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Abstract

Incomplete decision algorithms can often solve
larger problem instances than complete ones. The
drawback is that one does not know whether the
algorithm will finish soon, later, or never. This
paper presents a general decision-theoretic method
for optimally terminating such algorithms. The
stopping policy is computed based on a prior prob-
ability of the answer, a payoff model describing
the value that different probability estimates would
provide at different times, and the algorithm’s run-
time distribution. We present a linear-time algo-
rithm for determining the optimal stopping policy
given a finite cap on the number of algorithm steps.
We exemplify this in a manufacturing scenario with
a 3-satisfiability problem. To increase accuracy,
the initial satisfiability probability and the run-time
distribution are conditioned on features of the in-
stance. The expectation of the result at each future
time step is computed using Bayesian updating. We
then extend the framework to settings where no ex-
ogenous cap is given on the number of algorithm
steps. The method also provides a normative basis
for algorithm selection. Finally, our method can be
used to terminate/select complete algorithms opti-
mally as well.*-?

Introduction

Incomplete algorithms are important because they can of-
ten solve significantly larger problem instances than complete
algorithms. Commonly the user of an incomplete algorithm
initiates its execution, and after a while gets tired of waiting
for a solution. She may be tempted to terminate the algo-
rithm. At the same time she knows that the algorithm might
finish, and that this might occur even in the very next step.
Should she terminate the algorithm?

This paper presents a method for optimally determining
when the algorithm should be terminated if it has not found a
solution. Our decision-theoretic method computes the value
of the information that different steps of running the incom-
plete algorithm are likely to provide, and uses that informa-
tion to decide when to terminate the algorithm.

The first key observation is that incomplete algorithms are
iterative refinement algorithms and approximation algorithms
in that over time they implicitly refine a probability estimate
that a solution exists. Let us define the following symbols:

SOL; ="Solution found by timet” (so, if a solution is
found at timet, thenSOLy = 1 forall ¢ > t), and

NOSOL; ="No solution found by time”.

The iterative refinement algorithm emerges when we realize
that the probability of the answer being Y decreases with the
number of steps that the algorithm has executed (unless the
algorithm halts which guarantees that the answer is Y). This
probability,p(Y|NOSOL;), can be computed using a statis-
tical performance profilep(SOL:|Y"), of the algorithm, i.e.,

the probability of finding a solution by time given that a
solution exists. The performance profile can be constructed
from prior runs of the algorithm as we will describe.

Decision problemsire problems where the answer is either \va se 3-satisfiability (3SAT) as our example decision

yes (Y) orno (N). Such problems are central to computer i ypjem for the following reasons among others:
ence and ubiquitous in the world. decision algorithms an

algorithm that determines the answer to such a problem. A e Incomplete algorithms for 3SAT have recently been
complete decision algorithris a decision algorithm that al- shown to solve problem instances that are reduced to
ways gives the answer in finite time. Amcomplete decision 3SAT from other problems (such as plann[dg]) more
algorithmis a decision algorithm that never finishes if the an- efficiently than algorithms that are tailored for solving
swer is N, and may or may not finish if the answer is Y. So, if those other problems directly.

such an algorithm finishes, the answer is Y. ¢ Incomplete algorithms for 3SAIB, 24 scale up to sig-

nificantly larger problem instances than even the best
current complete algorithni8, 23. Therefore, incom-
plete algorithms for 3SAT are crucial from a practical
perspective, and it is important to be able to terminate
them efficiently.

1A short, very tentative version of this paper appeared in a work-
shop([22].

2This material is based upon work supported by the NSF un-
der CAREER Award IRI-9703122, Grant 11S-9800994, ITR IIS-
0081246, and ITR 11S-0121678.



e 3SAT is perhaps the most central decision problem in found) decreases with time because the agent misses the
computer science. For one, it was the first problemto be  opportunities of using the answer earlier in the agent’s
proven\P-complete. choice of what to do in the world.

3SAT is the decision problem of whether a satisfying truth e Further computation adds to the computational cost.
assignment exists for variables in a 3CNF formula. A 3CNF ¢ the geliberation controller has let the algorithm exe-
formula is a conjunct of clauses where each clause is a dis- ¢ te past the optimal termination time, it can be optimal
junct of 3 literals. A literal is a negated or non-negated vari- = 4 gt it execute even further since the losses incurred so
able. The formula is satisfiable—corresponding to answer Y 5 have become sunk cost.

in our setting—if the variables can be assigned Boolean val- } . -
ues so that the formula evaluates to true. For example, the ® In some cases, the agent's expected payoff is maximized

formula(vy V va Vus) A (v1 V us Vug) A (vg Vg Vog) is sat- by_never _terminating_the algorithm (unless_ the algorithm
isfiable by the truth assignment = true, vs = true, vy = finishes, i.e., determines that the answer is Y).
true, vy = false (among others). It turns out that all of these factors can be soundly taken

The paper is organized as follows. Section 2 derives ouinto account. The method that we present does this in a
method for optimally terminating incomplete decision algo- Bayesian framework and leads to an optimal termination de-
rithms given a finite cap on the number of possible algorith-cision. Specifically, the problem is that of finding an optimal
mic steps. Section 3 presents an example of how this methqggblicy for the deliberation controller, i.e., deciding what the
can be used. Section 4 generalizes the method to settinggent should do in each of theax nodes in Figure 1.
where no cap on the possible number of steps is exogenously
given. Section 5 summarizes related research. Section 6 dis- () ecison e dtberaton conoer erminato
cusses pragmatics and alternative uses of the method. @ ove of the incomplete algorithm

t=t

un

2 Method for terminating decision algorithms
This section presents a method for optimally terminating an™ e = =2 = = = =

incomplete decision algorithm. The incomplete algorithm s = wNTWUEﬁNOS%wNTWUE NOSOLsECONT'NUE =
used to update the probability estimate of the answer beings™®  |sou sTOP|soL, STOP  |SOls 4 |STOP  |SOLy

Y. Based on a run-time distribution of the algorithm, an agent

can anticipate how this estimate will change as more time igigure 1: Deliberation controller's decision tree. The bold lines
allocated to the algorithm. The agent can also anticipate itshow an example policy wher~e the deliberation controller will termi-
expected payoff in the real world given that it will act basednate the algorithm at time = ¢ = 1 if the algorithm has not found
on the probability estimate available at the time of action (thea solution. The gray area arifl will be discussed in Section 4.
probability will be 1 if the algorithm happens to find a so-
lution). With these two models, the agent can calculate the,

optimal time to terminate the algorithm.

The rest of this section presents a method for determining
n optimal termination policy in linear time. To act according
S : ot to the policy, the deliberation controller simply remembers

Terminating optimally seems difficult because all of the e first time when it is better to stop than to continue, and if
following concerns have to be taken into account: the algorithm has not finished by that time, the deliberation
¢ Further computation adds value because it can cause tlwntroller terminates the algorithm. If the algorithm finishes
algorithm to find a solution. This is nontrivial to analyze before that, it is obviously not worth continuing.
because the probability of finding a solution at a given o i -
future time step changes based on how many unsuccesé-1  Conditional performance profiles: Probability
ful steps the algorithm has executed. For example, at updates using a run-time distribution

step 0, step 905 may look unprofitable while at step 70870 determine when to terminate, the deliberation controller
step 905 may well look profitable. Alternatively, at step needs to know how the probability of finding a solution by
0, step 905 may look profitable while at step 708, stepany given time changes based on how many steps the algo-
905 may look unprofitable. rithm has executed so far without finding a solution. kgt

e Further computation adds value because it refines thandr, be arbitrary times such that < 7,. We are interested
probability that a solution exists even if the algorithm in determining the quantity(SOL.,[NOSOL;,). Trivially,
does not terminate. The probability that a solution exists p(SOL.,|NOSOL,,) =1 — p(NOSOL,,|NOSOL.,) @
decreases as the algorithm takes unsuccessful steps. The right hand side can be solved using the definition of con-

o As this probability estimate gets refined, it can be used tdlitional probability to get
make future termination/continuation decisions. There- p(NOSOL,,INOSOL.,) = p(NOSOL., A NOSOL,)
fore, these decisions can be made with better informa- p(NOSOLx,)
tion than what is available at the outset. The fact thaBecause(NOSOL,, ANOSOL;,) = p(NOSOL,), this
such new information is valuable due to this reason iscan be simplified to
yet another motivation to execute the algorithm further. p(NOSOL.,|NOSOL,,) =

e The payoff from a given probability estimate that a so-which can be solved using
lution exists (this probability is 1 if a solution has been p(NOSOL,) = p(Y)p(NOSOL,|Y) + p(N)p(NOSOL,|N) (4)

@

p(NOSOL,,)

p(NOSOL.,) @)



Using the fact thatp(N) = 1 — p(Y) and the fact wheren(t)is the computation cost. If there is a fixed unit cost
that the algorithm never finishes if no solution exists, i.e.,of computationg: thenh(t) = ¢ .t. Our termination
. . i ; kcomps : comp U
p(NOSOL|N) = 1, the above equation can be rewritten:  a|gorithm applies for general, i.e., it does not assume that
p(NOSOL;) = p(Y)p(NOSOL.|Y) +1 — p(Y) (5) the computation cost is independent of the real-world payoff.

The termination algorithm also needs to know the chanc%
that the answer is Y given that no solution has been found by’
stept. This can be determined using Bayes rule:

p(Y)p(NOSOL.|Y)

3 Algorithm for computing an optimal
termination policy

Put together, the inputs to the algorithm that computes the

p(YINOSOLy) SO P(NOSOLY) + p(N)p(NOSOL.N) optimal termination policy are
p(Y)p(NOSOL:|Y) e the prior probability that a solution exiss(Y),
T p(Y)p(NOSOL.|Y) + p(N) . e
B (¥ )p(NOSOL,[Y) o ¢ the run-time distribution in the form @f( SOL,|Y"), and
T p(YV)p(NOSOL(Y) + 1 — p(Y) o the payoff modelr(z, py, t).
where

% Conceptually, the stop/continue decisions are solved start-
ing from the end of the decision tree (Figure 1), and moving
andp(Y|NOSOL,) in constant time if it knows)(Y') and step by step toward the root. For now, say that the tree ends
p(SOL:|Y). The quantityp(Y') is simply the agent's prior at stepI” (we will relax this assumption in Section 4). This
probability that the answer is Y, i.e., the agent’s belief befored0€s not mean that the algorithm is terminated at stephis

it has executed any steps of the algorithm. In Section 3 wé€ction describes how the termination time is computed, and
present an example that demonstrates p¢¥) can be ob-  that time is usually before time. _ _

tained using features of the problem instance that are quick At every decision node of the deliberation controller, the
to measure. The quantitf SOL,|Y) is obtained from the expected payoff from stopping is computed, and so is the ex-
statistical run-time distribution of the algorithm. Specifically, Pecteéd payoff from continuing. The expected payoff from
it can be determined empirically off-line by running the al- continuing at decision nodedepends on the solution that was
gorithm on satisfiable instances (similar to the instance tha&cquired for decision node+ 1. At every decision node,
needs to be solved in the on-line situation), and seeing othe dellbgratlon controller should let the qlggnthm continue if
what fraction of them the algorithm has found a solution by2nd only if the expected payoff from continuing is higher than
time ¢. Alternatively,p(SOL.|Y") could be determined from that of stopping. Algorithm 2.1 presents the pseudo-code for

an analytical model of the run-time distribution. The genera-computing this optimal termination policy. The functioft)
tion of p(SOL,|Y') will be discussed further in Sec. 3 and 6. Solves the expected value of the subtree rooted at the deliber-

ation controller’'s decision node The policy can be solved
by making the calb(0). The optimal decision for each deci-

. . . . . 4 .
To determine when to terminate, the deliberation controller °"! nodey, is stored indecision(t]," and the time when the

also needs to know how the agent would use the infOrmmioﬁieliberati~0n controller should first terminate the algorithm is
that the algorithm provides in the real world. This dependsStore<j nt.
on the application. However, for the purposes of the termif'gm_ithm 2.1 (Compute an optimal termination policy)
nation decision, this information can be represented in a do*"""®

main independent way using a payoff function. Let us denote

P(NOSOL,|Y) = 1 — p(SOL,|Y)
So, the agent can compute bothSOL,,|NOSOL,)

2.2 The payoff model

ift=0
psor = 0/* Chance that a solution was found in this step */
msor = 0/* Payoff of that solution */

by mworia(z, py , t) the agents real-world payoff if the actual
outcome isx, z € {Y, N}, the agent’s estimate—after run-
ning the algorithm fot steps—of the answer being Y jis-,
and the agent acts according to this estimate attifoelater
if the agent finds that more beneficiél)The agent’s choice
of a real-world action depends pg andt, but the real-world
payoff, 7,14, Of that action depends on the true posteriori
and when the action is taken,In Section 3 we present an ex-
ample application and illustrate how thg,,.;4 function can
be constructed.

The agent's payoffs(x, py,t), takes into account both
the real-world payoffs.,..1q(x, py,t), and the computation
cost. If they are independent, we can write

(2, py,t) = Twortd(T, Py, t) — h(t) (8)

else
psor. = p(SOL{NOSOL;_1)
msor = m(1,1,)
py =p(YINOSOLy)
E[n|STOP] = psoL - TsoL
+(1—psor)(py - m(L,py, 1) + (1 - py) - 7(0, py, 1))
if t = T [* End of the tree */
decision[t] = STOP
t=t
return E[7| ST O P] I* recursion bottoms here */
else
E[r|CONTINUE] = psor - msor + (1 —psor) - v(t + 1)
I* recursion occurs above */
if E[x|STOP] > E[x|CONTINUE]
decision[t] = STOP
t=t
return E[7|STOP]

3We measure real time in the same units as computation time. “*Note that in classical stopping problems, at every time step af-
In other words, one unit of real time is the time it takes to executeter the first optimal stopping point it is better to stop. Here that is
one step of the algorithm. This is without loss of generality becauseot the case, and the algorithm determines a set of stopping points
the payoff function can be rescaled (ontiimension) based on the (those times for which decision[t] = ST O P) which need not be

speed of the machine on which the algorithm is executed.

consecutive.



Y
else 30,000

. _ pY
i‘iﬁileggT]{joggZ\/Tég]UE py > 05-t/60,000, and t< 15,000 ety

The algorithm runs i (7') time and space. The quantities Ty torineh N
p(SOL,| NOSOL,_1) andp(Y|NOSOL,) are computed in Tov 30,000
constant time from the inputgY’) andp(SOL:|Y") using the y
formulas derived in Sec. 2.1. g t

The termination policy, stored idecision[t], is optimal Estimate| p,  <05-t/60,000, and 15,000
even if, for some reason, the algorithm has been executed past O Terminate prematurely (O Reality
the first optimal termination point, and the losses so far have N
become sunk cost. At that point it may be optimal to execute 1-pY !
further steps, or it may not. The termination policy gives the
optimal stop/continue decisions from any step forward, even v 30,000
if the current step is past the first optimal stopping time. t> 15,000

— - Realit
Machining cannot be terminated Y

before time 30,000

i

3 Example of how to use the method

We demonstrate our method in the context of the following
hypothetical problem. The question is whether a manufactu
ing project should be terminated before completion in orde
to avoid useless costs. A company is offered 60,000 if it pro-

duces an item by time 30,000. If the project does not meet

that deadline, the contract becomes void: nothing is paid, and . (v .0 =
the project need not be finished. The cost of the project is 1 {

-30,000
1-pY

Figure 2:The tree represents the company’s optimal decisions and
rpayof'fs given an estimatg-. The real posterior eventis Y or N.

p - : 30,000—¢
60,000 — 30,000 = 30,000 if py > 2%0%0=* + < 15,000

B 30,000—t
—t if py < 25:9005¢ 4 < 15,000

60, 000 — 30, 000 = 30,000 if ¢ > 15, 000.

per time unit (again, the length of the time unit is the time
it takes to execute one algorithm step). If the project can be
completed, it can be completed exactly at time 30,000, but Tworta(N, py  £) =
not before. Work on the project starts and the costs begin to , 30,000t

{ 0 — 30,000 = —30,000 if py > 3% ,t < 15,000

cumulate. ¢ it py < 200002t 4 Z 45" 000
The last phase of the project is machining, where the key 0— 30,000 = —30,000 if¢> 15,000
guestion is: can the machining be scheduled to begin at time
15,000 and to finish by time 30,0007 If not, obviously the Let the computation cost beper time unit, so
sooner during the earlier phases the project is terminated, the 1
better. Also, one can see that if the machining can be suc- 7(z,py,t) = Tworta(x, py,t) — =t
cessfully scheduled, it is worth completing the project. If 2
the project is prematurely terminated, it cannot be restarted. This completes the payoff model part of the example. Next
Once the machining phase starts, it cannot be terminated untite will discuss how to construp{Y") andp(SOL,|Y") which
time 30,000. are the other two inputs to the algorithm that computes the
Let us call the possible answers to this decision problenoptimal termination policy.
Y = "Machining can be scheduled to begin at 15,000 and . .
finish at 30,000” andV = "Machining cannot be scheduled 3:2 Constructing the prior p(Y")
to begin at 15,000 and finish at 30,000". We assume that th®ften anytime algorithms have a mandatory phase during
machining scheduling decision problem instance is reducedhich a rough solution to the problem is generated. This

to 3SAT, soY = “satisfiable” andV = “not satisfiable”. rough solution is then iteratively improved in an anytime re-
finement phase. The mandatory phase can be viewed as a
3.1 Payoff modelr non-interruptible setup phase for the actual refinement algo-

Figure 2 illustrates the company’s optimal decisions in the ex!ithm. For example in the traveling salesman problem, the
ample described above. The,,..4-values can be calculated mandatory phase could be a greedy generation of an initial
from the company agent’s situation in its environment. Fortour, and the refinement phase could be local search based on
example, if the true answer 1§ and the probability estimate SWapping two cities at a time in an ordered list of the cities
of the answer beind is py, the calculation is as follows. O Visit. In 3SAT, our mandatory phase consists of generating
Since the answer i¥’, the project can be completed, and @n initial estimate of the sat|sf|ab|llt_y probability. For_thls we
the company will get a payoff (its payment minus its cost)US€ three feat_ures of the problem instance as predictors: the
of 60, 000 — 30,000 = 30,000 if the project is not terminated Number of variables,, the standarg = ¢ predictor(2, 19
prematurely, and a payoff (cost so far)-ef if the project is (Wherecsls the number of clauses), and a newer predicior,
terminated prematurely. The project will not be prematurelySe€l23].

terminated if it is already too late to terminate it by definition 55 — cvariables [POSi — egi|, wherepos; is the number

(t > 15,000) or the expected value of continuing is higher of non-negated occurrences of variabie the 3SAT instance, and
than that of terminating, i.epy - 60,000 > 30,000 — t. So, neg; is the number of negated occurrences of varialifeit.



We generated 3CNF formulas using the most commorof ¢, v, 8, and A. This curve could be used for interpola-
method[19] for constructing hard 3SAT instances: for every tion, but especially for extrapolation for largefor which no
clause, pick three variables randomly disallowing duplicatescurrent complete satisfiability determining algorithms run in
and then negate each variable separately with proba@lﬁ‘ty reasonable time.

Figure 3 shows the contours of the initial satisfiability ~As mentioned above, the problem instance at hand happens
probability,p(Y). Say that in our example the 3SAT instance to havev = 150, 8 = 4.3, andA = 2.77. We constructed the
happens to have the following featuras:= 150, ¢ = 645, performance profile by looking at prior data with the same
(s03 = &5 ~ 4.3), andA = 2.77.7 Thus the initial satisfia- andc. Of these runs we chose the 20 that had thewlosest
bility probability p(Y') = 0.454, see Figure 3 right. to 2.77. From the recorded number of BREAKOUT algo-

rithm steps needed for each of these runs, we constructed the

oo /%Jﬂ Y/ JM performance profile(SOL,|Y'), Figure 4. This is merely an
o R ) example. In real application one would like to use more than
as| 99 a5 o 20 training instances to constrygtSOL,|Y).
5] s 3 5 P (SOL; | V)
225 “3(” A 25 1
2] / 2 09
1.5+ J/\/\ 1.5+ 08
os] os]
.0 : : : : ! VO : : : : ! 0.6
35 4 4.5 5 55 6 35 4 4.5 5 55 6 05 f
Figure 3: Contours of the initial (prior) satBisfiabiIity proba- 04
bility p(Y"). Left: v = 50. Right: v = 150. 03 (
0.2
Often the mandatory phase is fast compared to the refine- ot /
ment phase. The initial satisfiability probabiligyY"), can S s ssssssss
be computed irO(c + v) time. Each step of the refinement NS8888588¢8"

algorithm also take®)(c + v) time. Thus the time of the Figure 4:Probability of finding a satisfying solution by algo-
mandatory phase is so negligible compared to the refinemenithm stept given that the formula is satisfiable. Note that

phase that we ignore it. BREAKOUT is incomplete, so the curve may never reach 1.
3.3 Constructing the run-time distribution 3.4 Computing the optimal termination policy
p(SOL4|Y) Now we have all the inputs in hand for computing the op-

. P . timal termination policy. It is obvious that it is not worth
We used the incomplete BREAKOUT satisfiability determin computing beyond time 15,000 since after that the company

ing algorithm[2(] as the decision algorithm. If the formula is | top th ‘oct. Theref ill set th d
not satisfiable, the algorithm never finishes, but if the formulac‘;"?hnodOlr.]é’er ?'op etprcl)lje§ ' ere orte, W‘ta th) set 1560‘(3)%
is satisfiable, the algorithm may finish proving satisﬁabilityO € deliberation controflers decision tree o be at 1o, Uou,

T - o i.e., T = 15,000. Algorithm 2.1 returnsg = 3,852, and
\(,)Vritlg r;;%/h;;t?;frgt;iny(doeltjértr?qmlr?g tal?go?:titr?]o)d could be usedv(o) = 1314.399350. So, the deliberation controller should

One way of representing the algorithm’s run-time distriby-[€"Minate the algorithm at time 3,852 if the algorithm has not

T : G2 ; finished by then. The company’s overall expected payoff is
tion is p(SOL.|Y). This probability is parameterized by the . . ;
algorithm stept, and by the problem instance featuresg, 1314.399350 given that the project has been started. This

andA. We gathered statistics for 50, 100, and 150 variablesends the example.
for 4 = 0.1,0.2,...,9.0. At each such point, we generated . . . ,

500 random formulas, determined their satisfiability using & Trur_lc_atlng the deliberation controller's

complete algorithni23] (which is similar to that if3]), and decision tree

measured.th.e value d&f. We ran the BREAKOUT algorithm  aq presented, Algorithm 2.1 requires as input a tide-

on the satisfiable formulas and recorded its number of steP§ond which it is certainly not worth computing. This time

If BREAKOUT had not found a solution by 20,000 steps, We may be derivable from the payoff model (as in our exam-

aborted the run and recorded an unsuccessful result. Idealb1e where there is a hard deadline at some point). In other
one could fita curve on the data fofSOL.|Y’) as a function  gettings, one might know, based on theoretical or statistical

Tpresented estimation of satisfiability probability is based:?fi?;]ngzt:,?&' f}zgthg]de iwg%r:ge(}z ra(lgorzlltjf;nrg ;/\rllltl)fn;versfllrr]nsh
on a statistical analysis of 3SAT instances from this distribution. 9 4p

Therefore, it is not necessarily accurate for instances from a differerfeither case, our method of determining an optimal stopping
distribution—e.g. reduced from a different problem. time¢ < T can be used.

"Given these feature values, one can predict that this problerQl 1 A tive t inat
instance is likely to be hark23. : conservative terminator

®A statistical method for computing this value and the contoursin yet other settings, neither of these two approaches enables
of Figure 3 is presented ii23]. one to deduce a finite upper boufd In such settings it is



sometimes possible tendogenouslyletermineT” using the  can never be sure that the gudsss large enough—even if
payoff model and run-time distribution together. Specifically, Algorithm 2.1 suggests stopping befdfe

one can try increasing values 6f starting from 0. At each

such choice ofl’, one can optimistically assume that from 4.3 Never terminating the algorithm

time T on, p(SOL|Y) reaches its asymptoid SOL ., |Y . .
in a single s(tep, ilf|e-p)(SOLT+1|Y) _ p(SOF;iOIY).g' If? The fact that in some cases a gap exists between the conser-

under this optimistic assumption, it seems better to stop afativé and the overeager terminator might not be a facet of

time T than to continue for one step (based on an expecte! artifacts, but inherent. The terminators attempt to find

payoff calculation), then it is certainly better to stop than to@ Stopping time, but if no finite pptimal Stoppif‘g time _exi_st;,
continue. Incorporating this test into Algorithm 2.1 is easy©"€ would not expect any algorithm to determine that in finite

(the test “ift — T™ is replaced with this test). Sometimes this time (for one, it would have to read an infinite number of val-

optimistic test leads to a situation where it looks like the tree/€S from the run-time distribution). Indeed, in some settings

cannot be truncated at that stBpvhile it really could. itis best to never stop. For example, if the agent's payoff does
not decrease with time, there is no reason to stop.

4.2 An overeager terminator The following is a less trivial example. Let the agent get

Conversely, itis possible to construct a terminator that alway§2Y0ff Tvosor () = —t if it decides to stop the algorithm at

recommends termination when the algorithm should be ter-'metw'thom having f(_)l,!nc_i asolutlon._ Let th? agent's payoff

minated, but sometimes also recommends termination wheR€7soz(f) = 1000 —tifitfinds a solution attime. In other

it should not. Let us denote by the first step when higher words, the payoff decreases linearly with time. (This is realis-

d ; < fic, for example, if the agent’s situation in the world does not
expected payoff would be obtained by stopping the algorithr}/® Amp:
than by continuing (this definition is based on the untruncate¢Nange with time but the agent has to pay a constant amount

(infinitely deep) decision tree (Fig. 1)). We showed that if one or each CPU-cycIe.)' Le(SOLy 4 ‘NOS.OLf) - This.
knows (.g., by guessing) a finifesuch thafl” > ¢*, one can corresponds to a setting where the run-time of the algorithm,
computet* t;y truncating the tree &: - treated as a random variable, is exponentially distributed. Be-

. causep(SOLy4+1|NOSOLy,) is a constant and the payoff de-
Theorem 4.1 For any finite T" such thatT" > ¢*, Algo-  creases by a constant at every step, the decision problem will
rithm 2.1 returnst™. look exactly the same to the deliberation controller in every
subtree of the decision tree. Thereforeqifs high enough

so that the deliberation controller receives higher expected

puted by maximizing over the expected values of the twoDayOfr by choosm_g CO.NTINUE at time 0 than by choos-

branches—STOP and CONTINUE—so removing one of thd"9 STOP, the deliberation controller will receive higher ex-

branches cannot increas@’). Therefore, the expected value PECted payoff by choosing CONTINUE at every timethan

of the continuation option at stép— 1 cannot have increased by choosing STOP.

(and the value of the stopping option is the same),(§6—1)

cannot have increased. The same inductive argument is ap- Related research, briefly

plied tov(T — 2), and so on backward in the tree. Therefore, o )

the expected payoff from continuing at stépcan only de- Our approach has arich mtellectual _backgrour_ld. Anytime al-

crease or stay the same. Thus, if Algorithm 2.1 would suggegi0rithms have been studied extensively, albeit mainly in the

terminating by timet* originally (f = ¢*), it certainly would ~ More general setting of optimization problems (€.5.9, 13,

not suggest continuing beyord in this new setting where 16,28). A variety of incomplete decision algorithms have

the tree was truncated &t been designed, especially for satisfiability (el8.,6, 24),
What remains to be proven is that the truncatioff @an- and the alg_orithms tend to scale orders of magnitude bet-

not cause Algorithm 2.1 to change its termination prescripi€r than their complete counterparts. Considerable research

tion to an earlier time than its original prescriptidn= t*. has also been done on run-time distributions of algorithms

The following observation proves this: the value of the con-(€-9-.[4,5,8,10,1D).

tinuation branch at step® will not propagate earlier in the ~ Random restart algorithms are another family of incom-

tree because at decision notfethe algorithm chooses to plete algorithms that has received significant attention re-

stop rather than to continue (because stopping originally hagently (e.g.[6,7, 19). Our method can be used to optimally

higher expected payoff and truncation cannot increase the eferminate a decision algorithm, even if that algorithm inter-

pected payoff of continuing). = nally uses random restarts.

. . An approach related to ours has been presented for theorem
The claimis not totally obvious because due to such truncae/ PP b

Proof: Truncating the tree af' corresponds to removing the
continuation option at steff’. The quantityv(T) is com-

. Y . roving [11]. Finally, our method was inspired by seminal
tion, t'he valuga of continuing the computation can seem lowe ork on the value of informatiofi4, 18, 21.

than it really is. In fact, if one incorrectly guesse% &o that

T < t*, Algorithm 2.1 in some cases suggests stopping at .

some time beford” although continuing would be the better 6 Conclusions and future research

choice. An interesting consequence of this is that any ap-

; : Incomplete decision algorithms can often solve larger prob-
Mlmply guessds (e.g., by a doubling scheme) lem instances than complete algorithms. The difficulty is that

°Some incomplete algorithms hapéSOL . |Y) < 1. if the algorithm has not finished, one does not know whether



it will finish soon, later, or never. We presented a decision-
theoretic method for optimally terminating incomplete deci-
sion algorithms. With each execution step, such algorithmfs]
implicitly refine the probability that the answer is yes. Our
terminator determines an optimal stopping policy based on a
prior probability of the answer being yes, a payoff model de-
scribing the value that different probability estimates would
provide at different times, and a statistical run-time distribu-[4]
tion of the algorithm.

In many settings it is unrealistic to assume that run-time
statistics exist for large humbers of problem instances of th?
scale of the real problem to be solved. If the real prob- 5]
lem takes so long that sophisticated termination is needed,
then collecting training data would most likely be prohibitive.
Therefore, we advocate collecting training data on smaller
problem instances, building an analytical model of the run{g]
time distribution as a function of problem instance features
(such as the order parameters used in this paper), and using
the analytical extrapolated distribution as the run-time distri-
bution in our termination method. This also allows terminat-
ing a run on an instance whose features are not identical, blif]
similar, to the features of instances for which statistical run-
time information has been collected. [

In many incomplete decision algorithms, each computation
step is short. In such settings, our (linear-time) deliberation
control method might use more time than the incomplete al-
gorithm itself. This can be avoided by considering a number
of computing steps as an atomic step. (However, the coarsé?l
deliberation control might not lead to exactly accurate termi-
nation.) This approach also gives the conservative terminator
a better chance to terminate the algorithm. [10]

It is easy to incorporate risk attitudes into our method (as-
suming that an agent’s utility is just a function of the agent’s
payoff, which itself depends on multiple factors as we dis-
cussed). This can be done by replacing the agent's payoff
functionr in the model with the agent’s utility functiom(z). ~ [11]

Our method can be used to optimally select an algorithm.
For each candidate algorithm, the expected pay¢df) is
computed. This is the expected payoff under the optimal stop-
ping policy. The algorithm with highest(0) is chosen. 17]

Our method can also be used to optimally terminate com-
plete algorithms. This is important when the complete algo-
rithm can have a prohibitively long run time.

Future research includes applying our termination method
to the control of decision algorithms in other domains, and
extending our method beyond decision problems. [13]
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