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Understanding How Programs Compute

Interested in intensional behavior of programs

I more than just final result

I e.g. time & space required

State-of-the-art = compile, run, & profile

6 architecture specific (e.g. # cores)

6 dependent on configuration (e.g. scheduler)

6 compilers for functional languages are complex
(e.g. closure, CPS conversion)
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Motivating Example: Quicksort

Assume fine-grained parallelism

I pairs < e1 || e2 > may evaluate in parallel

I schedule determined by compiler & run-time

fun qsort xs =

case xs of nil => nil

| x::xs =>

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>
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Quicksort: High-Water Mark for Heap

16 Jan 2007 DAMP ’07 Cost Semantics for Space 5



Approach

Talk Outline

Cost Semantics

I define execution costs for high-level language

I account for parallelism & space

Provable Implementation

I make parallelism explicit

I translate to lower-level language

I prove costs are preserved at each step

I consider scheduler, GC implementation
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Background: Cost Semantics

A cost semantics is a dynamic semantics

I i.e. execution model for high-level language

Yields a cost metric, some abstract measure of cost

I e.g. steps of evaluation, upper bound on space

We will a consider a cost model that
accounts for parallelism and space.
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Source Language

Consider a pure, functional language.

I includes functions, pairs, and booleans

Pair components evaluated in parallel.

I denoted < e1 || e2 >

Values are disjoint from source language.

I values are labeled to make sharing explicit
e.g. (v1, v2)

`
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Parallel Cost Semantics

Cost semantics is a big-step (evaluation) semantics

I yields two graphs: computation and heap

I sequential, unique result per program

e ⇓ v ; g ; h

Expression e evaluates to value v with computation
graph g and heap graph h.
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Computation Graphs

Track control dependencies using a DAG with
distinguished start and end nodes.

g = (nstart , nend , E )

1 [n] g1 ⊕ g2 g1 ⊗ g2
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Heap Graphs

Track heap dependencies
using a directed graph

h = E

I nodes shared with
corresponding g

I edges run in
opposite direction
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Using Cost Graphs

Cost graphs are tools for programmers.

I relate execution costs to source code

I later: simulate runtime behavior

Many concrete metrics possible

I considered maximum heap size in example

I impact of GC: measure overhead, latency

However, this reasoning is only valid if the
implementation respects these costs.
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Provable Implementation

Guaranteed to faithfully mirror high-level costs

I “implementation” = lower-level semantics

Costs ⇒ contract for lower-level implementations

I e.g. environment trimming, tail calls

I can guide concrete implementation on hardware

This work: transition semantics defines parallelism

I several (non-)deterministic versions

I can incorporate specific scheduling algorithms
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Transition Semantics

Non-deterministic, parallel, small step semantics

I parallel construct for in-progress computations

(expressions) e ::= . . . | let par d in e
(declarations) d ::= x = e | d1 and d2

I declarations simulate a call “stack”

I allows unbounded parallelism, e.g.

d1 7−→ d ′1 d2 7−→ d ′2
(d1 and d2) 7−→ (d ′1 and d ′2)
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Schedules

Define a schedule of g as any covering traversal
from nstart to nend .

I ordering must respect control dependencies

Definition (Schedule)

A schedule of a graph g = (nstart , nend , E ) is a
sequence of sets of nodes N0, . . . , Nk such that
nstart 6∈ N0, nend ∈ Nk , and for all i ∈ [0, k),

I Ni ⊆ Ni+1, and

I for all n ∈ Ni+1, pred(n) ⊆ Ni .
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Theorem

Every schedule corresponds to a sequence of
derivations in the transition semantics.

Theorem

If e ⇓ v ; g ; h then,

N0, . . . , Nk is a schedule of g
⇔

there exists a sequence of k transitions
e 7−→ . . . 7−→ v such that i ∈ [0, k],

roots(Ni ; h) = labels(ei).
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Measuring Space Usage

GC roots determined by
heap graph h and schedule

I roots = edges that
cross schedule frontier

Reachable values deter-
mined by reachability in h.
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Measuring Space Usage (con’t)

Note that edges in h correspond to direct
dependencies as well as “possible last uses.”

e1 ⇓ false`1; g1; h1 e3 ⇓ v3; g3; h3 (n fresh)

if e1 then e2 else e3 ⇓ v3; 1⊕ g1 ⊕ [n]⊕ 1⊕ g3

h1 ∪ h3 ∪ {(n, `1)} ∪ {(n, `)}`∈labels(e2)

Heap graphs have a “static” character

I necessary to simulate GC decisions
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Scheduling Algorithms

Transition semantics (above) allowed all possible
parallel executions.

Given finite processors, which sub-expressions
should be evaluated?

E.g. depth- and breadth-first & work stealing

I DF and BF traversals of cost graph g

Formalized as deterministic transition semantics

I abstract presentation: no queues, &c.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 19



Scheduling Algorithms

Transition semantics (above) allowed all possible
parallel executions.

Given finite processors, which sub-expressions
should be evaluated?

E.g. depth- and breadth-first & work stealing

I DF and BF traversals of cost graph g

Formalized as deterministic transition semantics

I abstract presentation: no queues, &c.

16 Jan 2007 DAMP ’07 Cost Semantics for Space 19



Quicksort: Revisited

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>
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Quicksort: Revisited

let val (ls, gs) = <filter (le x) xs ||

filter (gt x) xs>

in

append <qsort ls || x::(qsort gs)>

end

 (via inlining)

append <qsort (filter (le x) xs) ||

x::(qsort (filter (gt x) xs))>
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Related Work

Greiner & Blelloch measure time and space together
[ICFP ’96, TOPLAS ’99]

I upper bounds based on size and depth of DAG

Minamide shows CPS conversion preserves space
usage [HOOTS ’99]

I constant overhead independent of program

Gustavsson & Sands give laws for reasoning about
program transformations in Haskell [HOOTS ’99]

I formalize “safe for space” as cost semantics
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Future Work

Empirical evaluation

I full-scale implementation, predict & measure
performance (different GCs, schedulers)

I killer app?

Language extensions

I static discipline to help control (or at least
make explicit) performance costs

I e.g. distinguish implementations of quicksort
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Summary

Functional programming:

I traditionally, easy to reason about result

I . . . but hard to reason about performance

In this work, we have

I related parallelism & space usage to source

I proved costs preserved by implementation

I considered effects of scheduler, collector

Ongoing: reason about performance in parallel ML
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