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ABSTRACT

We demonstrate our game theory-based Texas Hold’em poker
player. To overcome the computational difficulties stem-
ming from Texas Hold’em’s gigantic game tree, our player
uses automated abstraction and real-time equilibrium ap-
proximation. Our player solves the first two rounds of the
game in a large off-line computation, and solves the last two
rounds in a real-time equilibrium approximation. Partici-
pants in the demonstration will be able to compete against
our opponent and experience first-hand the cognitive abili-
ties of our player. Some of the techniques used by our player,
which does not directly incorporate any poker-specific ex-
pert knowledge, include such poker techniques as bluffing,
slow-playing, check-raising, and semi-bluffing, all techniques
normally associated with human play.
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1. INTRODUCTION

In environments with multiple self-interested agents, an
agent’s outcome is affected by actions of the other agents.
Consequently, the optimal action of one agent generally de-
pends on the actions of others. Game theory provides a
normative framework for analyzing such strategic situations.
In particular, game theory provides the notion of an equi-
librium, a strategy profile in which no agent has incentive
to deviate to a different strategy. Thus, it is in an agent’s
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interest to compute equilibria of games in order to play as
well as possible.

Games can be classified as either games of perfect informa-
tion or imperfect information. Chess and Go are examples
of the former, and, until recently, most game playing work in
AT has been on games of this type. To compute an optimal
strategy in a perfect information game, an agent traverses
the game tree and evaluates individual nodes. If the agent
is able to traverse the entire game tree, she simply com-
putes an optimal strategy from the bottom-up, using the
principle of backward induction. This is the main approach
behind minimax with a-B-pruning. These algorithms have
limits, of course, particularly when the game tree is huge,
but extremely effective game-playing agents can be devel-
oped, even when the size of the game tree prohibits complete
search.

Current algorithms for solving perfect information games
do not apply to games of incomplete information. The dis-
tinguishing difference is that the latter are not fully observ-
able: when it is an agent’s turn to move, she does not have
access to all of the information about the world. In such
games, the decision of what to do at a node cannot gener-
ally be optimally made without considering decisions at all
other nodes (including ones on other paths of play).

The sequence form is a compact representation [7, 5, 10] of
a sequential game. For two-person zero-sum games, there is
a natural linear programming formulation based on the se-
quence form that is polynomial in the size of the game tree.
Thus, reasonable-sized two-person games can be solved us-
ing this method [10, 5, 6]. However, this approach still yields
enormous (unsolvable) optimization problems for many real-
world games, most notably poker. In this research we apply
automated abstraction techniques for finding smaller, strate-
gically similar games for which the equilibrium computation
is faster. The resulting strategies can then be used as ap-
proximate solutions to the original game. We have chosen
poker as the first application of our equilibrium approxima-
tion techniques.

2. POKER

Poker is an enormously popular card game played around
the world. The 2005 World Series of Poker featured more
than $100 million dollars in prize money in several tourna-
ments. Increasingly, poker players compete in online poker
rooms, and television stations regularly broadcast poker tour-
naments.



Due to the uncertainty stemming from opponents’ cards,
opponents’ future actions, and chance moves, poker has been
identified as an important research area in AI [2]. Poker has
been a popular subject in the game theory literature since
the field’s founding, but manual equilibrium analysis has
been limited to extremely small games. Very recently, there
has been considerable progress in tacking larger games. In a
recent paper [4], we developed automated abstraction tech-
niques, and applied them in computing optimal strategies for
Rhode Island Hold’em poker [9], a smaller version of Texas
Hold’em that is still over four orders of magnitude larger
than previously solved poker games.

21 TexasHold’em

Texas Hold’em is perhaps the most popular version of
poker. It is the game that is used to determine the world
champion at the annual World Series of Poker. In the demon-
stration we will be playing heads-up, in which there are just 2
players (in this case, a human player versus our player). The
players alternate turns being player 1 and player 2. Player 1
is considered the small blind, and player 2 is the large blind.
Before any cards are dealt, the small blind contributes one
chip to the pot, and the large blind contributes two chips
to the pot. Both players then receive two cards each, face
down; these are known as the hole cards.

After receiving the hole cards, the players take part in one
betting round. The small blind goes first. Each player may
check or bet if no bets have been placed. If a bet has been
placed, then the player may fold (thus forfeiting the game),
call (adding chips to the pot equal to the last player’s bet),
or raise (calling the current bet and making an additional
bet). In Texas Hold’em, the players are usually limited to
four raises each per betting round. In this betting round,
the bets are in increments of two chips.

After the betting round, three community cards are dealt
face up. These cards are called the flop. Another betting
round take places at this point, with bets equal to two chips.

Another community card is dealt face up. This is called
the turn card. Another betting round takes place at this
point, with bets equal to four chips.

A final community card is dealt face up. This is called the
river card. Another betting round takes place at this point,
with bets equal to four chips.

If neither player folds, then the showdown takes place.
Using the seven available cards (the two hole cards and five
community cards), the players form their best 5-card poker
hands. The player who has the best 5-card poker hand takes
the pot. In the event of a draw, the pot is split evenly.

3. TECHNICAL OVERVIEW

The main contribution of our work is the application of au-
tomated abstraction techniques to a real-world game. Pre-
vious work has been limited to much smaller games. In this
section we give a brief overview of our development of a
Texas Hold’em poker player. A detailed description of our
player is available in a separate paper [3]. There are two
types of abstraction employed in our approach: state-space
abstraction and round-based abstraction.

In our previous work [4] we developed techniques for au-
tomatically reducing the size of a game tree (a form of state-
space abstraction) in order to make equilibrium-finding al-
gorithms practical. We apply our algorithm, GameShrink,
to the various game trees we encounter in the computation

of strategies.

In addition to state-space abstraction, we also employ
round-based abstraction. In our approach, we first solve for
an approximate equilibrium for a truncated game involving
only the first two rounds. We do this by solving a large linear
program in an off-line computation. After the turn card ap-
pears, our player computes updated card probabilities based
on observed behavior, and then computes an equilibrium
approximation for the third and fourth rounds in real-time.
The abstractions we employ in computing this equilibrium
approximation are dynamically determined based on the in-
formation (i.e. community cards) revealed so far in the
game. This allows our computation to focus on the specific
portion of the game tree relevant to the current hand.

Round-based abstraction has been used in previous poker
work [9, 1]. The primary difference with our approach is
the fact that strategies are computed dynamically, using ob-
served information to achieve a closer approximation. Fur-
thermore, the sizes of the individual models are larger. For
example, optimal strategies for pre-flop Texas Hold’em have
been computed [8]. This approach requires modelling 169
distinct hands. Our model not only considers 169 hands in
the first round, but also 2465 hands in the second round.
Solving this model requires 18.8 GB of RAM and takes 7.1
days. In addition, our abstractions are automatically com-
puted, rather than manually designed by an expert.

Some features of our computed strategies include poker
techniques such as bluffing, slow-playing, check-raising, and
semi-bluffing, all techniques normally associated with hu-
man play. In this demonstration, participants will compete
with our opponent and will experience these strategies first-
hand.
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