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Improving Performance – Profiling Helps!

Profiling improves functional program performance.

Good performance in parallel programs is also hard.

This work: space profiling for parallel programs
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Example: Matrix Multiply

Näıve NESL code for matrix multiplication

function dot(a,b) = sum ({ a ∗ b : a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n3) space for n × n matrices!

I compare to O(n2) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”

Short answer: It depends on the implementation.
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Scheduling Matters

Parallel programs admit many different executions

I not all impl. of matrix multiply are O(n3)

Determined (in part) by scheduling policy

I lots of parallelism; policy says what runs next



Semantic Space Profiling

Our approach: factor problem into two parts.

1. Define parallel structure (as graphs)
I circumscribes all possible executions

I deterministic (independent of policy, &c.)

I include approximate space use

2. Define scheduling policies (as traversals of graphs)
I used in profiling, visualization

I gives specification for implementation



Contributions

Contributions of this work:
I cost semantics accounting for. . .

I scheduling policies

I space use

I semantic space profiling tools

I extensible implementation in MLton
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Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions

I nodes represent units of work

I edges represent sequential dependencies

Each schedule corresponds to a traversal

I every node must be visited; parents first

I limit number of nodes visited in each step

A policy determines schedule for every program
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Program Execution as a Dag (con’t)

Graphs are NOT. . .

I control flow graphs

I explicitly built at runtime

Graphs are. . .

I derived from cost semantics

I unique per closed program

I independent of scheduling



Breadth-First Scheduling Policy

Scheduling policy defined by:

I breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

I break ties by taking leftmost node

I visit at most p nodes per step
(p = number of processor cores)

Variation implicit in impls. of NESL
& Data Parallel Haskell

I vectorization bakes in schedule
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Depth-First Scheduling Policy

Scheduling policy defined by:

I depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

I break ties by taking leftmost node

I visit at most p nodes per step
(p = number of processor cores)

Sequential execution
= one processor depth-first schedule
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Work-Stealing Scheduling Policy

“Work-stealing” means many things:

I idle procs. shoulder burden of communication

I specific implementations, e.g. Cilk

I implied ordering of parallel tasks

For the purposes of space profiling, ordering is important

I briefly: globally breadth-first, locally depth-first



Computation Graphs: Summary

Cost semantics defines graph for each closed program

I i.e.. defines parallel structure

I call this graph computation graph

Scheduling polices defined on graphs

I describe behavior without data structures,
synchronization, &c.



Talk Summary

Cost Semantics, Part I: Parallel Structure

Cost Semantics, Part II: Space Use

Semantic Profiling



Heap Graphs

Goal: describe space use independently of schedule

I our innovation: add heap graphs

Heap graphs also act as a specification

I constrain use of space by compiler & GC

I just as computation graph constrains schedule

Computation & heap graphs share nodes.

I think: one graph w/ two sets of edges
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From Cost Graphs to Space Use

Recall, schedule = traversal of computation graph

I visiting p nodes per step to simulate p processors

Each step of traversal divides set of nodes into:

1. nodes executed in past

2. notes to be executed in future

Heap edges crossing from future to past are “roots”

I i.e. future uses of existing values
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Heap Graphs: Summary

Heap edge from B to A indicates a dependency on A
. . . given knowledge up to time corresponding to B

Some push back on semantics from implementation

I semantics must be implementable

I e.g., “true” vs. “provable” garbage
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Example Graphs
Matrix multiplication

I computation graph on left; heap on right
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Analysis of costs

I not a static analysis

Semantics yields one set of costs per input

I run program over many inputs to generalize

Semantic ⇒ independent of implementation

6 loses some precision

4 acts as specification
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Visualizing Schedules

Distill graphs, focusing on parallel structure

I coalesce sequential computation

I use size, color, relative position

I omit less interesting edges

Graphs derived from semantics,
. . . compressed mechanically,
. . . then laid out with GraphViz
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Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:
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Implemented a parallel extension to MLton

I including three different schedulers

I compared predicted and actual space use
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Matrix Multiply – MLton Space Use
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Quicksort – MLton Space Use
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Initial Quicksort Results

I predicted: breadth-first outperforms depth-first

I initial observation: same results!
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Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Without a cost semantics, there is no bug!
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Also in the Paper

More details, including. . .

I rules for cost semantics

I discussion of MLton implementation
I efficient method for space measurements

I more plots (profiling, speedup, &c.)

I application to vectorization (in TR)
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Cost semantics

I Sansom & Peyton Jones. POPL ’95

I Blelloch & Greiner. ICFP ’96

Scheduling

I Blelloch, Gibbons, & Matias. JACM ’99

I Blumofe & Leiserson. JACM ’99

Profiling

I Runciman & Wakeling. JFP ’93

I ibid. Glasgow FP ’93
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Thanks!

Thanks to MLton developers, and
Thank you for listening!

Questions?
spoons@cmu.edu

Download binaries, source code, papers, slides:
http://www.cs.cmu.edu/~spoons/parallel/

svn co svn://mlton.org/mlton/...

branches/shared-heap-multicore mlton

mailto:spoons@cmu.edu
spoons@cmu.edu
http://www.cs.cmu.edu/~spoons/parallel/
http://www.cs.cmu.edu/~spoons/parallel/
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