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1 Introduction

This part of the book gives a comprehensive overview of the computational

challenges in solving the winner determination problem (WDP): given a set

of bids in a combinatorial auction, find an allocation of items to bidders

(the auctioneer can keep some of the items) that maximizes the

auctioneer’s revenue. The bids are expressions in a bidding language, by

which bidders report valuations for subsets of items (see Nisan (Chapter

9)). The auctioneer’s revenue is maximized by choosing an allocation that

maximizes the sum, over all bidders, of the bidders’ valuations for the

subset of items that they receive.

In this part of the book we do not discuss the concern that bidders

might not report their true valuations because of strategic considerations.

They can be motivated to tell the truth, under certain assumptions, by

using the Vickrey-Clarke-Groves (VCG) mechanism, as discussed further in

Ausubel and Milgrom (Chapter 1). We also do not discuss the issue that in
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some mechanisms, such as the VCG, the prices charged from winning

bidders differ from the bids made, implying that the value of the optimal

allocation is not equal to the revenue for the auctioneer. However, the

WDP—exactly as discussed in this chapter—is the key to solving those

problems as well: the VCG mechanism can be run by solving the WDP

once overall, and once for each bidder removed in turn.

In this opening chapter we formally define the winner determination

problem as a combinatorial optimization problem and present various

alternative mathematical programming models for it. We derive several

results stating that one cannot hope for a general-purpose algorithm that

can efficiently solve every instance of the problem. We shall also see that

restricting significantly the structure of the bids, such as allowing only bids

of size of at most 3, does not help. However, negative complexity results do

not exclude the ability to design algorithms that have a satisfactory

performance for problem sizes and structures occurring in practice. The

chapters of this part of the book will present many results in this direction:

approximation methods for special cases, identification of polynomial

solvable special cases, non-polynomial but nevertheless fast exact solution

methods, means to evaluate the empirical hardness, well-behaved practical

cases and non-computational approaches to circumvent the inherent

computational complexity.
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This chapter is organized as follows. Section 2 defines the winner

determination problem as a combinatorial optimization problem, and lays

out mathematical programming models that capture in detail variants of

the problem related to specific bidding languages. Section 3 presents several

computationally intractable versions of WDP, discusses complexity

implications of side constraints, and presents exhaustive algorithms that are

effective when the number of items for sale is small. Section 4 illustrates

negative results in terms of approximability, and reviews approximation

algorithms. Section 5 concludes.

2 Problem formulation

As elsewhere in the book the following notation is used. The set of bidders

is denoted by N = {1, . . . , n}, the set of items by M = {1, . . . , m}. A

bundle S is a set of items: S ⊆ M . For a bundle S and a bidder i, we

denote by vi(S) the package bid that bidder i makes for bundle S, i.e., the

maximal price that i announces to be willing to pay for S.

An allocation of the items is described by variables xi(S) ∈ {0, 1}. The

variable xi(S) is equal to one if and only if bidder i gets bundle S. An

allocation (xi(S)|i ∈ N, S ⊆ M) is said to be feasible if it allocates no item
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more than once:

∑
i∈N

∑
S⊆M,S3j

xi(S) ≤ 1 for all j ∈ M, (1)

and at most one subset to every bidder

∑
S⊆M

xi(S) ≤ 1 for all i ∈ N. (2)

Definition 2.1 (Winner Determination Problem (WDP)) Given

bids vi, i = 1, . . . , n, the winner determination problem is the problem to

compute

x ∈ argmax (
∑
i∈N

vi(S)xi(S) | x is a feasible allocation). (3)

Definition 2.1 is not sufficient to discuss the algorithmic complexity of

solving the WDP. It uses a number of decision variables and coefficients

that is exponential in the number of items, and it does not specify how the

bids are represented. The algorithmic complexity of an optimization

problem is however measured in terms of the encoding length of the

problem, i.e., in terms of how many binary symbols are needed in order to

store an instance of the problem in computer memory. An optimization

problem is said to be solvable in polynomial time or tractable, if the number

of operations needed for any instance is bounded by a polynomial function

in the encoding length of that instance. A naive representation of the WDP

would store for every bidder i and for every subset S the bid value vi(S).
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With respect to this huge representation—the size is exponential in the

number of items—dynamic programming would provide a polynomial

method to solve the WDP (see Section 3.4). Hence, in order to discuss the

complexity of WDP we need to specify the representation of bids first.

In Nisan (Chapter 9) bidding languages are introduced as means to

represent bids. We will focus here on the OR and XOR bidding languages,

by which we define two refinements of WDP, called WDPOR and WDPXOR.

In both frameworks, every bidder i provides atomic bids vi(S) for a set of

bundles S ⊂ M . We use the notation Fi for the set of bundles for which

bidder i submits an atomic bid. A bidding language may restrict Fi to

subsets of items that have a particular combinatorial structure, which will

have an influence on the algorithmic complexity of the WDP. This is briefly

discussed later in this chapter and in depth in Müller (Chapter 13). For

notational convenience we assume ∅ ∈ Fi and vi(∅) = 0. We also make the

common assumption of free-disposal: for S, S ′ ∈ Fi such that S ⊆ S ′ it is

vi(S) ≤ vi(S
′).

In the OR bidding language the atomic bids by bidder i are interpreted

as: i is willing to pay for any combination of pairwise disjoint atomic bids a

price equal to the sum of the bid prices. By the free-disposal assumption,

i′s bid for any other set S is then the maximum sum of bid prices for

pairwise disjoint atomic bids contained in S (see Nisan (Chapter 9)).
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Observe that in WDPOR constraint (2) can be omitted, because, for

every i, a solution with xi(T ) = 1 for exactly one T ⊆ M has the same

objective value as the solution xi(S) = 1 for those S ∈ Fi which form a best

packing of T . Observe also that we need only decision variables xi(S) for

subsets S ∈ Fi, and that for any i, j, Si ∈ Fi, Sj ∈ Fj with Si ⊆ Sj and

vi(Si) ≥ vj(Sj) we may drop the dominated bid vj(Sj). This leads to:

Definition 2.2 (WDPOR) Given a set of bids in the OR bidding

language, with atomic bids on sets in Fi for every bidder i, WDPOR is the

problem to compute

x ∈ argmax (
∑

i∈N,S∈Fi

vi(S)xi(S) | x satisfies (1)). (4)

In WDPXOR the set of atomic bids by bidder i is interpreted as: bidder

i is willing to receive at most one of the atomic bids. By the free-disposal

assumption, i′s bid for any other set S becomes then the maximum price

for an atomic bid contained in S (see Nisan (Chapter 9)).

Note that in the case of WDPXOR we may not drop constraint (2),

unless bids are super-additive, i.e., for any two bundles S1 and S2 with

S1 ∩ S2 = ∅ we have vi(S1 ∪ S2) ≥ vi(S1) + vi(S2). Again we need only

decision variables xi(S) for subsets S ∈ Fi. This leads to:

Definition 2.3 (WDPXOR) Given a set of bids in the XOR bidding

language, with atomic bids on sets in Fi for every bidder i, WDPXOR is the
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problem to compute

x ∈ argmax (
∑

i∈N,S∈Fi

vi(S)xi(S) | x satisfies (1) and (2)). (5)

WDPOR and WDPXOR are related in a similar way as OR and XOR

bidding languages are related. On one hand, one can transform WDPXOR

to WDPOR by transforming XOR bids to OR* bids. On the other hand,

WDPOR can be transformed into an instance of WDPXOR by generating an

XOR bid from every OR bid. This transformation has, however, a drastic

impact on the encoding length as it calls for a potentially exponentially

larger Fi. Another reason to treat them separately is that, with respect to

the same family Fi, WDPOR and WDPXOR can have different

computational complexity (see Section 3.2).

Sometimes several identical copies of the same type of item may be

auctioned. We call this the multi-unit WDP. Conceptually, the multi-unit

case is not of any impact since one can always consider the different copies

as different items, and assume symmetric valuations. From a computational

perspective, the assumption may well have an impact since the bidding

language usually exploits the symmetry to derive a more compact bid

representation. When we consider multiple copies, we shall assume that

item j ∈ M has multiplicity ωj. A bundle S = (σ1(S), . . . , σn(S)) is, in this

case, a multi-set of items, where σj(S) is the multiplicity of item j in S.
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Using this notation, we replace (1) by

∑
i∈N

∑
S⊆M

σj(S)xi(S) ≤ ωj for all j ∈ M. (6)

to define the feasibility of an allocation. This generalizes naturally to the

OR and XOR bidding languages.

The following subsections illustrate how different classical optimization

models from the field of Mathematical Programming can be used to model

(special cases of) the WDP: integer linear programming, weighted stable set

in graphs, knapsack and matching.

2.1 Integer linear programming and knapsack

Problem WDPOR can be modeled by the integer linear program

max
∑n

i=1

∑
S⊆M vi(S)xi(S)

(WDPOR)
∑n

i=1

∑
S⊆M,S3j xi(S) ≤ 1 for all j ∈ M

xi(S) ∈ {0, 1}

Based on our remarks above we need a variable xi(S) only for

non-dominated bids on sets S ∈ Fi. We use summations over all S ⊆ M for

notational convenience.

This model for WDPOR is identical to the integer linear programming

model of the weighted set packing problem (Rothkopf et al. 1998). In this

problem we are given a collection of subsets of a set M , each with a weight,

and the target is to find a sub-collection of non-intersecting sets of maximal

total weight.
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Problem WDPXOR can be modeled by the integer linear program

max
∑n

i=1

∑
S⊆M vi(S)xi(S)

(WDPXOR)
∑n

i=1

∑
S⊆M,S3j xi(S) ≤ 1 for all j ∈ M

∑
S⊆M xi(S) ≤ 1 for all i ∈ N

xi(S) ∈ {0, 1}

Again it is sufficient to restrict to variables xi(S) for S ∈ Fi, but for

convenience we use again the full summation.

In the more general case of multi-unit supply of items and multiplicities

of items in bids, the above two integer linear programs get other than 0-1

coefficients.

Holte (2001) suggested to interpret in particular multi-item versions of

WDPOR and WDPXOR as generalized knapsack problems. In the classical

0− 1-knapsack problem we are given a set of objects with weights αj and

values βj, and we try to find a set of objects of maximum value with total

weight less than or equal to some capacity α0. In the case of WDPOR we

get a multi-dimensional knapsack problem (sometimes also called

multi-item knapsack problem), and in case of WDPXOR a

multi-dimensional multiple-choice knapsack problem. Kellerer et al. (2004)

provide a comprehensive survey of the state-of-the-art of research on

knapsack problems. They also discuss the link to combinatorial auctions.

In Müller (Chapter 13) dynamic programming algorithms for WDP are

presented that stem from the connection to the knapsack problem.
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2.2 Intersection graphs

A second way of modelling WDPOR and WDPXOR is by intersection

graphs. We use a graph G = (U,E) consisting of a finite set of nodes V and

a set of undirected edges. The nodes in U are one-to-one to the bids

vi(S), i ∈ N,S ∈ Fi, and two nodes are connected by an edge if and only if

there is a conflict between the bids, i.e., an intersection of the sets of items,

or, in WDPXOR both bids are by the same bidder. A node u related to bid

vi(S) gets a weight wu := vi(S). Again we may restrict ourselves to relevant

bids, in other words, the same bids as for which we have a column in one of

the integer linear programming models above.

A subset U of nodes in a graph is called a stable set if no two nodes in

U are connected by an edge. Synonyms for stable set to be found in the

literature are node packing and independent set. The maximum weighted

stable set problem is the problem to find a stable set of maximum total

weight. It is obvious that WDPOR and WDPXOR coincide with weighted

stable set on the intersection graph related to WDPOR and WDPXOR,

respectively.

The maximum weighted clique problem in which we search for a

maximum weighted set of nodes such that any two nodes are connected by

an edge, is equivalent to stable set. Indeed, one can simply switch to the

complement Gc of a graph G, which has an edge between two nodes if and
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only if the edge is not contained in G. The (unweighted) stable set as well

as the (unweighted) clique problem can thus serve as reference point to

answer algorithmic questions on WDPOR and WDPXOR, (see, for example,

Sandholm (2002)), as we will review later in this chapter. (In the

unweighted case, all the weights are 1.)

2.3 Special Valuations

Special valuations allow for more succinct bidding languages, and lead also

to special cases of the dicussed mathematical programming problems.

As a first example, we look at the Downward Sloping Symmetric

Valuation introduced in Nisan (Chapter 9), in other words, the case of

homogenous items with decreasing marginal valuations. WDP can be solved

by sorting all marginal values of all bidders, and allocating to every bidder

as many items as many marginal valuations he has among the M highest.

As a second example, we mention unit demand valuation, where every

bidder is only interested in winning at most one item. In this case we can

model WDP as weighted matching in a bipartite graph G = (N,M,E) with

an edge e = (i, j) ∈ E if and only if bidder i makes a bid for item j. A

graph is bipartite if its nodes can be partitioned into two disjoint subsets,

such that all edges have a node in each of the two subsets. A matching is a

subset of edges such that neither two of them share a common node. This
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model, also called the assignment model, is the point of departure to study

the connection between combinatorial auctions and Walrasian equilibria in

exchange economies with indivisibilities (see Bikhchandani and Ostroy

(Chapter 8)).

Further models for specialized valuations can be found in Müller

(Chapter 13).

3 NP-hardness of the winner determination problem

Intuitively speaking, the WDP seems hard because one would need to check,

for each subset of the bids, whether the subset is feasible (no bids within

the subset share items) and how much revenue that subset of bids provides.

A feasible subset that yields the highest revenue is an optimal solution.

Unfortunately there are 2k subsets of bids, k being the number of bids, so

enumerating them is infeasible (except when there are fewer than 30 or so

bids). The real question is: Can one do better than enumerating all the

subsets of bids? To answer this question, we study the inherent complexity

of the problem, that is, complexity that any algorithm would suffer from.

Before we present results on the computational complexity of the WDP,

more precisely of different optimization models of WDP, we give a very

brief introduction to complexity theory.
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3.1 Complexity theory in a nutshell

An algorithm solves a problem in polynomial time if there exists a

polynomial function g such that for every possible instance of the problem,

the number of basic arithmetic operations needed by the algorithm is no

more than g(l), where l is equal to the number of binary symbols needed to

represent the instance. Numbers are encoded binary, implying that an

integer x has encoding length log2 x.

An algorithm that is polynomial in the unary encoding of some

optimization problem, i.e., the length of an integer x is counted as x, is

called pseudo-polynomial. If numbers involved are guaranteed to be small, a

pseudo-polynomial running time may be practical, if numbers can become

very large, they are in most cases not practical. If an algorithm for an

optimization problem is polynomial, even if we measure the length of every

number involved by 1, and if arithmetic operations involve only numbers

that are polynomially bounded in this stricter measure, than the algorithm

is said to be strongly polynomial.

Complexity theory investigates whether polynomial algorithms exist. It

has been developed for decision problems, which are computational

problems consisting of a class of instances and a definition of a property of

these instances. The problem to be solved is to decide whether a given

instance from the class has the property or not. For example, given a set of
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combinatorial bids and a target revenue w, is there an allocation of items to

bidders with a total revenue of at least w. P is the class of decision

problems that have a polynomial time algorithm. P is contained in NP

(non-deterministic polynomial time). This is the class of decision problems

for which there exists a polynomial time algorithm that can check the

validity of the property in question, if it is given as input next to the

instance a certificate for the validity (regardless of how hard it is to

compute such certificates). Equivalently, it is the class of problems

computable by a nondeterministic Turing machine in polynomial time. The

decision versions of (special cases of) WDP are all members of the class

NP , because we can verify in polynomial time whether a particular

solution is feasible and has an objective value larger than some value w.

It is generally believed, but never proven, that P 6= NP , i.e. that there

are problems in NP which can not be solved in polynomial time. A

problem in NP is NP-complete if any polynomial algorithm for it could be

used as a polynomial algorithm for any other problem in NP . Typically,

one shows how to transform instances of any problem in polynomial time to

instances of the NP-complete problem, in order to prove

NP-completeness. This implies that NP-complete problems are the

hardest problems within NP . Cook (1971) has proven the existence of an

NP-complete problem by showing that any problem in NP can be
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transformed into the satisfiability problem. Based on Cook’s theorem it

became relatively easy to prove that other problems are NP-complete. We

first have to show that they are in NP , and second we have to define a

polynomial transformation of an NP-complete problem to them.

A computational problem for which the existence of a polynomial time

algorithm would imply tractability of all problems in NP is called

NP-hard. By definition, NP-complete problems are NP-hard, but also

problems not contained in NP can be NP-hard. For example, optimization

problems whose decision version is NP-complete.

ZPP is a sub-class of NP which we will mention in the context of

approximation algorithms. It consists of those decision problems for which

there exists an algorithm and for every instance a certificate, such that the

algorithm terminates in expected polynomial time, and outputs 1 if and

only if the correct answer to the decision question is yes. The question of

whether NP=ZPP is as well an open question, related to the P=NP

question. NP=ZPP is not known to imply P=NP .

3.2 Complexity of the winner determination problem

Almost every paper on combinatorial auctions mentions that the winner

determination problem is NP-hard. This can be simply derived by the fact

that the NP-hard weighted set packing problem is equivalent to WDPOR
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(Rothkopf et al. 1998). We take here a little closer look in order to convince

the reader that the problem remains NP-hard if we restrict our attention

to instances with rather simplistic bids.

Given some number k, we define the decision version of the winner

determination problem as to decide whether there exists a feasible

allocation of the items with total revenue greater than or equal to k.

Our first reductions make use of the intersection graph formulation of

WDP from Section 2.2. The decision version of the stable set problem is

NP-complete (Garey and Johnson, 1979). Given a graph G = (V,E) we

can construct an instance of WDPOR as follows. We set N = V , M = E and

assume a bid bi(S) = 1 for every i ∈ N with S = {e ∈ E |i ∈ e}. Note that

this is also an instance of WDPXOR. It is obvious that G has a stable set of

size k if and only if the instance of WDPOR (or, equivalently, WDPXOR) has

an allocation with total bid value greater than or equal to k. This proves:

Theorem 3.1 The decision versions of WDPOR and WDPXOR are

NP-complete, even if we restrict to instances where every bid has a value

equal to 1, every bidder submits only one bid, and every item is contained

in exactly 2 bids.

The same transformation can be used to prove the complexity of further

special cases of WDPOR and WDPXOR. For example, the stable set
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problem remains NP-complete if we restrict ourselves to planar cubic

graphs (Garey and Johnson, 1979). Planar graphs are graphs which can be

drawn in the plane such that edges become continuous curves which

intersect only in their end nodes. In cubic graphs every edge has exactly

degree 3. Using this in the transformation we get NP-hardness of WDPOR

and WDPXOR for the case that every bid offers a price of 1, every bid

contains exactly 3 items, every item is contained in exactly two bids, and

every bidder makes at most one bid.

The general pattern of such proofs is to take an optimization problem as

restrictive as possible, but which is still NP-complete and to map instances

of that problem to instances of winner determination. Other problems than

stable set can be used, too. For example, Rothkopf et al. (1998) use 3-set

packing to show

Theorem 3.2 (Rothkopf et al. 1998) The decision version of WDPOR

is NP-complete even if we restrict to instances where every bid has a value

equal to 1, and every bidder bids only on subsets of size of at most 3.

Similarly, van Hoesel and Müller (2001) transform 3-dimensional

matching to WDPXOR to show:

Theorem 3.3 (van Hoesel and Müller 2001) The decision version of

WDPXOR is NP-complete even if we restrict to instances where every bid
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has a value equal to 1, and every bidder bids only on subsets of size of at

most 2.

Let us next assume that the items in M can be linearly ordered into a

sequence (i1, . . . , im), and that bidders bid only on subsets of items that are

adjacent in this list. In Müller (Chapter 13) we will see that WDPOR

restricted to this case is solvable in polynomial time. However, the problem

becomes NP-hard in case of WDPXOR. Indeed, the problem is then

identical to the job interval selection problem. In this problem we are given

a number l, n jobs, and for every job l intervals on a discrete time scale in

which this job may be scheduled on a single processor. Viewed as a

combinatorial auction we may interpret jobs as bidders who bid for time

intervals. A feasible allocation assigns at most one interval to every job,

such that intervals do not overlap. Keil (1992) has shown that, even for the

case l = 3, i.e., three bids per bidder, the problem to decide whether n jobs

can be assigned, is NP-complete (for further references on the complexity

of this problem see Spieksma (1999)).

So far we restricted the instances by restricting the sets Fi for which

bids are submitted. From an economic perspective it seems to be more

natural to restrict bid values, because this better reflects a restriction of

bidders’ types. A prominent restriction in economics is to assume

submodularity, which translates in the context of bids to the following
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condition. For any two subsets S1, S2 ⊆ M we have

vi(S1 ∪ S2) ≤ vi(S1) + vi(S2)− vi(S1 ∩ S2).

A special case of submodular bids is that of additive valuations with budget

limits. Additive bids with budget constraint are OR bids for single items,

with the additional constraint that the bid for a set S is never larger than

the budget. Thus the bid for S is the minimum of the following two values:

the sum of bids for individual items in S and the budget. Note that such

bids can be represented very efficiently by OR bids for individual items

together with the limit qi. At the same time, it is a special case of

WDPXOR, although an explicit representation as an instance of WDPXOR

would be very large. The complexity of winner determination for additive

valuations with budget limits, and thus for the case of submodular bids is

as follows.

Theorem 3.4 (Lehmann et al. 2003; Sandholm and Suri 2001b)

The winner determination problem with two bidders, each submitting

additive bids (that is, OR-bids on individual items only) with budget

constraints is NP-hard.

Proof. We present the proof given in Lehmann et al. (2003), where

NP-hardness is proven by reducing the knapsack problem to this problem.

(The decision version of the knapsack problem is NP-complete (Garey and
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Johnson, 1979).) An instance of the knapsack problem is given by a

sequence of integers a1, . . . , am and a desired total t. We want to decide

whether there exists a subset T of the integers whose sum is equal to t. Let

A =
∑m

j=1 aj.

Given an instance of knapsack we construct the following bids on m

items:
v1(S) =

∑
j∈S aj

v2(S) = 2 min(t,
∑

j∈S aj)

We show that the answer to the decision is “yes” if and only if the winner

determination instance has an allocation of value A + t.

If the answer is “yes”, we can allocate the elements in T to bidder 2,

and the elements in the set complement T c to bidder 1, to obtain an

allocation of value

∑
j∈T c

aj + 2t = A− t + 2t = A + t.

Assume the constructed winner determination problem has an allocation

of value A + t. If bidder 2 would get a subset of value strictly less than t,

say t′, then the total value would be A− t′ + 2t′ < A + t, a contradiction. If

bidder 2 would get a subset of value t′ > t, then the total value would be

A− t′ + 2t = A + t− (t′ − t) < A + t, again a contradiction. Thus the items

allocated to bidder 2 exactly sum up to A + t, and the answer is “yes”.
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Interestingly, with a similar constraint where the number of items sold

to each bidder is constrained, WDPOR is solvable in polynomial time (see

Müller (Chapter 13)). Other restricted versions of WDPOR with certain

types of structural side constraints are solvable in polynomial time as well,

using b-matching (Penn and Tennenholtz, 2000).

3.3 Complexity for other bidding languages

Nisan (Chapter 9) discusses, next to OR and XOR, other bidding

languages, as to combine OR and XOR. Most of them add side constraints

to feasible allocations, either from the buyer or from the bid takers side.

The bid taker (auctioneer) may have legal constraints, prior contractual

obligations, or business rules that he may want to incorporate into the

winner determination in the form of side constraints. A practical example is

the one where the auctioneer does not want the hassle of dealing with more

than a certain number of winners. Also, the budget constraint from

Theorem 3.4 is an example.

Sandholm and Suri (2001b) provide a rich collection of results on the

impact of side constraints on the complexity of winner determination. For

example, it is shown that if at most k winners are allowed, WDPOR is

NP-complete even if bids are on indiviudal items only. Also it is shown

that if we allow for arbtriray collections of XOR constraints, WDP is
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NP-complete even if bids are on individual items only. This case is a

special case of WDP for bids submitted in the XOR-of-OR bidding

language (see Nisan (Chapter 9)). In both examples, the problem remains

NP-complete even if bids could be accepted partially.

Specific side constraints (by the bid taker) may induce a combinatorial

structure with favorable algorithmic properties, as well. For example,

Bikhchandani et al. (2001) and Nisan and Ronen (2001) study the setting

of a reverse auction, where the auctioneer is interested to purchase a set of

edges in a network that form a path from a source s to a target t. Such a

path can be thought of as a communication link. Similarly, Bikhchandani

et al. (2001) study the case where the buyer wants to purchase a spanning

tree. In both examples, bids are on individual items only, side constraints

of the bid taker restrict the set of acceptable combinations of winning bids,

but a rich combinatorial structure allows for efficient winner determination.

WDPOR is solvable in polynomial time using linear programming if bids

can be accepted partially. There are a host of practical side constraints that

do not affect this. Examples are the budget constraint, not giving any

bidders more than k% of the total dollar value in the auction, or making

minority bidders win at least k% (Sandholm and Suri, 2001b). On the

other hand XOR-constraints and maximum winners constraints make

WDPOR NP-complete even if bids can be accepted partially.
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Beyond side constraints, in some markets multiple attributes (such as

reputation, weight, volume, color, delivery time, etc.) should affect the

winner determination. Attributes can be integrated into market designs

with package bidding and side constraints (Sandholm and Suri, 2001b), but

that is not totally straightforward. The preceding discussion has omitted a

number of important aspects of the WDP, including combinatorial reverse

auctions and two-sided exchanges, removing the free-disposal assumption,

and allowing of partial bid fulfilment. The reader is referred to Kothari

et al. (2003), Sandholm and Suri (2001b), and Sandholm et al. (2002), for

discussion of these issues.

3.4 WDPOR when the number of items is small or the number of
bids is huge

While WDPOR is NP-complete, there are algorithms that always—that is,

regardless of the number of bids—find an optimal allocation quickly if the

number of items m is small. They also run in polynomial time in the size of

the input if the number of bids is very large (exponential) compared to the

number of items.

For example, WDPOR can be solved by enumerating all partitions of

items (Sandholm, 2002), evaluate them, and pick the one of highest value.

This yields an O(mm+1) algorithm (Sandholm, 2002).

Dynamic programming is a more efficient approach for achieving the
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same goals. Rothkopf et al. (1998) suggest the following dynamic

programming approach for WDPOR. For all S ⊆ M they compute the best

allocation that allocates only elements out of S. This is done iteratively for

increasing cardinality of S. For subsets of size 1, they get the information

from the bids on single elements. For a subset S with size larger than 1,

w(S) is initialized by the largest bid for S, and then updated by the

following formula:

w(S) = max(w(S ′) + w(S \ S ′) | S ′ ⊆ S, |S ′| ≥ |S|/2)

The algorithm runs in O(3m) time (Rothkopf et al. 1998), It can be

improved by using in the recursion only S ′ such that there exists a bid for

S ′ (see Müller (Chapter 13)).

Interestingly, it constitutes an efficient algorithm (in the sense that it

runs in polynomial time in the size of its input) if the number of bids l is

very large in comparison to the number of items:

Theorem 3.5 (Sandholm 2002) Let l be the number of (non-dominated)

bids. If the dynamic program for WDPOR runs in O((l + m)ρ) time for

some constant ρ > 1, then l ∈ Ω(2
m
ρ ). If l ∈ Ω(2

m
ρ ) for some constant

ρ > 1, then the dynamic program runs in O(lρ log2 3) time.

We may interpret this result as follows. If the auctioneer receives a

number of bids that is very large in comparison to the number of items,
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then receiving the bids (and, accordingly, bidding for the bidders) is the

computational bottleneck, and not solving the WDP. In Müller (Chapter

13) further dynamic programming algorithms are given, in particular for

multi-item versions of WDP.

4 Approximation

Since the winner determination problem can not be solved in polynomial

time to optimality unless P = NP one may hope for efficient algorithms

that compute an “almost” optimal solution. An approximation algorithm is

a polynomial time algorithm with a provable performance guarantee. More

precisely, let I be the set of instances of a maximization problem, |I| the

encoding length of I ∈ I, FI the set of feasible solutions of I, c : FI → R

the objective, x∗ the optimal solution, and g : N→ N. We say that an

algorithm approximates the maximization problem within g, if it finds for

every instance I ∈ I a feasible solution x ∈ FI with c(x∗) ≤ g(|I|)c(x).

4.1 Inapproximability results

From the close relation between the winner determination problem and

other combinatorial optimization problems we can derive several

impossibility results with respect to approximation. The first was observed

by Sandholm (2002) (and independently by Lehmann et al. (2002)) and is
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based on the following theorem:

Theorem 4.1 (H̊astad 1999) If NP 6= ZPP, then for any ε > 0 there is

no polynomial algorithm that approximates maximum clique for a graph

G = (V,E) within |V |1−ε.

Corollary 4.2 (Sandholm 2002) If NP 6= ZPP, then for any fixed

ε > 0 there is no polynomial algorithm that approximates WDPOR or

WDPXOR within min(l1−ε,m1/2−ε), where l equals the number of bids and m

is the number of items, even when restricted to instances where every item

is contained in at most 2 bids, and bid prices are all equal to 1.

Proof. Using the construction reviewed in Section 2.2, we can first

transform the maximum clique problem into a stable set problem by taking

the complement of the edge set, then construct an instance of WDPOR (or

WDPXOR) where all bid prices are 1. The later has l = |V | bids. A

polynomial time l1−ε approximation algorithm for the winner determination

problem would thus immediately give rise to a |V |1−ε approximation

algorithm for the maximum clique problem, which would contradict

Theorem 4.1. For m1/2−ε the proof is similar to Halldórsson et al. (2000) for

maximum clique.
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This negative result generalizes to a specific multi-unit case of WDPOR

and WDPXOR.

Theorem 4.3 (Bartal et al. 2003) For every fixed k ≥ 1, consider the

WDPOR (or WDPXOR) with σi = k for all i ∈ M and every bidder wants to

obtain at most 1 unit of each type of item. For any fixed ε > 0,

approximating this multi-unit version of WDPOR (or WDPXOR) within a

factor of O(m
1−ε
k+1 ) is NP-hard unless NP=ZPP.

A polynomial time approximation scheme (PTAS) for a maximization

problem is a family of algorithms Aε, ε > 0, such that Aε approximates

within a factor 1 + ε, and such that, for fixed ε, Aε is polynomial. Berman

and Fujito (1999) show:

Theorem 4.4 (Berman and Fujito 1999) Unless P = NP there is no

PTAS for the maximum stable set problem on graphs with degree at most 3.

Again by the same transformation this shows that

Corollary 4.5 Unless P = NP there is no PTAS for WDPOR or

WDPXOR even when restricted to instances with bids of size at most 3, and

where every item is contained in at most 2 bids, and bid prices are all equal

to 1.
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4.2 Approximation algorithms

Fast approximation algorithms for the WDP can be obtained by translating

results for combinatorial problems related to winner determination (mainly

the weighted set packing problem and the weighted stable set problem) to

the context of winner determination (Sandholm 2002). Algorithms for these

problems come very close to the bound of the inapproximability results.

The asymptotically best approximation algorithm for WDPOR

establishes a bound O(l/(log l)2), where l is the number of bids

(Halldórsson 2000).

From the same paper, we can establish a polynomial time algorithm for

WDPOR with a bound that depends only on the number of items, m. The

auctioneer can choose the value for c. As c increases, the bound improves

but the running time increases. Specifically, steps 1 and 2 are O((l
c)) which

is O(lc), step 3 is O(l), step 4 is O(1), step 5 can be naively implemented to

be O(m2l2), and step 6 is O(1). So, overall the algorithm is

O(max(lc,m2l2)), which is polynomial for any given c.

Algorithm 4.6 (Greedy winner determination) Given an integer c

and a set of bids {vi(S) | i ∈ N,S ⊂ M}.

1. Let Pc be the feasible allocations of bids consisting of no more than c

bids.
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2. Let xP be the optimal alloction within Pc.

3. Let Bc be the subset of bids vi(S) such that |S| ≤
√

m/c.

4. Compute a greedy feasible allocation xB with respect to bids in B by

sequentially selecting highest value bids which do not overlap with

previously selected bids.

5. Choose the better of the allocations xP and xB.

Another greedy algorithm for winner determination simply inserts bids

into the allocation in largest v(S)√
|S| first order (if the bid shares items with

another bid that is already in the allocation, the bid is discarded) (Lehmann

et al. 2002). This algorithm establishes a bound
√

m. If c > 4, the bound

that Algorithm 4.6 establishes is better than that of this algorithm

(2
√

m/c <
√

m). On the other hand, the computational complexity of

Algorithm 4.6 quickly exceeds that of this algorithm as c grows.

The bound m1/2−ε is so high that it is likely to be of limited value for

auctions. Similarly, the bound 2
√

m/c ≥ 2. Even a bound 2 would mean

that the algorithm might only capture 50% of the available revenue.

However, the bound that Algorithm 4.6 establishes is about the best that

one can obtain, recall Corollary 4.2. If the number of items is small

compared to the number of bids (2
√

m/c < l or
√

m < l), as will probably
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be the case in most combinatorial auctions, then these algorithms establish

a better bound than that of Corollary 4.2.

One can do even somewhat better in special cases where the bids have

special structure. For example, there might be some cap on the number of

items per bid, or there might be a cap on the number of bids with which a

bid can share items. For a detailed overview on specialized bounds available

from the combinatorial optimization literature we refer to the review part

in Sandholm (2002), or to the original literature (Chandra and Halldórsson,

1999; Halldórsson and Lau, 1997; Halldórsson, 1998; Hochbaum, 1983).

Another family of restrictions that will very likely lend itself to

approxiamation stems from limitations on the prices. Two examples will be

presented next.

The first algorithm is due to Bartal et al. (2003) and approximates the

WDPXOR for a sub-class of the multi-item case. Its approximation ratio is

close to the best lower bound possible. The algorithm has to make two

assumptions. The first is that bids are given such that valuation and

demand oracle queries can be computed efficiently. Recall that a demand

oracle for bidder i′s bid vi computes for item prices pj, j ∈ M a set

S ∈ arg max(vi(S)−
∑
j∈S

pj).

The second assumption that has to be made says essentially that no bidder
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has a demand for a major share of the total number of items available of

each type. More precisely we assume that there exists numbers Θ > θ > 0

such that the following hold. For each multiset S and every j for which

σj < θωj, bi(S) = bi(S
′), where S ′ is the multi-set with σ′k = σk for k 6= j,

and σj = 0. Similarly, multi-sets with a σj > Θωj have the same valuation

as the multi-set in which we reduce the demand for item j to Θωj. For

example, if k copies of each item are in supply, and θ = Θ = 1
k
, this models

the case that each multi-set for which a bidder makes a bid is an ordinary

set, i.e., all σj = 1.

The algorithm is parameterized by a price p0 and a constant r. It works

as follows:

Algorithm 4.7 (Approximate multi-unit winner determination)

For each good j set lj = 0.

For each bidder i = 1 . . . , n

for each good j set pj = p0r
lj

choose S ′ = (σ′1, . . . , σ
′
m) ∈ argmax(bi(S)−∑

j∈S σj(S)pj).

set bidder i′s payment equal to Pi =
∑

j∈S′ σ
′
jpj.

update lj = lj + σ′j.

Thus, the basic idea is to increase prices fast enough such that the solution

computed by the algorithm is feasible, i.e., numbers of allocated items do
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not exceed supply. Bartal et al. (2003) show that for appropriate choices of

p0 (namely np0 ≤ Opt
2

and r1−Θ ≥ vmaxθp0) the solution computed is

indeed feasible and achieves an approximation ratio of 2(1 + rΘ−1
Θ

). Bartal

et al. (2003) show further that with a small modification a sealed bid

auction using this algorithm becomes incentive compatible. Furthermore

the algorithm can be modified to turn the auction into an incentive

compatible online auction, i.e., an auction that can be used when bids

arrive over time. Despite these achievements, a combinatorial auction based

on this algorithm makes more a theoretical than a practical contribution to

the auction literature because of the undesirable property that prices for

later bidders are much higher than for earlier bidders, and that in practice

an integer linear programming based heuristic does certainly better in

terms of the value of the solution computed.

We show next that WDPXOR can be approximated up to a factor of 2 if

all vi : 2M → R are submodular functions. We use the notation

vi(j|S) := vi(S ∪ {j})− vi(S) for the marginal bid for item j given subset S

is owned alreadyby i. The following algorithm is due to Lehmann et al.

(2003).

Algorithm 4.8 (Approx. WDP algorithm for submodular bids)

1. Set Si = ∅ for i = 1, . . . , n, and S = M .
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2. Let (i, j) ∈ argmax(vi(j|Si)|i ∈ N, j ∈ S)

3. Set Si = Si ∪ {j}, S = S \ {j}.

4. If S = ∅ stop, else go to 2.

Theorem 4.9 (Lehmann et al. 2003) The above winner determination

algorithm computes a 2-approximation for WDPXOR with submodular bids.

Proof. Our proof is by induction on the number of items. For m = 1 the

claim is obvious.

For m > 1 let us assume w.l.o.g. that item m is assigned to bidder n.

The algorithm can be thought of as being recursively invoked on the

remaining instance. Bids become:

v′i(S) =

{
vi(S) if 1 ≤ i ≤ n− 1,
vi(S|{m}) if i = n.

It can easily be shown that v′ is again submodular. Let us denote by A(v)

the revenue computed by the algorithm, and by Opt(v) the optimal value.

By the induction hypothesis we get

A(v) = vn(m) + A(v′) ≥ vn(m) +
1

2
Opt(v′).

We are done if we can show: Opt(v′) ≥ Opt(v)− 2vn(m).

Let T1, . . . , Tn be an optimal solution with respect to v. Assume

m ∈ Tk. By deleting m from Tk we get a feasible solution T ′ with respect to
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bids v′. We show that this solution differs at most by 2vn(m) from Opt(v),

from which the previous inequality follows.

If k = m, Opt(v) and the value of solution T ′ differ at most vn(m). If

k 6= m, we get by the definition of Step 2 of the algorithm

v′k(Tk \ {m}) = vk(Tk \ {m}) ≥ vk(T )− vk(m) ≥ vk(T )− vn(m),

and by the definition of v′:

v′n(Tn) = vn(Tn|{m}) = vn(Tj)− vn(m).

The claim follows now since for all other i it is v′i(Ti) = vi(Ti).

Put together, considerable work has been done on approximation

algorithms for WDP and for special cases of combinatorial optimization

problems related to WDP. However, the worst case guarantees provided by

the current algorithms are so far from optimum that they are of limited

importance for auctions in practice, even if the approximation factor is 2.

5 Conclusion

The WDP is NP-complete and inapproximable. So, is there a useful way to

tackle the WDP?

Since 1998, there has been a surge of research into addressing this.

Three fundamentally different approaches have been pursued:
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1. Designing algorithms that are provably fast (polynomial time in the

size of the problem instance) but fail to find an optimal solution to

some problem instances. Work along this avenue will was briefly

reviewed in this chapter in the form of the approximation algorithms.

Because the problem is inapproximable, such algorithms yield

solutions that are extremely far from optimal (yielding less than 1%

of the available revenue) in some cases. Approximation compromises

economic value and generally also ruins the incentive properties of the

auction. One can think of local search (and stochastic local search,

e.g. Hoos and Boutilier (2000)) algorithms as falling within this

approach, too, except that they generally do not provide any

guarantees on solution quality or run time.

2. Restricting the bundles on which bids can be submitted, or the bid

prices, so severely that the problem can be solved optimally and

provably fast. This approach is discussed in Müller (Chapter 13) of

the book. While computationally attractive, this approach may suffer

from similar economic inefficiencies, incentive problems, and exposure

problems as noncombinatorial auctions because the bidders cannot

fully express their preferences. In fact, they can only bid on a

vanishingly small fraction of possible bundles: the number of
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allowable bundles has to be polynomial in m, while the total number

of bundles is exponential in m (specifically, 2m). Imposed restrictions

by the auctioneer should therefore always be motivated by bidders’

valuations.

3. Designing tree search algorithms that provably find an optimal

solution. This approach is discussed in Sandholm (Chapter 14) of the

book. Because the problem is NP-complete, any optimal algorithm

for the problem will be slow on some problem instances (unless

P = NP). Even so, such algorithms can be fast in practice.

Furthermore, most of them are anytime algorithms: they can be

terminated early (if they happen to be taking too long) with usually a

good feasible solution in hand. To this class of approaches belongs

also using commercial integer linear programming solvers. Andersson

et al. (2000) have investigated how well such solvers scale. Similarly,

we may employ algorithms for the multi-dimensional (multiple-choice)

knapsack problem, as suggested by Holte (2001). However, dedicated

solvers generally improve significantly on general-purpose commercial

packages (see Sandholm (Chapter 14)).
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