
Cost Semantics for Space Usage in
a Parallel Language

Daniel Spoonhower

Carnegie Mellon University

(Joint work with Guy Blelloch & Robert Harper)

DAMP – 16 Jan 2007

Understanding How Programs Compute

Interested in intensional behavior of programs

I more than just final result

I e.g. time & space required

State-of-the-art = compile, run, & profile

6 architecture specific (e.g. # cores)

6 dependent on configuration (e.g. scheduler)

6 compilers for functional languages are complex
(e.g. closure, CPS conversion)

16 Jan 2007 DAMP ’07 Cost Semantics for Space 2

Understanding How Programs Compute

Interested in intensional behavior of programs

I more than just final result

I e.g. time & space required

State-of-the-art = compile, run, & profile

6 architecture specific (e.g. # cores)

6 dependent on configuration (e.g. scheduler)

6 compilers for functional languages are complex
(e.g. closure, CPS conversion)

16 Jan 2007 DAMP ’07 Cost Semantics for Space 2

Understanding How Programs Compute

Interested in intensional behavior of programs

I more than just final result

I e.g. time & space required

State-of-the-art = compile, run, & profile

6 architecture specific (e.g. # cores)

6 dependent on configuration (e.g. scheduler)

6 compilers for functional languages are complex
(e.g. closure, CPS conversion)

16 Jan 2007 DAMP ’07 Cost Semantics for Space 2

Motivating Example: Quicksort

Assume fine-grained parallelism

I pairs < e1 || e2 > may evaluate in parallel

I schedule determined by compiler & run-time

fun qsort xs =

case xs of nil => nil

| x::xs =>

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>

16 Jan 2007 DAMP ’07 Cost Semantics for Space 4

Quicksort: High-Water Mark for Heap

16 Jan 2007 DAMP ’07 Cost Semantics for Space 5

Approach

Talk Outline

Cost Semantics

I define execution costs for high-level language

I account for parallelism & space

Provable Implementation

I make parallelism explicit

I translate to lower-level language

I prove costs are preserved at each step

I consider scheduler, GC implementation

16 Jan 2007 DAMP ’07 Cost Semantics for Space 6

Approach Talk Outline

Cost Semantics

I define execution costs for high-level language

I account for parallelism & space

Provable Implementation

I make parallelism explicit

I translate to lower-level language

I prove costs are preserved at each step

I consider scheduler, GC implementation

16 Jan 2007 DAMP ’07 Cost Semantics for Space 6

Background: Cost Semantics

A cost semantics is a dynamic semantics

I i.e. execution model for high-level language

Yields a cost metric, some abstract measure of cost

I e.g. steps of evaluation, upper bound on space

We will a consider a cost model that
accounts for parallelism and space.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 7

Background: Cost Semantics

A cost semantics is a dynamic semantics

I i.e. execution model for high-level language

Yields a cost metric, some abstract measure of cost

I e.g. steps of evaluation, upper bound on space

We will a consider a cost model that
accounts for parallelism and space.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 7

Source Language

Consider a pure, functional language.

I includes functions, pairs, and booleans

Pair components evaluated in parallel.

I denoted < e1 || e2 >

Values are disjoint from source language.

I values are labeled to make sharing explicit
e.g. (v1, v2)

`

16 Jan 2007 DAMP ’07 Cost Semantics for Space 8

Parallel Cost Semantics

Cost semantics is a big-step (evaluation) semantics

I yields two graphs: computation and heap

I sequential, unique result per program

e ⇓ v ; g ; h

Expression e evaluates to value v with computation
graph g and heap graph h.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 9

Computation Graphs

Track control dependencies using a DAG with
distinguished start and end nodes.

g = (nstart , nend , E)

1 [n] g1 ⊕ g2 g1 ⊗ g2

16 Jan 2007 DAMP ’07 Cost Semantics for Space 10

Computation Graphs

Track control dependencies using a DAG with
distinguished start and end nodes.

g = (nstart , nend , E)

1 [n] g1 ⊕ g2 g1 ⊗ g2

16 Jan 2007 DAMP ’07 Cost Semantics for Space 10

Heap Graphs

Track heap dependencies
using a directed graph

h = E

I nodes shared with
corresponding g

I edges run in
opposite direction

16 Jan 2007 DAMP ’07 Cost Semantics for Space 11

Heap Graphs

Track heap dependencies
using a directed graph

h = E

I nodes shared with
corresponding g

I edges run in
opposite direction

16 Jan 2007 DAMP ’07 Cost Semantics for Space 11

Using Cost Graphs

Cost graphs are tools for programmers.

I relate execution costs to source code

I later: simulate runtime behavior

Many concrete metrics possible

I considered maximum heap size in example

I impact of GC: measure overhead, latency

However, this reasoning is only valid if the
implementation respects these costs.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 12

Using Cost Graphs

Cost graphs are tools for programmers.

I relate execution costs to source code

I later: simulate runtime behavior

Many concrete metrics possible

I considered maximum heap size in example

I impact of GC: measure overhead, latency

However, this reasoning is only valid if the
implementation respects these costs.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 12

Provable Implementation

Guaranteed to faithfully mirror high-level costs

I “implementation” = lower-level semantics

Costs ⇒ contract for lower-level implementations

I e.g. environment trimming, tail calls

I can guide concrete implementation on hardware

This work: transition semantics defines parallelism

I several (non-)deterministic versions

I can incorporate specific scheduling algorithms

16 Jan 2007 DAMP ’07 Cost Semantics for Space 13

Provable Implementation

Guaranteed to faithfully mirror high-level costs

I “implementation” = lower-level semantics

Costs ⇒ contract for lower-level implementations

I e.g. environment trimming, tail calls

I can guide concrete implementation on hardware

This work: transition semantics defines parallelism

I several (non-)deterministic versions

I can incorporate specific scheduling algorithms

16 Jan 2007 DAMP ’07 Cost Semantics for Space 13

Transition Semantics

Non-deterministic, parallel, small step semantics

I parallel construct for in-progress computations

(expressions) e ::= . . . | let par d in e
(declarations) d ::= x = e | d1 and d2

I declarations simulate a call “stack”

I allows unbounded parallelism, e.g.

d1 7−→ d ′1 d2 7−→ d ′2
(d1 and d2) 7−→ (d ′1 and d ′2)

16 Jan 2007 DAMP ’07 Cost Semantics for Space 14

Transition Semantics

Non-deterministic, parallel, small step semantics

I parallel construct for in-progress computations

(expressions) e ::= . . . | let par d in e
(declarations) d ::= x = e | d1 and d2

I declarations simulate a call “stack”

I allows unbounded parallelism, e.g.

d1 7−→ d ′1 d2 7−→ d ′2
(d1 and d2) 7−→ (d ′1 and d ′2)

16 Jan 2007 DAMP ’07 Cost Semantics for Space 14

Schedules

Define a schedule of g as any covering traversal
from nstart to nend .

I ordering must respect control dependencies

Definition (Schedule)

A schedule of a graph g = (nstart , nend , E) is a
sequence of sets of nodes N0, . . . , Nk such that
nstart 6∈ N0, nend ∈ Nk , and for all i ∈ [0, k),

I Ni ⊆ Ni+1, and

I for all n ∈ Ni+1, pred(n) ⊆ Ni .

16 Jan 2007 DAMP ’07 Cost Semantics for Space 15

Schedules

Define a schedule of g as any covering traversal
from nstart to nend .

I ordering must respect control dependencies

Definition (Schedule)

A schedule of a graph g = (nstart , nend , E) is a
sequence of sets of nodes N0, . . . , Nk such that
nstart 6∈ N0, nend ∈ Nk , and for all i ∈ [0, k),

I Ni ⊆ Ni+1, and

I for all n ∈ Ni+1, pred(n) ⊆ Ni .

16 Jan 2007 DAMP ’07 Cost Semantics for Space 15

Theorem

Every schedule corresponds to a sequence of
derivations in the transition semantics.

Theorem

If e ⇓ v ; g ; h then,

N0, . . . , Nk is a schedule of g
⇔

there exists a sequence of k transitions
e 7−→ . . . 7−→ v such that i ∈ [0, k],

roots(Ni ; h) = labels(ei).

16 Jan 2007 DAMP ’07 Cost Semantics for Space 16

Measuring Space Usage

GC roots determined by
heap graph h and schedule

I roots = edges that
cross schedule frontier

Reachable values deter-
mined by reachability in h.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 17

Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions

16 Jan 2007 DAMP ’07 Cost Semantics for Space 18

Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions

16 Jan 2007 DAMP ’07 Cost Semantics for Space 18

Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions

16 Jan 2007 DAMP ’07 Cost Semantics for Space 18

Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions

16 Jan 2007 DAMP ’07 Cost Semantics for Space 18

Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions

16 Jan 2007 DAMP ’07 Cost Semantics for Space 18

Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions

16 Jan 2007 DAMP ’07 Cost Semantics for Space 18

Scheduling Algorithms

Transition semantics (above) allowed all possible
parallel executions.

Given finite processors, which sub-expressions
should be evaluated?

E.g. depth- and breadth-first & work stealing

I DF and BF traversals of cost graph g

Formalized as deterministic transition semantics

I abstract presentation: no queues, &c.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 19

Scheduling Algorithms

Transition semantics (above) allowed all possible
parallel executions.

Given finite processors, which sub-expressions
should be evaluated?

E.g. depth- and breadth-first & work stealing

I DF and BF traversals of cost graph g

Formalized as deterministic transition semantics

I abstract presentation: no queues, &c.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 19

Quicksort: Revisited

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>

16 Jan 2007 DAMP ’07 Cost Semantics for Space 21

Quicksort: Revisited

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>

16 Jan 2007 DAMP ’07 Cost Semantics for Space 23

Quicksort: Revisited

let val (ls, gs) = <filter (le x) xs ||

filter (gt x) xs>

in

append <qsort ls || x::(qsort gs)>

end

16 Jan 2007 DAMP ’07 Cost Semantics for Space 25

Quicksort: Revisited

let val (ls, gs) = <filter (le x) xs ||

filter (gt x) xs>

in

append <qsort ls || x::(qsort gs)>

end

16 Jan 2007 DAMP ’07 Cost Semantics for Space 25

Quicksort: Revisited

let val (ls, gs) = <filter (le x) xs ||

filter (gt x) xs>

in

append <qsort ls || x::(qsort gs)>

end

 (via inlining)

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>

16 Jan 2007 DAMP ’07 Cost Semantics for Space 27

Related Work

Greiner & Blelloch measure time and space together
[ICFP ’96, TOPLAS ’99]

I upper bounds based on size and depth of DAG

Minamide shows CPS conversion preserves space
usage [HOOTS ’99]

I constant overhead independent of program

Gustavsson & Sands give laws for reasoning about
program transformations in Haskell [HOOTS ’99]

I formalize “safe for space” as cost semantics

16 Jan 2007 DAMP ’07 Cost Semantics for Space 28

Future Work

Empirical evaluation

I full-scale implementation, predict & measure
performance (different GCs, schedulers)

I killer app?

Language extensions

I static discipline to help control (or at least
make explicit) performance costs

I e.g. distinguish implementations of quicksort

16 Jan 2007 DAMP ’07 Cost Semantics for Space 29

Summary

Functional programming:

I traditionally, easy to reason about result

I . . . but hard to reason about performance

In this work, we have

I related parallelism & space usage to source

I proved costs preserved by implementation

I considered effects of scheduler, collector

Ongoing: reason about performance in parallel ML

16 Jan 2007 DAMP ’07 Cost Semantics for Space 30

	Introduction
	Title
	Motivation
	Example: Quicksort
	High-Water Mark for Heap
	Approach & Outline

	Cost Semantics
	Background: Cost Semantics
	Source Language & Values
	Parallel Cost Semantics
	Computation Graphs
	Heap Graphs
	Using Cost Graphs

	Provable Implementation
	Provable Implementation
	Transition Semantics
	Schedules
	Theorem
	Measuring Space Usage
	Measuring Space Usage (con't)
	Scheduling Algorithms
	Quicksort: Revisited
	Quicksort: Revisited

	Conclusion
	Related Work
	Future Work
	Summary

