Cost Semantics for Space Usage in a Parallel Language

Daniel Spoonhower

Carnegie Mellon University

(Joint work with Guy Blelloch & Robert Harper)

DAMP – 16 Jan 2007

Understanding How Programs Compute

Interested in intensional behavior of programs

- more than just final result
- e.g. time & space required

Understanding How Programs Compute

Interested in intensional behavior of programs

- more than just final result
- e.g. time & space required
- State-of-the-art = compile, run, & profile

Understanding How Programs Compute

Interested in intensional behavior of programs

- more than just final result
- e.g. time & space required
- State-of-the-art = compile, run, & profile
 - **#** architecture specific (*e.g.* # cores)
 - **#** dependent on configuration (*e.g.* scheduler)
 - compilers for functional languages are complex
 (e.g. closure, CPS conversion)

Motivating Example: Quicksort

Assume fine-grained parallelism

- ▶ pairs < *e*₁ | | *e*₂ > *may* evaluate in parallel
- schedule determined by compiler & run-time

Quicksort: High-Water Mark for Heap

Approach

Cost Semantics

- define execution costs for high-level language
- account for parallelism & space

Provable Implementation

- make parallelism explicit
- translate to lower-level language
- prove costs are preserved at each step
- consider scheduler, GC implementation

Approach Talk Outline

Cost Semantics

- define execution costs for high-level language
- account for parallelism & space

Provable Implementation

- make parallelism explicit
- translate to lower-level language
- prove costs are preserved at each step
- consider scheduler, GC implementation

Background: Cost Semantics

A cost semantics is a dynamic semantics *i.e.* execution model for high-level language
Yields a cost metric, some abstract measure of cost *e.g.* steps of evaluation, upper bound on space

Background: Cost Semantics

A cost semantics is a dynamic semantics *i.e.* execution model for high-level language
Yields a cost metric, some abstract measure of cost *e.g.* steps of evaluation, upper bound on space

We will a consider a cost model that accounts for parallelism and space.

Consider a pure, functional language.

includes functions, pairs, and booleans

Pair components evaluated in parallel.

• denoted < $e_1 \mid \mid e_2$ >

Values are disjoint from source language.

▶ values are labeled to make sharing explicit e.g. (v₁, v₂)^ℓ Cost semantics is a big-step (evaluation) semantics
yields two graphs: computation and heap
sequential, unique result per program

 $e \Downarrow v; g; h$

Expression e evaluates to value v with computation graph g and heap graph h.

Computation Graphs

Track control dependencies using a DAG with distinguished start and end nodes.

$$g = (n_{start}, n_{end}, E)$$

Computation Graphs

Track control dependencies using a DAG with distinguished start and end nodes.

$$g = (n_{start}, n_{end}, E)$$

Heap Graphs

Track heap dependencies using a directed graph

h = E

- nodes shared with corresponding g
- edges run in opposite direction

Heap Graphs

Track heap dependencies using a directed graph

h = E

- nodes shared with corresponding g
- edges run in opposite direction

Using Cost Graphs

Cost graphs are tools for programmers.

- relate execution costs to source code
- later: simulate runtime behavior

Many concrete metrics possible

- considered maximum heap size in example
- ▶ impact of GC: measure overhead, latency

Using Cost Graphs

Cost graphs are tools for programmers.

- relate execution costs to source code
- later: simulate runtime behavior

Many concrete metrics possible

- considered maximum heap size in example
- impact of GC: measure overhead, latency
 However, this reasoning is only valid if the
 implementation respects these costs.

Provable Implementation

Costs \Rightarrow contract for lower-level implementations

• e.g. environment trimming, tail calls

can guide concrete implementation on hardware

Provable Implementation

Costs \Rightarrow contract for lower-level implementations

- e.g. environment trimming, tail calls
- can guide concrete implementation on hardware

This work: transition semantics defines parallelism

- several (non-)deterministic versions
- can incorporate specific scheduling algorithms

Transition Semantics

Non-deterministic, parallel, small step semantics

parallel construct for in-progress computations

Transition Semantics

Non-deterministic, parallel, small step semanticsparallel construct for in-progress computations

declarations simulate a call "stack"

> allows unbounded parallelism, e.g.

$$egin{array}{cccc} d_1\longmapsto d_1' & d_2\longmapsto d_2'\ (d_1 ext{ and } d_2)\longmapsto (d_1' ext{ and } d_2') \end{array}$$

Schedules

Define a schedule of g as any covering traversal from n_{start} to n_{end} .

ordering must respect control dependencies

Schedules

Define a schedule of g as any covering traversal from n_{start} to n_{end} .

ordering must respect control dependencies

Definition (Schedule)

A schedule of a graph $g = (n_{start}, n_{end}, E)$ is a sequence of sets of nodes N_0, \ldots, N_k such that $n_{start} \notin N_0$, $n_{end} \in N_k$, and for all $i \in [0, k)$,

- ▶ $N_i \subseteq N_{i+1}$, and
- ▶ for all $n \in N_{i+1}$, pred $(n) \subseteq N_i$.

Theorem

Every schedule corresponds to a sequence of derivations in the transition semantics.

Theorem

```
If e \Downarrow v; g; h then,

N_0, \ldots, N_k is a schedule of g \Leftrightarrow

there exists a sequence of k transitions

e \longmapsto \ldots \longmapsto v such that i \in [0, k],

roots(N_i; h) = labels(e_i).
```

Measuring Space Usage

GC roots determined by heap graph *h* and schedule

 roots = edges that cross schedule frontier

Reachable values determined by reachability in *h*.

Note that edges in *h* correspond to direct dependencies as well as "possible last uses."

 $e_1 \Downarrow \mathsf{false}^{\ell_1}; g_1; h_1 \quad e_3 \Downarrow v_3; g_3; h_3 \quad (n \; \mathsf{fresh})$ if e_1 then e_2 else $e_3 \Downarrow v_3; 1 \oplus g_1 \oplus [n] \oplus 1 \oplus g_3$ $h_1 \cup h_3 \cup \{(n, \ell_1)\} \cup \{(n, \ell)\}_{\ell \in \mathrm{labels}(e_2)}$

Note that edges in *h* correspond to direct dependencies as well as "possible last uses."

 $\begin{array}{c} e_1 \Downarrow \mathsf{false}^{\ell_1}; g_1; h_1 \quad e_3 \Downarrow v_3; g_3; h_3 \quad (n \; \mathsf{fresh}) \\ \hline \mathsf{if} \; e_1 \; \mathsf{then} \; e_2 \; \mathsf{else} \; e_3 \Downarrow v_3; 1 \oplus g_1 \oplus [n] \oplus 1 \oplus g_3 \\ h_1 \cup h_3 \cup \{(n, \ell_1)\} \cup \{(n, \ell)\}_{\ell \in \mathrm{labels}(e_2)} \end{array}$

Note that edges in *h* correspond to direct dependencies as well as "possible last uses."

 $\begin{array}{c} e_1 \Downarrow \mathsf{false}^{\ell_1}; \textbf{g}_1; h_1 \quad e_3 \Downarrow v_3; \textbf{g}_3; h_3 \quad (n \; \mathsf{fresh}) \\ \hline \mathsf{if} \; e_1 \; \mathsf{then} \; e_2 \; \mathsf{else} \; e_3 \Downarrow v_3; \mathbf{1} \oplus \textbf{g}_1 \oplus [\textbf{n}] \oplus \mathbf{1} \oplus \textbf{g}_3 \\ h_1 \cup h_3 \cup \{(n, \ell_1)\} \cup \{(n, \ell)\}_{\ell \in \mathsf{labels}(e_2)} \end{array}$

Note that edges in *h* correspond to direct dependencies as well as "possible last uses."

 $\begin{array}{c} e_1 \Downarrow \mathsf{false}^{\ell_1}; g_1; h_1 \quad e_3 \Downarrow v_3; g_3; h_3 \quad (n \; \mathsf{fresh}) \\ \hline \mathsf{if} \; e_1 \; \mathsf{then} \; e_2 \; \mathsf{else} \; e_3 \Downarrow v_3; 1 \oplus g_1 \oplus [n] \oplus 1 \oplus g_3 \\ h_1 \cup h_3 \cup \{(n, \ell_1)\} \cup \{(n, \ell)\}_{\ell \in \mathsf{labels}(e_2)} \end{array}$

Note that edges in *h* correspond to direct dependencies as well as "possible last uses."

 $\begin{array}{c} e_1 \Downarrow \mathsf{false}^{\ell_1}; g_1; h_1 \quad e_3 \Downarrow v_3; g_3; h_3 \quad (n \; \mathsf{fresh}) \\ \hline \mathsf{if} \; e_1 \; \mathsf{then} \; e_2 \; \mathsf{else} \; e_3 \Downarrow v_3; 1 \oplus g_1 \oplus [n] \oplus 1 \oplus g_3 \\ h_1 \cup h_3 \cup \{(n, \ell_1)\} \cup \{(n, \ell)\}_{\ell \in \mathsf{labels}(e_2)} \end{array}$

Note that edges in *h* correspond to direct dependencies as well as "possible last uses."

 $e_1 \Downarrow \mathsf{false}^{\ell_1}; g_1; h_1 \quad e_3 \Downarrow v_3; g_3; h_3 \quad (n \; \mathsf{fresh})$ if $e_1 \; \mathsf{then} \; e_2 \; \mathsf{else} \; e_3 \Downarrow v_3; 1 \oplus g_1 \oplus [n] \oplus 1 \oplus g_3$ $h_1 \cup h_3 \cup \{(n, \ell_1)\} \cup \{(n, \ell)\}_{\ell \in \mathrm{labels}(e_2)}$

Heap graphs have a "static" characternecessary to simulate GC decisions

Scheduling Algorithms

Transition semantics (above) allowed *all* possible parallel executions.

Given finite processors, which sub-expressions should be evaluated?

Scheduling Algorithms

Transition semantics (above) allowed *all* possible parallel executions.

Given finite processors, which sub-expressions should be evaluated?

E.g. depth- and breadth-first & work stealingDF and BF traversals of cost graph g

Formalized as *deterministic* transition semanticsabstract presentation: no queues, &c.

append <qsort (filter (le x) xs) || x::(qsort (filter (gt x) xs))>

let val (ls, gs) = <filter (le x) xs ||
 filter (gt x) xs>
in
 append <qsort ls || x::(qsort gs)>
end

let val (ls, gs) = <filter (le x) xs ||
 filter (gt x) xs>
in
 append <qsort ls || x::(qsort gs)>
end

 \rightsquigarrow (via inlining)

 Greiner & Blelloch measure time and space together [ICFP '96, TOPLAS '99]

upper bounds based on size and depth of DAG
 Minamide shows CPS conversion preserves space
 usage [HOOTS '99]

constant overhead *independent* of program
 Gustavsson & Sands give laws for reasoning about program transformations in Haskell [HOOTS '99]
 formalize "safe for space" as cost semantics

Future Work

Empirical evaluation

- full-scale implementation, predict & measure performance (different GCs, schedulers)
- killer app?

Language extensions

 static discipline to help control (or at least make explicit) performance costs

• *e.g.* distinguish implementations of quicksort

Summary

Functional programming:

- traditionally, easy to reason about result
- ... but hard to reason about performance
- In this work, we have
 - related parallelism & space usage to source
 - proved costs preserved by implementation
 - considered effects of scheduler, collector

Ongoing: reason about performance in parallel ML