the propagator-heavy state-of-the-art CSP solvers, and was by and large
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not incorporated into the commercial CSP solvers. There wasalso some early exploration applying
this technique to constraint optimization problems [22]. Nogood learning has been incorporated in
some current constraint optimization solvers, such as PaLM[18].

In the mid-1990s, nogood learning was extremely successfully applied to SAT [21, 24]. It is
now a part of all the competitive complete SAT solvers. We recently learned that in 2005, success
with nogood learning has been reported on CSPs more generally by allowing a somewhat richer
notion of nogood, where the nogood not only contains variable assignments but also nonassign-
ments (excluded values of a variable) [19]. That notion of a generalized nogood is a special case
of ours, presented in Section 5.

Since 2003, nogood learning has also been applied to restricted forms of optimization. Chai
and Kuehlmann studied this in CSPs with pseudoboolean constraints (i.e., linear constraints over
binary variables, but potentially with coefficient other than 1, 0, or -1) [8]. Their system was able
to outperform IBM’s OSLv3 (a slower MIP solver, similar in function to CPLEX) on constraint
satisfaction problems, but performed far worse than OSL on optimization problems. It is not clear
whether the performance difference on optimization is due to the generated cuts being weak or
due to the manner in which their system performs optimization (a linear search over values of
the objective, and running constraint satisfaction at eachsuch value). Additionally, they found
that OSL with an artificial objective function actually outperformed OSL without an objective on
the same instances. Nogood learning has recently also been applied to problems where one is
trying to maximize the number of constraints satisfied [34, 29, 2], with great success. A similar
technique has been described for use in disjunctive programming for planning in an autonomous
space probe [20], with similar results.

The similarity between the concept of a noogod for SAT and a cutting plane for MIP is men-
tioned in [12]. However, the discussion is at a high level andno method for actually generating
such cutting planes is given.

The most closely related work to ours is that of Achterberg [1]. Independently and in parallel
with our work, he came up with the same idea of applying nogoodlearning to MIP. In the rest of
this section, we discuss similarities and differences between our approach and his.

The method presented by Achterberg for construction and maintenance of the implication graph
is nearly identical to ours. Both his approach and ours draw nogoods from bounds propagation. His
approach differs from ours in that our implementation does not draw nogoods from LP infeasibility
analysis while his does. We proposed using an IIS-based method (such as Davey’s [9]) for drawing
nogoods from LP infeasibility, but we did not implement thatbecause we thought it would increase
solve time at each search node too much to pay off overall. Achterberg presents a novel relatively
fast way of combining LP infeasibility analysis with the implication graph obtained through bounds
propagation. If an LP infeasibility is reached (or the objective constraint is violated), he takes the
path decisions and greedily tries to remove them one at a timewhile maintaining the property that
the remaining decisions are in conflict. Then he inserts a conflict node into the implication graph
and connects it to those remaining decisions.

Another difference is that Achterberg’s work does not take advantage of special structure, such
as mutual exclusivity of indicators, or the structure whereat least one of a set of indicators has to
be “on”.
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Experimentally, Achterberg’s results differ from ours regarding the effectiveness of nogood
learning as applied to 0-1 IP. He runs on two data sets: a selection from MIPLIB and a selection
of instances from a chip design verification problem that hasa convenient IP formulation. All
instances are run with CPLEX 9, SCIP (his own MIP solver), andSCIP+conflict analysis. In the
experiments, it appears that SCIP tends to have longer solvetimes than CPLEX, but much smaller
search trees. His experiments show significant reduction intree size from SCIP to SCIP+CA.
However, on MIPLIB instances the smaller trees did not make up for the overhead of generating
the cutting planes. On the other hand, on the chip verification instances, SCIP+CA clearly out-
performed SCIP in both tree size and run time. (The use of a chip verification modeling problem
is perhaps questionable for measuring the effectiveness ofan optimization technique. It is a pure
constraint satisfaction problem; integer programming might thus not be a good choice in the first
place. However, as would be expected, Achterberg’s nogood learning technique performed the
best on exactly those instances.) There are several hypotheses for explaining the difference in
performance between our approach and his:

• His approach draws nogoods also from LP infeasibility whileour implementation does not.
The significantly better reduction in tree size suggests that the nogoods drawn from LP in-
feasibility play a very important role.

• His implementation features different cut management. Forexample, we always generate at
most one cutting plane per search node.

• He shows a tree size reduction when compared to SCIP. We show that there is only a tiny
tree size reduction when compared to CPLEX. These may not be comparable. Similarly, in
terms of run time, CPLEX and SCIP may not be comparable benchmarks.

• Different instance sets were used in the experiments.

Achterberg’s generalization from 0-1 IP to MIP is somewhat different from ours. For no-
goods containing bound changes of integer variables, he presents a linearization of the resulting
constraints that, while correct, requires the addition of auxiliary variables. He points out that the
resulting LP relaxation is weak, and considers the approachnot worthwhile. Instead, he proposes
restricting the algorithm to nogoods that contain only binary variables. His linearization also does
not handle nogoods containing conditions other than bound changes. Our generalized nogood con-
cept allows for arbitrary conditions and integer variables, and we propose disjunctive programming
as a direction for finding linearization. While our generalized nogood concept in principle allows
for continuous variables as well, Achterberg shows that if the generalized nogood (he does not
actually use that concept, but we phrase his work using this concept) contains a bound change on a
continuous variable, then expressing that nogood using cutting planes would require strict inequal-
ities. Strict inequalities cannot be expressed directly inLP-based MIP, so those cases have to go
unaddressed or be approximated. A potentially interestingdirection for future research would be to
apply (or extend) some of the special techniques for handling strict inequalities in MIP (e.g., [10])
to this context.
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7 Conclusions and future research

Nogood learning is an effective CSP technique critical to success in leading SAT solvers. We
extended the technique for use in combinatorial optimization—in particular, (mixed) integer pro-
gramming (MIP). Our technique generates globally valid cutting planes for a MIP from nogoods
learned through constraint propagation. Nogoods are generated from infeasibility and from bound-
ing.

Experimentally, our technique did not speed up CPLEX (although tree size was slightly re-
duced). This is due to few cutting planes being generated andthe cutting planes being weak. We
explained why.

We also conducted experiments while controlling the ratio of constraints to variables, the num-
ber of variables per constraint, and the density of the objective. Hardness peaks at an interior value
of the constraints to variables ratio, and the relative treesize reduction from our nogood learning
technique improves as that ratio increases. Instances withno objective were hardest and instances
with about 10% of the variables in the objective were easiest. As objective density increased
further, the instances became slightly harder. The relative performance of our nogood learning
technique was best when the objective was nonexistent or sparse. As clause length increased, the
instances became trivial and clause learning ceased to decrease tree size.

We showed how our technique can be enhanced by exploiting special structure such as mutual
exclusivity of indicator variables or at least one of a set ofindicator variables having to be “on”.
We also showed how to capitalize on instances where multipleoccurrences of each of these two
structures are present.

There are a host of potentially fruitful directions for future research.
First, the difference in performance between our implementation and Achterberg’s suggests

that it is important to draw nogoods not only from propagation but also from LP infeasibility.
As we presented (but did not yet implement), at any node that is pruned during search due to
LP infeasibility or objective constraint violation, one could use the LP to generate anirreducibly
inconsistent set (IIS). The IIS is a nogood, so one can generate a cutting plane from it. For 0-1
IP, Davey et al. produce an IIS with the smallest overlap withvariable assignments on the search
path, and use that as the cutting plane [9]. (Such techniquesdo not subsume ours: no IIS-based
cutting plane would help in the example of Section 2.4 because any IIS would include all the
decisions on the path.) Further research on IIS-based techniques, on Achterberg’s novel technique,
and additional techniques for generating cutting planes from LP infeasibility analysis would likely
pay off.

For MIPs, we can use the same IIS-based LP technique to generate a GN that shares the smallest
number of variable bound changes with the path (thus it will help prune at many places of the tree
that are not on the current path). Then we can use the techniques from the generalizations section of
this paper to generate cutting planes from that GN. Future research includes studying disjunctive
programming techniques in detail for generating linear constraints that correspond to the GN.
Furthermore, for the case of continuous variables in the GN,it would be potentially interesting to
apply (or extend) some of the special techniques for handling strict inequalities in MIP (e.g., [10]).

Second, one should explore additional ways of generating nogoods from the implication graph,
as well as generating more than one nogood per search node. Inour current implementation, we
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only generated one particular nogood (1-UIP).
Third, our machinery for implication graph construction can also be used for dynamic tight-

ening of variable bounds as the search proceeds. Specifically, the inferences we draw during
constraint propagation can be explicitly applied to the LP for the current node and its descendants.
These bound tightenings are beyond those implied by the LP relaxation. Thus the technique yields
tighter LP bounds, and smaller search trees. Harvey and Schimpf proposed similar techniques for
bound consistency, without experiments [15].

Fourth, one could applylifting (i.e., including additional variables, with the largest provably
valid coefficients, into the constraint) to the cutting planes we are generating in order to strengthen
them (i.e., cut off more of the LP polytope). Our cutting planes are similar toknapsack cover
inequalities[25], for which lifting is relatively straightforward. Experiments should be conducted
to determine whether nogood learning enhanced by lifting would improve speed.

Fifth, there may be real-world problems where the techniques, even as-is, yield a drastic
speedup; one can construct instances where they reduce treesize by an arbitrary amount. The ex-
periments suggest more promise when nodes are often pruned by infeasibility (rather than bound-
ing or integrality), when the objective is sparse, when there are lots of constraints compared to the
number of variables, and when the constraints contain few variables each.
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