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Abstract. The purpose of multi-unit auctions is to allocate identical
units of a single type of good to multiple agents. Besides well-known ap-
plications like the selling of treasury bills, electrical power, or spectrum
licenses, multi-unit auctions are also well-suited for allocating CPU time
slots or network bandwidth in computational multiagent systems. A cru-
cial problem in sealed-bid auctions is the lack of trust bidders might have
in the auctioneer. For one, bidders might doubt the correctness of the
auction outcome. Secondly, they are reluctant to reveal their private val-
uations to the auctioneer since these valuations are often based on sen-
sitive information. We propose privacy-preserving protocols that allow
bidders to jointly compute the auction outcome without the help of third
parties. All three common types of multi-unit auctions (uniform-price,
discriminatory, and generalized Vickrey auctions) are considered for the
case of marginal decreasing valuation functions. Our protocols are based
on distributed homomorphic encryption and can be executed in a small
constant number of rounds in the random oracle model. Security merely
relies on computational intractability (the decisional Diffie-Hellman as-
sumption). In particular, no subset of (computationally bounded) col-
luding participants is capable of uncovering private information.

1 Introduction

Auctions are not only wide-spread mechanisms for selling goods, they have also
been applied to a variety of computer science settings like task assignment,
bandwidth allocation, or finding the shortest path in a network with selfish
nodes. A crucial problem in sealed-bid auctions is the lack of trust bidders might
have in the auctioneer. For one, bidders might doubt the correctness of the
auction outcome. Secondly, they are reluctant to reveal their private valuations
to the auctioneer since these valuations are often based on sensitive information.
We tackle both problems by providing cryptographic protocols that allow bidders
to jointly compute the auction outcome without revealing any other information.

More specifically, our setting consists of one seller and n bidders that intend to
come to an agreement on the selling of M indistinguishable units of a particular
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type of good.1 Each bidder submits a vector of M sealed bids (bi
1, b

i
2, . . . , b

i
M )

to the auctioneer, expressing how much he is willing to pay for each additional
unit. In other words,

∑m
j=1 bi

j is the amount bidder i is willing to pay for m
units. A common assumption that we also make is that bidders have marginal
decreasing valuations, i.e., bi

1 ≥ bi
2 ≥ · · · ≥ bi

M . This is justified by the fact
that bidders usually want to pay less for each additional unit the more units
they already have.2 The auctioneer then clears the auction by allocating units
to the bidders that value them most. Let W be the set of winning bids, i.e.,
the set containing the M highest bids. Clearly, if bidder i submitted mi bids
that belong to W , any economically efficient auction should allocate mi units
to bidder i. There are three common ways of pricing units that are sold in
multi-unit auctions: uniform-price, discriminatory, and generalized Vickrey (see
e.g., [Kri02] or [Kle99]).

– Uniform-Price Auction
All bidders pay the same price per unit, given by the (M + 1)st-highest bid.

– Discriminatory Auction
The discriminatory auction is the natural extension of the 1st-price sealed-
bid auction (for one unit) to the case of M units. Every bidder pays exactly
what he bid for each particular unit he receives. In other words, if bidder i

receives mi units, he pays
∑mi

j=1 bi
j .

– Generalized Vickrey Auction
The generalized Vickrey auction is an extension of the Vickrey (or 2nd-price
sealed-bid) auction. A bidder that receives m units pays the sum of the m
highest losing bids submitted by other bidders, i.e., excluding his own losing
bids. This auction format belongs to the praised family of VCG mechanisms
[Vic61, Cla71, Gro73] and provides various desirable theoretical properties.

There is an ongoing debate in economic theory which auction format is most fa-
vorable. For example, the uniform-price auction is sometimes rejected because it
suffers from an effect called demand reduction which states that bidders are bet-
ter off reducing their bids for additional units. In contrast to both other auction
types, the generalized Vickrey auction is economically efficient, i.e., the total
welfare of all bidders is maximized in a strategic equilibrium, and strategy-proof,
i.e., each bidder is best off bidding his true valuations no matter what other
bidders do. On the other hand, the generalized Vickrey auction is vulnerable to
strategic collusion and can result in outcomes that might be considered unfair.
Summing up, it seems as if different application scenarios require different auc-
tion types. For example, the US government began to use uniform-price auctions
to sell treasury bills in 1992, after a long tradition of discriminatory auctions.
On the other hand, UK electricity generators switched from uniform-price to

1 All the presented protocols also work for procurement or so-called reverse auctions
where there is one buyer and multiple sellers.

2 However, this is not always the case. For instance, in a tire auction, a car owner
might value the forth tire higher than the third.
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discriminatory auctions in 2000. A detailed discussion of the pros and cons of
multi-unit auctions is beyond the scope of this paper (see e.g., [Kri02] or [Kle99]
for further information).

In this paper, we propose cryptographic protocols for all three common types
of multi-unit auctions. These protocols allow bidders to “emulate” a virtual auc-
tioneer, thus enabling privacy of bids without relying on third parties. The only
information revealed in addition to the auction outcome is minor statistical data
in the case of certain ties (e.g., the number of tied bids). As round efficiency is
usually considered to be the most important complexity measure in a distributed
setting, the main goal when designing these protocols was to minimize the num-
ber of rounds required for executing the protocols. In fact, all our protocols only
need a low constant number of rounds in the random oracle model. Communi-
cation and computation complexity, on the other hand, is linear in the number
of different prices. Nevertheless, the proposed protocols should be practically
feasible for moderately sized scenarios.

The remainder of this paper is structured as follows. In Section 2, we describe
the general security model underlying this work. Recent related research on
cryptographic auction protocols is reviewed in Section 3. In Section 4, we give
a detailed description of the vector notation and order statistic subprotocol to
be used in the multi-unit auction protocols presented in Section 5. Concrete
implementation details regarding El Gamal encryption and efficient (honest-
verifier) zero-knowledge proofs are discussed in Section 6. The paper concludes
with an overview of the obtained results in Section 7.

2 Security Model

Our primary goal is privacy that cannot be broken by any coalition of third
parties or bidders. For this reason, we advocate a security model in which bidders
themselves jointly compute the auction outcome so that any subset of bidders
is incapable of revealing private information. Clearly, extensive interaction by
bidders is undesirable in practice (but unavoidable given our objective). In order
to minimize interaction, our secondary goal is to keep round complexity at a
minimum (i.e., small constants). The main drawbacks implied by our setting are
low resilience and high computational and communication complexity. However,
auctions that require such a high degree of privacy typically take place with
few, well-known (i.e., non-anonymous) bidders, for instance when auctioning off
spectrum licenses.

We consider cryptographic protocols for n bidders and one seller. Each bid-
der possesses a private input consisting of M bids. Agents engage in a multi-
party protocol to jointly and securely compute the outcome function f . In our
context, security consists of correctness (f is computed correctly) and full pri-
vacy (aka. (n−1)-privacy, i.e., no subset of agents learns more information than
what can be inferred from the outcome and the colluding agents’ private inputs).
When allowing premature protocol abort, any such function f can be computed
securely and fairly when trapdoor permutations exist, and a designated agent
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does not quit or reveal information prematurely.3 In the auction protocols pre-
sented in this paper, the seller will take the role of the designated agent. It is
important to note that even when the seller quits or reveals information early,
the worst thing that can happen is that an agent learns the outcome and quits
the protocol before the remaining agents were able to learn the outcome.4 Bid
privacy is not affected by premature abort.

Whenever a malicious bidder disrupts the protocol by sending faulty messages
or failing to prove the correctness of his behavior in zero-knowledge, this bidder
will be removed, and the protocol will be restarted (termination is guaranteed
after at most n − 1 iterations). We presume that the “public” is observing the
protocol and therefore a malicious bidder can undoubtedly be identified, inde-
pendently of how many remaining agents are trustworthy. As malicious bidders
can easily be fined and they do not gain any information, there should be no
incentive to disrupt the auction and we henceforth assume that a single protocol
run suffices.

3 Related Work

Numerous cryptographic protocols for single-unit auctions have been proposed
in the literature (e.g., [AS02, BS01, Bra03a, Di 00, JS02, Kik01, LAN02, NPS99]).
We follow our previous approach [Bra03a] where bidders jointly compute the
auction outcome without the help of trusted third parties.

There are few privacy-preserving protocols for the selling of more than just
a single good. Suzuki et al [SY02, SY03] proposed protocols for general combi-
natorial auctions (see e.g., [CSS05]), where bidders can bid on arbitrary combi-
nations of items for sale, based on a secure dynamic programming subprotocol.
The problem of determining the winners in this type of auction is NP-complete.
Clearly, adding cryptographic overhead to winner determination results in pro-
tocols whose complexity is prohibitively large for most practical settings. Multi-
unit auctions, in which a specific number of identical units of a single item
is sold, are an important, yet still intractable [SS01], subcase of combinatorial
auctions. Instead of bidding on every conceivable combination of items, bidders
simply specify their willingness to pay for any number of units. In contrast to
general combinatorial auctions, multi-unit auctions are already widely used, e.g.,
for selling treasury bills or electrical power. Suzuki et al formulate the winner
determination problem in multi-unit auctions as a dynamic programming opti-
mization problem, thus enabling their secure dynamic programming protocol to
compute the optimal allocation of units [SY02, SY03]. However, when making
the reasonable assumption that bidders’ valuations are marginal decreasing in

3 This useful restriction to circumvent fairness problems was also used in our previ-
ous work (e.g., [Bra03b, Bra03a]). Independently, the security of such a model was
generally analyzed by Goldwasser et al [GL02].

4 Another common way to obtain fairness without a trusted majority is the gradual
release of secrets (e.g., [Yao86, GL90].
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the number of units, i.e., the (m + 1)th unit a bidder receives is never more
valuable to him than the mth unit, computing the optimal allocation of units
becomes tractable [Ten00], thus making computationally demanding techniques
like dynamic programming unnecessary. To the best of our knowledge, crypto-
graphic protocols for multi-unit auctions with marginal decreasing valuations
have only been presented for the considerably simple subcase where each bidder
only demands a single unit [AS02, Bra03a, Kik01].5

Parallel to our work on fully private auction and social choice protocols
(e.g., [Bra02, Bra03b, BS04b, BS04a]), there is an independent, yet quite similar,
stream of research on self-tallying elections [KY02, KY03, Gro04]. In both set-
tings, agents jointly determine the outcome of a social choice function without
relying on trusted third parties. What we call ”full privacy” is termed “per-
fect ballot secrecy” in Kiayias et al’s work. Similarly, the terms “self-tallying”
and ”dispute-free” [KY02] can be translated to “bidder-resolved” and “weakly
robust” [Bra02], respectively. In order to achieve fairness, both approaches as-
sume a weakly trustworthy party (a “dummy voter” and the auction seller,
respectively). Besides these similarities, Kiayias et al’s approach mainly differs
in the emphasis of non-interactiveness (once the random-generating preprocess-
ing phase is finished) while computing rather simple outcome functions (e.g., the
sum of input values).

4 Building Blocks

Distributed homomorphic encryption allows agents to efficiently add secret val-
ues without extensive interaction. For this reason, our protocols only require the
computation of linear combinations of secret inputs values (which can be solely
based on addition) and multiplications with jointly created random numbers (for
which we propose an efficient sub-protocol in Section 6.1). When computing on
vectors of secrets, the computation of linear combinations enables the addition
(and subtraction) of secret vectors, and the multiplication of vectors with prede-
fined known matrices. Furthermore, the vector representation allows for efficient
zero-knowledge proofs of correctness.

4.1 Vector Representation

Let p be a vector of k possible prices (or valuations), p = (p1, p2, . . . , pk),
and bid ∈ {1, 2, . . . , k} a bid. The bid vector b of this bid is defined so that
component bbid = 1 (the bidder bids pbid) and all other components are 0.
This representation allows efficient proofs of the vector’s correctness by show-
ing ∀j ∈ {1, 2, . . . , k} : bj ∈ {0, 1} and

∑k
j=1 bj = 1 (see Section 6 for de-

tails). Yet, the main advantage of the vector representation is the possibility
to efficiently perform certain computations. For example, the “integrated” bid

5 In this so-called unit demand case, the uniform-price and the generalized Vickrey
auction collapse to the same auction type: the (M + 1)st-price auction.
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vector b′ (a notion introduced in [AS02]) can be derived by multiplying the bid
vector with the k × k lower triangular matrix L.6

b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

bk

...
bbid−1

bbid

bbid+1

...
b1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
1
0
...
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, b′ = L b =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
...
0
1
1
...
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

where L =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 · · · 0
...

. . . . . .
...

...
. . . 0

1 · · · · · · 1

⎞

⎟
⎟
⎟
⎟
⎠

The price we pay for round-efficiency enabled by this unary representation is
communication and computation complexity that is linear in the number of dif-
ferent prices k. On the other hand, the unary notation allows us to easily adapt
the given protocols to emulate iterative (e.g., ascending-price or descending-
price) auctions (see e.g., Chapter 2 of [CSS05]) in which bidders gradually express
their unit demand for sequences of prices. In fact, there are common iterative
equivalences for each of the three sealed-bid auction mechanisms considered in
this paper: the multi-unit English auction (uniform-price), the multi-unit Dutch
auction (discriminatory), and the Ausubel auction (generalized Vickrey). Itera-
tive auctions are sometimes preferred over sealed-bid auctions because bidders
are not required to exhaustively determine their valuations and because they
can lead to higher revenue if valuations are interdependent.

4.2 Order Statistic Subprotocol

The most essential building block of our auction protocols is a subprotocol that
determines the mth order statistic, i.e., the mth highest bid, in a given vector
of N bids. Some k × k matrices that we will use in addition to L are the upper
triangular matrix U, the identity matrix I, and random multiplication matrices
R∗. Furthermore, we will utilize the k-dimensional unit vector e.

U =

⎛

⎜
⎜
⎜
⎜
⎝

1 · · · · · · 1

0
. . .

...
...

. . . . . .
...

0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, I =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 · · · 0

0 1
. . .

...
...

. . . . . . 0
0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎠

, R∗ =

⎛

⎜
⎜
⎜
⎜
⎝

∗ 0 · · · 0

0 ∗ . . .
...

...
. . . . . . 0

0 · · · 0 ∗

⎞

⎟
⎟
⎟
⎟
⎠

, e =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠

The components on the diagonal of R∗ are random numbers unknown to the
agents. They are jointly created using a special sub-protocol. Multiplication with
R∗ turns all vector components that are not zero into meaningless random num-
bers. For this reason, it is usually a final masking step in our protocols.

6 Please note that matrices are only used to facilitate the presentation. The special
structure of all used matrices allows us to compute matrix-vector multiplications in
O(k) steps.
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Our approach to detect the mth-highest bid requires special techniques if
there is a tie at the mth-highest bid. Information that is revealed in case of a tie
is the number of tied bids (t) and the number of bids that are greater than the
mth-highest bid (u). Let us for now assume that there is always a single mth-
highest bid (t = 1 and u = m− 1). When given vector B where each component
of B denotes the number of bids at the corresponding price (see Example 1), we
will specify how to compute a vector that merely reveals the mth-highest bid.

statm
1,m−1(B) =

(

(2L − I)B − (2m − 1)e
)

R∗

yields a vector in which the component denoting the mth-highest bid is zero. All
other components are random values.

Example 1. Let the vector of possible prices be p = (10, 20, 30, 40, 50, 60) and
consider the computation of the second highest bid (m = 2) in a vector that
represents bids 20 and 50:

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

All computations take place in the finite field Z11. Asterisks denote arbitrary
random numbers that have no meaning to bidders.

stat
2
1,1(B) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
2 1 0 0 0 0
2 2 1 0 0 0
2 2 2 1 0 0
2 2 2 2 1 0
2 2 2 2 2 1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1
0
0
1
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

3
3
3
3
3
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
1
2
2
3
4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

3
3
3
3
3
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

8
9

10
10
0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R∗
=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∗
∗
∗
∗
0
∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

The resulting vector stat21,1(B) indicates that the second highest bid is 20. �

When two or more bids qualify as the mth-highest bid (because they are
equal), the technique described above does not work (statm

1,m−1(B) contains
no zeros). For this reason, we compute additional vectors that yield the correct
outcome in the case of such a tie. The following method marks the mth-highest
bid while not revealing any information about other ties. Subtracting te from
input vector B yields a vector that contains zeros if there is a tie of t bids (1 <
t ≤ N where N is the number of bids). As we are only interested in ties involving
the mth-highest bid, other ties are masked by adding (N + 1) (LB − (t + u)e)
where u ∈ {max(0,m−t), . . . ,min(m−1, N −t)} for each t. The resulting vector
contains a zero when t bids are equal and there are u bids higher than the tie.
The preceding factor (N + 1) is large enough to ensure that both addends do
not add up to zero. Finally, in the case of a tie, the mth-highest bid can be
determined by computing the following additional vectors.

statm
t,u(B) =

(

B − te + (N + 1) (LB − (t + u)e)
)

R∗
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Example 2. Suppose that two bids are 50 and two are 20 (m = 2, computation
takes place in Z11 and p = (10, 20, 30, 40, 50, 60)):

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
2
0
0
2
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

stat21,1(B) yields no information due to the tie at price 50. The first two (t =
2, u ∈ {0, 1}) additional order statistic vectors look like this:

stat
2
2,0(B) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
2
0
2
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2
2
2
2
2
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ 5

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
2
2
4
4
4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2
2
2
2
2
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R
∗

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

10
0
9

10
8
8

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R
∗

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∗
0
∗
∗
∗
∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

stat
2
2,1(B) =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
2
0
2
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2
2
2
2
2
2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

+ 5

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
2
2
4
4
4

⎞

⎟
⎟
⎟
⎟
⎟
⎠

−

⎛

⎜
⎜
⎜
⎜
⎜
⎝

3
3
3
3
3
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R
∗

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

5
6
4
5
3
3

⎞

⎟
⎟
⎟
⎟
⎟
⎠

R
∗

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∗
∗
∗
∗
∗
∗

⎞

⎟
⎟
⎟
⎟
⎟
⎠

For t > 2 the first difference contains no zeros, leading to random vectors. The
mth-highest bid is indicated in vector stat22,0(B) (revealing that the two highest
bids are equal). �

Concluding, in order to obtain the mth order statistic of N bids, agents jointly
compute function statm

t,u(B) where t = {1, 2, . . . , N} and u ∈ {max(0,m −
t), . . . ,min(m− 1, N − t)} for each t. Thus, a total amount of m(N −m) vectors
of size k needs to be computed.

5 Multi-unit Auction Protocols

In this section, we present methods to compute the outcome of three common
multi-unit auction types based on the vector notation and the order statistic
subprotocol proposed in the previous section.

Before determining the auction outcome, bidders have to prove that their
bids are marginal decreasing, i.e., bi

m ≥ bi
m+1 for each m < M . This can be

achieved by computing

deci
m =

(
L bi

m + (U − I) bi
m+1

)
Ri

where Ri is a random matrix chosen by bidder i and bi
m is bidder i’s bid vector

for the mth unit. Each deci
m is jointly decrypted. If any component equals zero,

bidder i submitted malformed, i.e., increasing, bids. There is no Ri bidder i could
use to hide the fact that one of the components is zero.

As noted in Section 1, the three auction formats only differ in the pricing of
units. The number of units each bidder receives is identical in all three auction
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types. The number of units mi that bidder i receives can be determined by
computing a vector where the component denoting the Mth-highest bid is zero
and then adding all integrated bid vectors of bidder i. This yields a vector whose
components are random except for the single component containing the number
of units bidder i receives. In order to squeeze all mi in the same vector alloct,u,
we represent the allocation of units as a base-(M + 1) number.7 Furthermore,
bidders jointly compute vector post,u which simply indicates the position of the
Mth-highest bid so that bidders know at which position they find the allocation
of units in vector alloct,u.

post,u = statM
t,u

(
n∑

i=1

M∑

m=1

bi
m

)

alloct,u = statM
t,u

(
n∑

i=1

M∑

m=1

bi
m

)

+ L
n∑

i=1

(

(M + 1)i−1
M∑

m=1

bi
m

)

Due to certain ties, it is possible that bidders qualify for more units than there
are units available. This is the case when there is a tie involving the Mth-highest
and the (M + 1)st-highest bid (t > 1 and t + u > M). Computing additional
vectors that reveal the number of bids each bidder is contributing to the tie allow
both bidders and the seller to apply fair (e.g., randomized) methods to select
how many units each tied bidder receives.

surplust,u = statM
t,u

(
n∑

i=1

M∑

m=1

bi
m

)

+
n∑

i=1

(

(M + 1)i−1
M∑

m=1

bi
m

)

By computing the above three vectors, bidders are able to determine mi for each
bidder. In the following sections, we show how bidders can privately compute
unit prices given by three common multi-unit auction types.

5.1 Uniform-Price Auction

In the uniform-price auction, all bidders pay the same price per unit, given by
the (M + 1)st-highest bid which can be straightforwardly computed using the
order statistic subprotocol.8

pricet,u = statM+1
t,u

(
n∑

i=1

M∑

m=1

bi
m

)

7 There are certainly more compact representations, but when assuming that (M +1)n

is less than the size of the underlying finite field, a radix representation has the
advantage of being efficiently computable.

8 In order to hide the Mth-highest bid, vectors post,u, alloct,u, and surplust,u can
also be computed based on the (M +1)st-highest bid by appropriately shifting down
the second addends in alloct,u and surplust,u.
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5.2 Discriminatory Auction

In the discriminatory auction bidders pay exactly the sum of amounts they
specified in each winning bid. Once, mi is determined, the price bidder i has to
pay can be revealed by computing pricei as defined below (please note that this
is not a vector).

pricei =
mi
∑

m=1

k∑

j=1

j · bi
m,j

It is advisable to compute pricei so that only bidder i and the seller get to know it.
Other bidders do not need to be informed about the total price bidder i has to pay.

5.3 Generalized Vickrey Auction

The generalized Vickrey auction has the most complex pricing scheme of the
auction types we consider. A bidder that receives mi units pays the sum of the
mi highest losing bids submitted by other bidders, i.e., excluding his own los-
ing bids. Unfortunately, this sophisticated pricing scheme also leads to a higher
degree of complexity needed to privately compute Vickrey prices based on our
vector representation. The unit prices bidder i has to pay can be determined by
invoking the order statistic subprotocol mi times. In contrast to the discrimina-
tory auction protocol proposed in the previous section, all unit prices have to be
computed separately instead of just computing the total price each bidder has
to pay. Vector

pricei
m,t,u = statm

t,u

⎛

⎝
n∑

h=1,h �=i

M∑

�=mh+1

bh
�

⎞

⎠

indicates the price of the mth unit bidder i receives (m = {1, 2, . . . ,mi}). Ob-
viously, heavy use of the order statistic protocol results in more information to
be revealed in the case of ties. As in the discriminatory auction protocol, unit
prices should only be revealed to the seller and corresponding bidders.

6 Implementation Using El Gamal Encryption

Any homomorphic encryption scheme that besides the, say, additive homomor-
phic operation allows efficient multiplication of encrypted values with a jointly
generated random number can be used to implement the auction schemes de-
scribed in the previous sections. It turns out that El Gamal encryption [El 85],
even though it is multiplicative, is quite suitable because

– agents can easily create distributed keys, and
– encrypted values can be exponentiated with a shared random number in a

single round.

As El Gamal cipher is a multiplicative homomorphic encryption scheme, the
entire computation as described in the previous sections will be executed in the
exponent of a generator. In other words, a random exponentiation implements
the random multiplication of the additive notation. As a consequence, the mth-
highest bid is marked by ones instead of zeros in the order statistic protocol.
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6.1 El Gamal Encryption

El Gamal cipher [El 85] is a probabilistic and homomorphic public-key cryp-
tosystem. Let p and q be large primes so that q divides p − 1. Gq denotes Z

∗
p’s

unique multiplicative subgroup of order q.9 As argued in Footnote 7, q should
be greater than (M + 1)n. All computations in the remainder of this paper are
modulo p unless otherwise noted. The private key is x ∈ Zq, the public key
y = gx (g ∈ Gq is an arbitrary, publicly known element). A message m ∈ Gq is
encrypted by computing the ciphertext tuple (α, β) = (myr, gr) where r is an
arbitrary random number in Zq, chosen by the encrypter. A message is decrypted
by computing α

βx = myr

(gr)x = m. El Gamal is homomorphic as the component-

wise product of two ciphertexts (αα′, ββ′) = (mm′yr+r′
, gr+r′

) represents an
encryption of the plaintexts’ product mm′. It has been shown that El Gamal is
semantically secure, i.e., it is computationally infeasible to distinguish between
the encryptions of any two given messages, if the decisional Diffie-Hellman prob-
lem is intractable [TY98].

We will now describe how to apply the El Gamal cryptosystem as a fully
private multiparty computation scheme.10 If a value represents an additive share,
this is denoted by a “+” in the index, whereas multiplicative shares are denoted
by “×”. Underlying zero-knowledge proofs will be presented in the next section.

Distributed key generation: Each agent chooses x+i at random and pub-
lishes y×i = gx+i along with a zero-knowledge proof of knowledge of y×i’s
discrete logarithm. The public key is y =

∏n
i=1 y×i, the private key is

x =
∑n

i=1 x+i. Broadcast round complexity and exponentiation complex-
ity of the key generation are O(1).

Distributed decryption: Given an encrypted message (α, β), each agent pub-
lishes β×i = βx+i and proves its correctness. The plaintext can be derived by
computing α∏n

i=1 β×i
. Like key generation, the decryption can be performed

in a constant number of rounds.
Random Exponentiation: A given encrypted value (α, β) can easily be raised

to the power of an unknown random number E =
∑n

i=1 e+i whose addends
can be freely chosen by the agents if each bidder publishes (αe+i , βe+i) and
proves the equality of logarithms. The product of published ciphertexts yields
(αE , βE) in a single step.

6.2 Zero-Knowledge Proofs

In order to obtain security against malicious or so-called active adversaries, bid-
ders are required to prove the correctness of each protocol step. One of the objec-
tives when designing the protocols presented in Section 5 was to enable efficient
proofs of correctness for protocol steps. In fact, the proposed protocols can be

9 We will focus on multiplicative subgroups of finite fields here, although El Gamal
can also be based on other groups such as elliptic curve groups.

10 Please note that this multiparty scheme is limited in the sense that it does not allow
the computation of arbitrary functions.
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proven correct by only using so-called Σ-protocols which just need three rounds
of interaction [Dam02, CDS94]. Σ-protocols are not known to be zero-knowledge,
but they satisfy the weaker property of honest-verifier zero-knowledge. This suf-
fices for our purposes as we can use the Fiat-Shamir heuristic [FS87] to make
these proofs non-interactive. As a consequence, the obtained proofs are indeed
zero-knowledge in the random oracle model and only consist of a single round.11

We will make use of the following three Σ-protocols:

– Proof of knowledge of a discrete logarithm [Sch91]
– Proof of equality of two discrete logarithms [CP92]
– Proof that an encrypted value is one out of two values [CDS94]

6.3 Protocol Implementation

Using El Gamal encryption, the computation schemes described in Section 5 can
be executed in the exponent of an arbitrary value in Gq\{1} that is known to all
bidders. When enabling non-interactive zero-knowledge proofs by applying the
Fiat-Shamir heuristic, protocols only require a low constant number of rounds
of broadcasting.12 The allocation of units can be computed in four rounds as
described below (see [Bra03a] for further details). Additional rounds may be
required to compute unit prices depending on the auction type.

– Round 1: Distributed generation of El Gamal keys.
– Round 2: Publishing El Gamal encryptions of bids and proving their cor-

rectness.
– Round 3: Joint computation of post,u, alloct,u, and surplust,u as defined

in Section 5. One round of interaction is needed for random exponentiation.
– Round 4: Distributed decryption of post,u, alloct,u, and surplust,u.

These four rounds suffice to determine the outcome of the uniform-price auc-
tion. The discriminatory auction requires one additional round of interaction for
computing pricei. This cannot be integrated in Round 3 because mi needs to be
known for computing pricei. The generalized Vickrey auction requires two addi-
tional rounds due to random exponentiations needed for computing pricei

m,t,u.
In Round 4, bidders send decrypted shares of the outcome to the seller rather

than publishing them immediately. After the seller received all shares, he pub-
lishes them. This ensures that no bidder can quit the protocol prematurely after
learning the outcome, thus leaving other bidders uninformed (see also [Bra03a]).
The same procedure is applied in Round 5 or 6, respectively, with the difference
that the seller does not need to publish shares. As mentioned in Sections 5.2

11 The additional assumption of a random oracle is only made for reasons of efficiency.
Alternatively, we could employ non-interactive zero-knowledge proofs in the common
random string model (see [DDO+01] and references therein). However, it has become
common practice to use secure hash functions like MD5 or SHA-1 as random oracles
in practice.

12 As explained in Section 2, we do not consider the additional overhead caused by
bidders that abort the protocol.
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and 5.3, it suffices to send information on unit prices to the corresponding
bidder.

7 Conclusion

We proposed general cryptographic protocols for three common types of multi-
unit auctions based on distributed homomorphic encryption and concrete imple-
mentations of these protocols using El Gamal cipher. The security of El Gamal
encryption as well as the applied zero-knowledge proofs can be based on the
decisional Diffie-Hellman assumption. Under this assumption, privacy can not
be breached (unless all bidders collude). Our protocols reveal the following in-
formation if there is a tie at the (M + 1)st-highest bid: the number of tied bids
(t) and the number of bids greater than the tie (u). The generalized Vickrey
auction protocol additionally reveals the price of each unit (rather than just the
summed up prices each bidder has to pay) and related tie information. Protocols
only fail when the random exponentiation “accidently” yields a one. Due to the
exponential size of Gq the probability of this event is negligible.

In the discriminatory and generalized Vickrey auction protocol, sanctions or
fines need to be imposed on bidders that quit prematurely because the allocation
and the prices of units are revealed in two consecutive steps. A bidder that learns
that he will not receive a single unit might decide to quit the protocol. However,
his continuing participation is required to compute the prices of units.

Table 1. Protocol Complexity (Computation per Bidder)

Auction Type # of Rounds Exponentiations/Communication

Uniform-Price 4 O(nM2k)

Discriminatory 5 O(nM2k)

Generalized Vickrey 6 O(nM3k)

n: bidders, k: prices/possible bids, M : units to be sold

Table 1 shows the complexity of the proposed protocols (in the random or-
acle model). Round complexity is very low, but communication and compu-
tation complexity is linear in k (rather than logarithmic when using binary
representations of bids). On the other hand, an advantage of the unary vec-
tor representation is that protocols can easily be turned into iterative auction
protocols.

Acknowledgements

This material is based upon work supported by the Deutsche Forschungsgemein-
schaft under grant BR 2312/1-1, by the National Science Foundation under grants
IIS-9800994, ITR IIS-0081246, and ITR IIS-0121678, and a Sloan Fellowship.



Efficient Privacy-Preserving Protocols for Multi-unit Auctions 311

References

[AS02] M. Abe and K. Suzuki. M+1-st price auction using homomorphic encryp-
tion. In Proc. of 5th International Conference on Public Key Cryptography
(PKC), volume 2274 of LNCS, pages 115–224. Springer, 2002.

[Bra02] F. Brandt. Secure and private auctions without auctioneers. Technical Re-
port FKI-245-02, Technical University of Munich, 2002. ISSN 0941-6358.

[Bra03a] F. Brandt. Fully private auctions in a constant number of rounds. In R. N.
Wright, editor, Proc. of 7th FC Conference, volume 2742 of LNCS, pages
223–238. Springer, 2003.

[Bra03b] F. Brandt. Social choice and preference protection - Towards fully private
mechanism design. In N. Nisan, editor, Proc. of 4th ACM Conference on
Electronic Commerce, pages 220–221. ACM Press, 2003.

[BS01] O. Baudron and J. Stern. Non-interactive private auctions. In Proc. of
5th FC Conference, pages 300–313, 2001.

[BS04a] F. Brandt and T. Sandholm. (Im)possibility of unconditionally privacy-
preserving auctions. In C. Sierra and L. Sonenberg, editors, Proc. of 3rd
AAMAS Conference, pages 810–817. ACM Press, 2004.

[BS04b] F. Brandt and T. Sandholm. On correctness and privacy in distributed
mechanisms. In P. Faratin and J. A. Rodriguez-Aguilar, editors, Selected
and revised papers from the 6th AAMAS Workshop on Agent-Mediated
Electronic Commerce (AMEC), LNAI, pages 1–14, 2004.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In Proc. of 14th CRYPTO
Conference, volume 893 of LNCS, pages 174–187. Springer, 1994.

[Cla71] E. H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33,
1971.

[CP92] D. Chaum and T. P. Pedersen. Wallet databases with observers. In Proc. of
12th CRYPTO Conference, volume 740 of LNCS, pages 3.1–3.6. Springer,
1992.

[CSS05] P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auc-
tions. MIT Press, 2005. To appear.

[Dam02] I. Damg̊ard. On Σ-protocols. Lecture Notes, University of Aarhus, De-
partment for Computer Science, 2002.

[DDO+01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sa-
hai. Robust non-interactive zero knowledge. In Proc. of 21th CRYPTO
Conference, volume 2139 of LNCS, pages 566–598. Springer, 2001.

[Di 00] G. Di Crescenzo. Private selective payment protocols. In Proc. of 4th FC
Conference, volume 1962 of LNCS. Springer, 2000.

[El 85] T. El Gamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31:469–
472, 1985.

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to iden-
tification and signature problems. In Proc. of 12th CRYPTO Conference,
LNCS, pages 186–194. Springer, 1987.

[GL90] S. Goldwasser and L. Levin. Fair computation of general functions in
presence of immoral majority. In Proc. of 10th CRYPTO Conference,
volume 537 of LNCS, pages 77–93. Springer, 1990.

[GL02] S. Goldwasser and Y. Lindell. Secure computation without agreement. In
Proc. of 16th International Symposium on Distributed Computing (DISC),
volume 2508 of LNCS, pages 17–32. Springer, 2002.



312 F. Brandt and T. Sandholm

[Gro73] T. Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
[Gro04] J. Groth. Efficient maximal privacy in boardroom voting and anonymous

broadcast. In Proc. of 8th FC Conference, volume 3110 of LNCS, pages
90–104. Springer, 2004.

[JS02] A. Juels and M. Szydlo. A two-server, sealed-bid auction protocol. In
M. Blaze, editor, Proc. of 6th FC Conference, volume 2357 of LNCS.
Springer, 2002.

[Kik01] H. Kikuchi. (M+1)st-price auction protocol. In Proc. of 5th FC Confer-
ence, volume 2339 of LNCS, pages 351–363. Springer, 2001.

[Kle99] P. Klemperer. Auction theory: A guide to the literature. Journal of Eco-
nomic Surveys, 13(3):227–286, 1999.

[Kri02] V. Krishna. Auction Theory. Academic Press, 2002.
[KY02] A. Kiayias and M. Yung. Self-tallying elections and perfect ballot secrecy.

In Proc. of 5th PKC Conference, number 2274 in LNCS, pages 141–158.
Springer, 2002.

[KY03] A. Kiayias and M. Yung. Non-interactive zero-sharing with applications
to private distributed decision making. In Proc. of 7th FC Conference,
volume 2742 of LNCS, pages 303–320. Springer, 2003.

[LAN02] H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey auctions without
threshold trust. In M. Blaze, editor, Proc. of 6th FC Conference, volume
2357 of LNCS. Springer, 2002.

[NPS99] M. Naor, B. Pinkas, and R. Sumner. Privacy preserving auctions and
mechanism design. In Proc. of 1st ACM Conference on E-Commerce,
pages 129–139. ACM Press, 1999.

[Sch91] C. P. Schnorr. Efficient signature generation by smart cards. Journal of
Cryptology, 4(3):161–174, 1991.

[SS01] T. Sandholm and S. Suri. Market clearability. In Proc. of 17th IJCAI,
pages 1145–1151, 2001.

[SY02] K. Suzuki and M. Yokoo. Secure combinatorial auctions by dynamic pro-
gramming with polynomial secret sharing. In Proc. of 6th FC Conference,
volume 2357 of LNCS. Springer, 2002.

[SY03] K. Suzuki and M. Yokoo. Secure generalized Vickrey auction using ho-
momorphic encryption. In Proc. of 7th FC Conference, volume 2742 of
LNCS, pages 239–249. Springer, 2003.

[Ten00] M. Tennenholtz. Some tractable combinatorial auctions. In Proc. of 17th
AAAI Conference, pages 98–103. AAAI Press / The MIT Press, 2000.

[TY98] Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption. In
Proc. of 1st International Workshop on Practice and Theory in Public Key
Cryptography (PKC), volume 1431 of LNCS, pages 117–134. Springer, 1998.

[Vic61] W. Vickrey. Counter speculation, auctions, and competitive sealed tenders.
Journal of Finance, 16(1):8–37, 1961.

[Yao86] A. C. Yao. How to generate and exchange secrets. In Proc. of 27th FOCS
Symposium, pages 162–167. IEEE Computer Society Press, 1986.


	Introduction
	Security Model
	Related Work
	Building Blocks
	Vector Representation
	Order Statistic Subprotocol

	Multi-unit Auction Protocols
	Uniform-Price Auction
	Discriminatory Auction
	Generalized Vickrey Auction

	Implementation Using El Gamal Encryption
	El Gamal Encryption
	Zero-Knowledge Proofs
	Protocol Implementation

	Conclusion
	Acknowledgements
	References

