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Abstract

Incomplete decision algorithms can often solve
larger problem instances than complete ones. The
drawback is that one does not know whether the
algorithm will finish soon, later, or never. This
paper presents a general decision-theoretic method
for optimally terminating such algorithms. The
stopping policy is computed based on a prior prob-
ability of the answer, a payoff model describing
the value that different probability estimates would
provide at different times, and the algorithm’s run-
time distribution. We present a linear-time algo-
rithm for determining the optimal stopping policy
given a finite cap on the number of algorithm steps.
We exemplify this in a manufacturing scenario with
a 3-satisfiability problem. To increase accuracy,
the initial satisfiability probability and the run-time
distribution are conditioned on features of the in-
stance. The expectation of the result at each future
time step is computed using Bayesian updating. We
then extend the framework to settings where no ex-
ogenous cap is given on the number of algorithm
steps. The method also provides a normative basis
for algorithm selection. Finally, our method can be
used to terminate/select complete algorithms opti-
mally as well.1,2

1 Introduction
Decision problemsare problems where the answer is either
yes (Y) or no (N). Such problems are central to computer sci-
ence and ubiquitous in the world. Adecision algorithmis an
algorithm that determines the answer to such a problem. A
complete decision algorithmis a decision algorithm that al-
ways gives the answer in finite time. Anincomplete decision
algorithmis a decision algorithm that never finishes if the an-
swer is N, and may or may not finish if the answer is Y. So, if
such an algorithm finishes, the answer is Y.

1A short, very tentative version of this paper appeared in a work-
shop[22].

2This material is based upon work supported by the NSF un-
der CAREER Award IRI-9703122, Grant IIS-9800994, ITR IIS-
0081246, and ITR IIS-0121678.

Incomplete algorithms are important because they can of-
ten solve significantly larger problem instances than complete
algorithms. Commonly the user of an incomplete algorithm
initiates its execution, and after a while gets tired of waiting
for a solution. She may be tempted to terminate the algo-
rithm. At the same time she knows that the algorithm might
finish, and that this might occur even in the very next step.
Should she terminate the algorithm?

This paper presents a method for optimally determining
when the algorithm should be terminated if it has not found a
solution. Our decision-theoretic method computes the value
of the information that different steps of running the incom-
plete algorithm are likely to provide, and uses that informa-
tion to decide when to terminate the algorithm.

The first key observation is that incomplete algorithms are
iterative refinement algorithms and approximation algorithms
in that over time they implicitly refine a probability estimate
that a solution exists. Let us define the following symbols:
SOLt =”Solution found by timet” (so, if a solution is

found at timet, thenSOLt′ = 1 for all t′ ≥ t), and
NOSOLt =”No solution found by timet”.

The iterative refinement algorithm emerges when we realize
that the probability of the answer being Y decreases with the
number of steps that the algorithm has executed (unless the
algorithm halts which guarantees that the answer is Y). This
probability,p(Y |NOSOLt), can be computed using a statis-
tical performance profile,p(SOLt|Y ), of the algorithm, i.e.,
the probability of finding a solution by timet given that a
solution exists. The performance profile can be constructed
from prior runs of the algorithm as we will describe.

We use 3-satisfiability (3SAT) as our example decision
problem for the following reasons among others:

• Incomplete algorithms for 3SAT have recently been
shown to solve problem instances that are reduced to
3SAT from other problems (such as planning[15]) more
efficiently than algorithms that are tailored for solving
those other problems directly.

• Incomplete algorithms for 3SAT[6, 24] scale up to sig-
nificantly larger problem instances than even the best
current complete algorithms[3, 23]. Therefore, incom-
plete algorithms for 3SAT are crucial from a practical
perspective, and it is important to be able to terminate
them efficiently.



• 3SAT is perhaps the most central decision problem in
computer science. For one, it was the first problem to be
provenNP-complete.

3SAT is the decision problem of whether a satisfying truth
assignment exists for variables in a 3CNF formula. A 3CNF
formula is a conjunct of clauses where each clause is a dis-
junct of 3 literals. A literal is a negated or non-negated vari-
able. The formula is satisfiable—corresponding to answer Y
in our setting—if the variables can be assigned Boolean val-
ues so that the formula evaluates to true. For example, the
formula(v1∨ v2∨ v3)∧ (v1∨ v3∨ v4)∧ (v1∨ v2∨ v4) is sat-
isfiable by the truth assignmentv1 = true, v2 = true, v3 =
true, v4 = false (among others).

The paper is organized as follows. Section 2 derives our
method for optimally terminating incomplete decision algo-
rithms given a finite cap on the number of possible algorith-
mic steps. Section 3 presents an example of how this method
can be used. Section 4 generalizes the method to settings
where no cap on the possible number of steps is exogenously
given. Section 5 summarizes related research. Section 6 dis-
cusses pragmatics and alternative uses of the method.

2 Method for terminating decision algorithms
This section presents a method for optimally terminating an
incomplete decision algorithm. The incomplete algorithm is
used to update the probability estimate of the answer being
Y. Based on a run-time distribution of the algorithm, an agent
can anticipate how this estimate will change as more time is
allocated to the algorithm. The agent can also anticipate its
expected payoff in the real world given that it will act based
on the probability estimate available at the time of action (the
probability will be 1 if the algorithm happens to find a so-
lution). With these two models, the agent can calculate the
optimal time to terminate the algorithm.

Terminating optimally seems difficult because all of the
following concerns have to be taken into account:

• Further computation adds value because it can cause the
algorithm to find a solution. This is nontrivial to analyze
because the probability of finding a solution at a given
future time step changes based on how many unsuccess-
ful steps the algorithm has executed. For example, at
step 0, step 905 may look unprofitable while at step 708,
step 905 may well look profitable. Alternatively, at step
0, step 905 may look profitable while at step 708, step
905 may look unprofitable.

• Further computation adds value because it refines the
probability that a solution exists even if the algorithm
does not terminate. The probability that a solution exists
decreases as the algorithm takes unsuccessful steps.

• As this probability estimate gets refined, it can be used to
make future termination/continuation decisions. There-
fore, these decisions can be made with better informa-
tion than what is available at the outset. The fact that
such new information is valuable due to this reason is
yet another motivation to execute the algorithm further.

• The payoff from a given probability estimate that a so-
lution exists (this probability is 1 if a solution has been

found) decreases with time because the agent misses the
opportunities of using the answer earlier in the agent’s
choice of what to do in the world.

• Further computation adds to the computational cost.

• If the deliberation controller has let the algorithm exe-
cute past the optimal termination time, it can be optimal
to let it execute even further since the losses incurred so
far have become sunk cost.

• In some cases, the agent’s expected payoff is maximized
by never terminating the algorithm (unless the algorithm
finishes, i.e., determines that the answer is Y).

It turns out that all of these factors can be soundly taken
into account. The method that we present does this in a
Bayesian framework and leads to an optimal termination de-
cision. Specifically, the problem is that of finding an optimal
policy for the deliberation controller, i.e., deciding what the
agent should do in each of themax nodes in Figure 1.
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Figure 1: Deliberation controller’s decision tree. The bold lines
show an example policy where the deliberation controller will termi-
nate the algorithm at timet = t̃ = 1 if the algorithm has not found
a solution. The gray area andT will be discussed in Section 4.

The rest of this section presents a method for determining
an optimal termination policy in linear time. To act according
to the policy, the deliberation controller simply remembers
the first time when it is better to stop than to continue, and if
the algorithm has not finished by that time, the deliberation
controller terminates the algorithm. If the algorithm finishes
before that, it is obviously not worth continuing.

2.1 Conditional performance profiles: Probability
updates using a run-time distribution

To determine when to terminate, the deliberation controller
needs to know how the probability of finding a solution by
any given time changes based on how many steps the algo-
rithm has executed so far without finding a solution. Letτ1
andτ2 be arbitrary times such thatτ1 ≤ τ2. We are interested
in determining the quantityp(SOLτ2 |NOSOLτ1). Trivially,

p(SOLτ2 |NOSOLτ1 ) = 1− p(NOSOLτ2 |NOSOLτ1 ) (1)

The right hand side can be solved using the definition of con-
ditional probability to get

p(NOSOLτ2 |NOSOLτ1 ) =
p(NOSOLτ2 ∧NOSOLτ1 )

p(NOSOLτ1 )
(2)

Becausep(NOSOLτ2 ∧NOSOLτ1) = p(NOSOLτ2), this
can be simplified to

p(NOSOLτ2 |NOSOLτ1 ) =
p(NOSOLτ2 )

p(NOSOLτ1 )
(3)

which can be solved using
p(NOSOLt) = p(Y )p(NOSOLt|Y ) + p(N)p(NOSOLt|N) (4)



Using the fact thatp(N) = 1 − p(Y ) and the fact
that the algorithm never finishes if no solution exists, i.e.,
p(NOSOLt|N) = 1, the above equation can be rewritten:

p(NOSOLt) = p(Y )p(NOSOLt|Y ) + 1− p(Y ) (5)

The termination algorithm also needs to know the chance
that the answer is Y given that no solution has been found by
stept. This can be determined using Bayes rule:

p(Y |NOSOLt) =
p(Y )p(NOSOLt|Y )

p(Y )p(NOSOLt|Y ) + p(N)p(NOSOLt|N)

=
p(Y )p(NOSOLt|Y )

p(Y )p(NOSOLt|Y ) + p(N)

=
p(Y )p(NOSOLt|Y )

p(Y )p(NOSOLt|Y ) + 1− p(Y )
(6)

where
p(NOSOLt|Y ) = 1− p(SOLt|Y ) (7)

So, the agent can compute bothp(SOLτ2 |NOSOLτ1)
andp(Y |NOSOLt) in constant time if it knowsp(Y ) and
p(SOLt|Y ). The quantityp(Y ) is simply the agent’s prior
probability that the answer is Y, i.e., the agent’s belief before
it has executed any steps of the algorithm. In Section 3 we
present an example that demonstrates howp(Y ) can be ob-
tained using features of the problem instance that are quick
to measure. The quantityp(SOLt|Y ) is obtained from the
statistical run-time distribution of the algorithm. Specifically,
it can be determined empirically off-line by running the al-
gorithm on satisfiable instances (similar to the instance that
needs to be solved in the on-line situation), and seeing on
what fraction of them the algorithm has found a solution by
time t. Alternatively,p(SOLt|Y ) could be determined from
an analytical model of the run-time distribution. The genera-
tion of p(SOLt|Y ) will be discussed further in Sec. 3 and 6.

2.2 The payoff model
To determine when to terminate, the deliberation controller
also needs to know how the agent would use the information
that the algorithm provides in the real world. This depends
on the application. However, for the purposes of the termi-
nation decision, this information can be represented in a do-
main independent way using a payoff function. Let us denote
by πworld(x, pY , t) the agents real-world payoff if the actual
outcome isx, x ∈ {Y,N}, the agent’s estimate—after run-
ning the algorithm fort steps—of the answer being Y ispY ,
and the agent acts according to this estimate at timet (or later
if the agent finds that more beneficial).3 The agent’s choice
of a real-world action depends onpY andt, but the real-world
payoff,πworld, of that action depends on the true posteriorix
and when the action is taken,t. In Section 3 we present an ex-
ample application and illustrate how theπworld function can
be constructed.

The agent’s payoff,π(x, pY , t), takes into account both
the real-world payoff,πworld(x, pY , t), and the computation
cost. If they are independent, we can write

π(x, pY , t) = πworld(x, pY , t)− h(t) (8)

3We measure real time in the same units as computation time.
In other words, one unit of real time is the time it takes to execute
one step of the algorithm. This is without loss of generality because
the payoff function can be rescaled (on itst dimension) based on the
speed of the machine on which the algorithm is executed.

whereh(t) is the computation cost. If there is a fixed unit cost
of computation,ccomp, thenh(t) = ccomp ·t. Our termination
algorithm applies for generalπ, i.e., it does not assume that
the computation cost is independent of the real-world payoff.

2.3 Algorithm for computing an optimal
termination policy

Put together, the inputs to the algorithm that computes the
optimal termination policy are

• the prior probability that a solution exists,p(Y ),

• the run-time distribution in the form ofp(SOLt|Y ), and

• the payoff model,π(x, pY , t).

Conceptually, the stop/continue decisions are solved start-
ing from the end of the decision tree (Figure 1), and moving
step by step toward the root. For now, say that the tree ends
at stepT (we will relax this assumption in Section 4). This
does not mean that the algorithm is terminated at stepT . This
section describes how the termination time is computed, and
that time is usually before timeT .

At every decision node of the deliberation controller, the
expected payoff from stopping is computed, and so is the ex-
pected payoff from continuing. The expected payoff from
continuing at decision nodet depends on the solution that was
acquired for decision nodet + 1. At every decision nodet,
the deliberation controller should let the algorithm continue if
and only if the expected payoff from continuing is higher than
that of stopping. Algorithm 2.1 presents the pseudo-code for
computing this optimal termination policy. The functionv(t)
solves the expected value of the subtree rooted at the deliber-
ation controller’s decision nodet. The policy can be solved
by making the callv(0). The optimal decision for each deci-
sion node,t, is stored indecision[t],4 and the time when the
deliberation controller should first terminate the algorithm is
stored int̃.

Algorithm 2.1 (Compute an optimal termination policy)
functionv(t)

if t = 0
pSOL = 0 /* Chance that a solution was found in this step */
πSOL = 0 /* Payoff of that solution */

else
pSOL = p(SOLt|NOSOLt−1)
πSOL = π(1, 1, t)

pY = p(Y |NOSOLt)
E[π|STOP ] = pSOL · πSOL

+(1− pSOL)(pY · π(1, pY , t) + (1− pY ) · π(0, pY , t))
if t = T /* End of the tree */
decision[t] = STOP
t̃ = t
returnE[π|STOP ] /* recursion bottoms here */

else
E[π|CONTINUE] = pSOL · πSOL + (1− pSOL) · v(t+ 1)
/* recursion occurs above */
if E[π|STOP ] ≥ E[π|CONTINUE]
decision[t] = STOP
t̃ = t
returnE[π|STOP ]

4Note that in classical stopping problems, at every time step af-
ter the first optimal stopping point it is better to stop. Here that is
not the case, and the algorithm determines a set of stopping points
(those timest for whichdecision[t] = STOP ) which need not be
consecutive.



else
decision[t] = CONTINUE
returnE[π|CONTINUE]

The algorithm runs inO(T ) time and space. The quantities
p(SOLt|NOSOLt−1) andp(Y |NOSOLt) are computed in
constant time from the inputsp(Y ) andp(SOLt|Y ) using the
formulas derived in Sec. 2.1.

The termination policy, stored indecision[t], is optimal
even if, for some reason, the algorithm has been executed past
the first optimal termination point, and the losses so far have
become sunk cost. At that point it may be optimal to execute
further steps, or it may not. The termination policy gives the
optimal stop/continue decisions from any step forward, even
if the current step is past the first optimal stopping time.

3 Example of how to use the method
We demonstrate our method in the context of the following
hypothetical problem. The question is whether a manufactur-
ing project should be terminated before completion in order
to avoid useless costs. A company is offered 60,000 if it pro-
duces an item by time 30,000. If the project does not meet
that deadline, the contract becomes void: nothing is paid, and
the project need not be finished. The cost of the project is 1
per time unit (again, the length of the time unit is the time
it takes to execute one algorithm step). If the project can be
completed, it can be completed exactly at time 30,000, but
not before. Work on the project starts and the costs begin to
cumulate.

The last phase of the project is machining, where the key
question is: can the machining be scheduled to begin at time
15,000 and to finish by time 30,000? If not, obviously the
sooner during the earlier phases the project is terminated, the
better. Also, one can see that if the machining can be suc-
cessfully scheduled, it is worth completing the project. If
the project is prematurely terminated, it cannot be restarted.
Once the machining phase starts, it cannot be terminated until
time 30,000.

Let us call the possible answers to this decision problem
Y = ”Machining can be scheduled to begin at 15,000 and
finish at 30,000” andN = ”Machining cannot be scheduled
to begin at 15,000 and finish at 30,000”. We assume that the
machining scheduling decision problem instance is reduced
to 3SAT, soY = “satisfiable” andN = “not satisfiable”.

3.1 Payoff modelπ
Figure 2 illustrates the company’s optimal decisions in the ex-
ample described above. Theπworld-values can be calculated
from the company agent’s situation in its environment. For
example, if the true answer isY and the probability estimate
of the answer beingY is pY , the calculation is as follows.
Since the answer isY , the project can be completed, and
the company will get a payoff (its payment minus its cost)
of 60, 000−30, 000 = 30, 000 if the project is not terminated
prematurely, and a payoff (cost so far) of−t if the project is
terminated prematurely. The project will not be prematurely
terminated if it is already too late to terminate it by definition
(t > 15, 000) or the expected value of continuing is higher
than that of terminating, i.e.,pY · 60, 000 > 30, 000− t. So,

pY   >  0.5 - t / 60,000, and t ≤ 15,000

Try to finish

Y

Y

Reality

pY

pY

 30,000

N
 -30,000
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pY  ≤ 0.5 - t / 60,000, and t ≤ 15,000Estimate
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t > 15,000

Machining cannot be terminated 
before time 30,000

Figure 2:The tree represents the company’s optimal decisions and
payoffs given an estimatepY . The real posterior event is Y or N.

πworld(Y, pY , t) ={
60, 000− 30, 000 = 30, 000 if pY > 30,000−t

60,000 , t ≤ 15, 000

−t if pY ≤ 30,000−t
60,000 , t ≤ 15, 000

60, 000− 30, 000 = 30, 000 if t > 15, 000.

πworld(N, pY , t) ={
0− 30, 000 = −30, 000 if pY > 30,000−t

60,000 , t ≤ 15, 000

−t if pY ≤ 30,000−t
60,000 , t ≤ 15, 000

0− 30, 000 = −30, 000 if t > 15, 000.

Let the computation cost be12 per time unit, so

π(x, pY , t) = πworld(x, pY , t)−
1
2
t

This completes the payoff model part of the example. Next
we will discuss how to constructp(Y ) andp(SOLt|Y ) which
are the other two inputs to the algorithm that computes the
optimal termination policy.

3.2 Constructing the prior p(Y )
Often anytime algorithms have a mandatory phase during
which a rough solution to the problem is generated. This
rough solution is then iteratively improved in an anytime re-
finement phase. The mandatory phase can be viewed as a
non-interruptible setup phase for the actual refinement algo-
rithm. For example in the traveling salesman problem, the
mandatory phase could be a greedy generation of an initial
tour, and the refinement phase could be local search based on
swapping two cities at a time in an ordered list of the cities
to visit. In 3SAT, our mandatory phase consists of generating
an initial estimate of the satisfiability probability. For this we
use three features of the problem instance as predictors: the
number of variables,v, the standardβ = c

v predictor[2, 19]
(wherec is the number of clauses), and a newer predictor,∆,
see[23].5

5∆ =
∑

i∈variables |posi − negi|, whereposi is the number
of non-negated occurrences of variablei in the 3SAT instance, and
negi is the number of negated occurrences of variablei in it.



We generated 3CNF formulas using the most common
method[19] for constructing hard 3SAT instances: for every
clause, pick three variables randomly disallowing duplicates,
and then negate each variable separately with probability1

2 .6

Figure 3 shows the contours of the initial satisfiability
probability,p(Y ). Say that in our example the 3SAT instance
happens to have the following features:v = 150, c = 645,
(soβ = 645

50 ≈ 4.3), and∆ = 2.77.7 Thus the initial satisfia-
bility probability p(Y ) = 0.454, see Figure 3 right.8
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Figure 3: Contours of the initial (prior) satisfiability proba-
bility p(Y ). Left: v = 50. Right: v = 150.

Often the mandatory phase is fast compared to the refine-
ment phase. The initial satisfiability probability,p(Y ), can
be computed inO(c + v) time. Each step of the refinement
algorithm also takesO(c + v) time. Thus the time of the
mandatory phase is so negligible compared to the refinement
phase that we ignore it.

3.3 Constructing the run-time distribution
p(SOLt|Y )

We used the incomplete BREAKOUT satisfiability determin-
ing algorithm[20] as the decision algorithm. If the formula is
not satisfiable, the algorithm never finishes, but if the formula
is satisfiable, the algorithm may finish proving satisfiability
or it might not finish. (Our termination method could be used
with any satisfiability determining algorithm.)

One way of representing the algorithm’s run-time distribu-
tion is p(SOLt|Y ). This probability is parameterized by the
algorithm step,t, and by the problem instance features,v, β,
and∆. We gathered statistics for 50, 100, and 150 variables
for β = 0.1, 0.2, ..., 9.0. At each such point, we generated
500 random formulas, determined their satisfiability using a
complete algorithm[23] (which is similar to that in[3]), and
measured the value of∆. We ran the BREAKOUT algorithm
on the satisfiable formulas and recorded its number of steps.
If BREAKOUT had not found a solution by 20,000 steps, we
aborted the run and recorded an unsuccessful result. Ideally
one could fit a curve on the data forp(SOLt|Y ) as a function

6The presented estimation of satisfiability probability is based
on a statistical analysis of 3SAT instances from this distribution.
Therefore, it is not necessarily accurate for instances from a different
distribution—e.g. reduced from a different problem.

7Given these feature values, one can predict that this problem
instance is likely to be hard[23].

8A statistical method for computing this value and the contours
of Figure 3 is presented in[23].

of t, v, β, and∆. This curve could be used for interpola-
tion, but especially for extrapolation for largev, for which no
current complete satisfiability determining algorithms run in
reasonable time.

As mentioned above, the problem instance at hand happens
to havev = 150, β = 4.3, and∆ = 2.77. We constructed the
performance profile by looking at prior data with the samev
andc. Of these runs we chose the 20 that had their∆ closest
to 2.77. From the recorded number of BREAKOUT algo-
rithm steps needed for each of these runs, we constructed the
performance profilep(SOLt|Y ), Figure 4. This is merely an
example. In real application one would like to use more than
20 training instances to constructp(SOLt|Y ).
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3.4 Computing the optimal termination policy
Now we have all the inputs in hand for computing the op-
timal termination policy. It is obvious that it is not worth
computing beyond time 15,000 since after that the company
can no longer stop the project. Therefore, we will set the end
of the deliberation controller’s decision tree to be at 15,000,
i.e., T = 15, 000. Algorithm 2.1 returns̃t = 3, 852, and
v(0) = 1314.399350. So, the deliberation controller should
terminate the algorithm at time 3,852 if the algorithm has not
finished by then. The company’s overall expected payoff is
1314.399350 given that the project has been started. This
ends the example.

4 Truncating the deliberation controller’s
decision tree

As presented, Algorithm 2.1 requires as input a timeT be-
yond which it is certainly not worth computing. This time
may be derivable from the payoff model (as in our exam-
ple where there is a hard deadline at some point). In other
settings, one might know, based on theoretical or statistical
information, that the incomplete algorithm will never finish
if it has not finished in some (large) number of stepsT . In
either case, our method of determining an optimal stopping
time t̃ ≤ T can be used.

4.1 A conservative terminator
In yet other settings, neither of these two approaches enables
one to deduce a finite upper boundT . In such settings it is



sometimes possible toendogenouslydetermineT using the
payoff model and run-time distribution together. Specifically,
one can try increasing values ofT , starting from 0. At each
such choice ofT , one can optimistically assume that from
time T on, p(SOLt|Y ) reaches its asymptotep(SOL∞|Y )
in a single step, i.e.,p(SOLT+1|Y ) = p(SOL∞|Y ).9 If,
under this optimistic assumption, it seems better to stop at
time T than to continue for one step (based on an expected
payoff calculation), then it is certainly better to stop than to
continue. Incorporating this test into Algorithm 2.1 is easy
(the test “ift = T ” is replaced with this test). Sometimes this
optimistic test leads to a situation where it looks like the tree
cannot be truncated at that stepT while it really could.

4.2 An overeager terminator
Conversely, it is possible to construct a terminator that always
recommends termination when the algorithm should be ter-
minated, but sometimes also recommends termination when
it should not. Let us denote byt∗ the first step when higher
expected payoff would be obtained by stopping the algorithm
than by continuing (this definition is based on the untruncated
(infinitely deep) decision tree (Fig. 1)). We showed that if one
knows (e.g., by guessing) a finiteT such thatT ≥ t∗, one can
computet∗ by truncating the tree atT :

Theorem 4.1 For any finite T such thatT ≥ t∗, Algo-
rithm 2.1 returnst∗.

Proof: Truncating the tree atT corresponds to removing the
continuation option at stepT . The quantityv(T ) is com-
puted by maximizing over the expected values of the two
branches—STOP and CONTINUE—so removing one of the
branches cannot increasev(T ). Therefore, the expected value
of the continuation option at stepT −1 cannot have increased
(and the value of the stopping option is the same), sov(T−1)
cannot have increased. The same inductive argument is ap-
plied tov(T − 2), and so on backward in the tree. Therefore,
the expected payoff from continuing at stept∗ can only de-
crease or stay the same. Thus, if Algorithm 2.1 would suggest
terminating by timet∗ originally (t̃ = t∗), it certainly would
not suggest continuing beyondt∗ in this new setting where
the tree was truncated atT .

What remains to be proven is that the truncation atT can-
not cause Algorithm 2.1 to change its termination prescrip-
tion to an earlier time than its original prescription,t̃ = t∗.
The following observation proves this: the value of the con-
tinuation branch at stept∗ will not propagate earlier in the
tree because at decision nodet∗ the algorithm chooses to
stop rather than to continue (because stopping originally had
higher expected payoff and truncation cannot increase the ex-
pected payoff of continuing).

The claim is not totally obvious because due to such trunca-
tion, the value of continuing the computation can seem lower
than it really is. In fact, if one incorrectly guesses aT so that
T < t∗, Algorithm 2.1 in some cases suggests stopping at
some time beforeT although continuing would be the better
choice. An interesting consequence of this is that any ap-
proach that simply guessesT (e.g., by a doubling scheme)

9Some incomplete algorithms havep(SOL∞|Y ) < 1.

can never be sure that the guessT is large enough—even if
Algorithm 2.1 suggests stopping beforeT .

4.3 Never terminating the algorithm

The fact that in some cases a gap exists between the conser-
vative and the overeager terminator might not be a facet of
our artifacts, but inherent. The terminators attempt to find
a stopping time, but if no finite optimal stopping time exists,
one would not expect any algorithm to determine that in finite
time (for one, it would have to read an infinite number of val-
ues from the run-time distribution). Indeed, in some settings
it is best to never stop. For example, if the agent’s payoff does
not decrease with time, there is no reason to stop.

The following is a less trivial example. Let the agent get
payoffπNOSOL(t) = −t if it decides to stop the algorithm at
timet without having found a solution. Let the agent’s payoff
beπSOL(t) = 1000− t if it finds a solution at timet. In other
words, the payoff decreases linearly with time. (This is realis-
tic, for example, if the agent’s situation in the world does not
change with time but the agent has to pay a constant amount
for each CPU-cycle.) Letp(SOLt+1|NOSOLt) = α. This
corresponds to a setting where the run-time of the algorithm,
treated as a random variable, is exponentially distributed. Be-
causep(SOLt+1|NOSOLt) is a constant and the payoff de-
creases by a constant at every step, the decision problem will
look exactly the same to the deliberation controller in every
subtree of the decision tree. Therefore, ifα is high enough
so that the deliberation controller receives higher expected
payoff by choosing CONTINUE at time 0 than by choos-
ing STOP, the deliberation controller will receive higher ex-
pected payoff by choosing CONTINUE at every time,t, than
by choosing STOP.

5 Related research, briefly

Our approach has a rich intellectual background. Anytime al-
gorithms have been studied extensively, albeit mainly in the
more general setting of optimization problems (e.g.,[1, 9, 13,
16, 25]). A variety of incomplete decision algorithms have
been designed, especially for satisfiability (e.g.,[3, 6, 24]),
and the algorithms tend to scale orders of magnitude bet-
ter than their complete counterparts. Considerable research
has also been done on run-time distributions of algorithms
(e.g.,[4, 5, 8, 10, 12]).

Random restart algorithms are another family of incom-
plete algorithms that has received significant attention re-
cently (e.g.,[6, 7, 17]). Our method can be used to optimally
terminate a decision algorithm, even if that algorithm inter-
nally uses random restarts.

An approach related to ours has been presented for theorem
proving [11]. Finally, our method was inspired by seminal
work on the value of information[14, 18, 21].

6 Conclusions and future research

Incomplete decision algorithms can often solve larger prob-
lem instances than complete algorithms. The difficulty is that
if the algorithm has not finished, one does not know whether



it will finish soon, later, or never. We presented a decision-
theoretic method for optimally terminating incomplete deci-
sion algorithms. With each execution step, such algorithms
implicitly refine the probability that the answer is yes. Our
terminator determines an optimal stopping policy based on a
prior probability of the answer being yes, a payoff model de-
scribing the value that different probability estimates would
provide at different times, and a statistical run-time distribu-
tion of the algorithm.

In many settings it is unrealistic to assume that run-time
statistics exist for large numbers of problem instances of the
scale of the real problem to be solved. If the real prob-
lem takes so long that sophisticated termination is needed,
then collecting training data would most likely be prohibitive.
Therefore, we advocate collecting training data on smaller
problem instances, building an analytical model of the run-
time distribution as a function of problem instance features
(such as the order parameters used in this paper), and using
the analytical extrapolated distribution as the run-time distri-
bution in our termination method. This also allows terminat-
ing a run on an instance whose features are not identical, but
similar, to the features of instances for which statistical run-
time information has been collected.

In many incomplete decision algorithms, each computation
step is short. In such settings, our (linear-time) deliberation
control method might use more time than the incomplete al-
gorithm itself. This can be avoided by considering a number
of computing steps as an atomic step. (However, the coarser
deliberation control might not lead to exactly accurate termi-
nation.) This approach also gives the conservative terminator
a better chance to terminate the algorithm.

It is easy to incorporate risk attitudes into our method (as-
suming that an agent’s utility is just a function of the agent’s
payoff, which itself depends on multiple factors as we dis-
cussed). This can be done by replacing the agent’s payoff
functionπ in the model with the agent’s utility functionu(π).

Our method can be used to optimally select an algorithm.
For each candidate algorithm, the expected payoffv(0) is
computed. This is the expected payoff under the optimal stop-
ping policy. The algorithm with highestv(0) is chosen.

Our method can also be used to optimally terminate com-
plete algorithms. This is important when the complete algo-
rithm can have a prohibitively long run time.

Future research includes applying our termination method
to the control of decision algorithms in other domains, and
extending our method beyond decision problems.
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