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Improving Performance — Profiling Helps!

Profiling improves functional program performance.
Good performance in parallel programs is also hard.

This work: space profiling for parallel programs



Example: Matrix Multiply

Naive NESL code for matrix multiplication

function dot(a,b) =sum ({ a*xb:a; b })
function prod(m,n) = { { dot(m,n) : n } : m }



Example: Matrix Multiply

Naive NESL code for matrix multiplication
function dot(a,b) =sum ({ a*xb:a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n®) space for n x n matrices!
» compare to O(n?) for sequential ML



Example: Matrix Multiply

Naive NESL code for matrix multiplication

function dot(a,b) = sum ({ a*x b :a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n®) space for n x n matrices!

» compare to O(n?) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”



Example: Matrix Multiply

Naive NESL code for matrix multiplication

function dot(a,b) = sum ({ a*x b :a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n®) space for n x n matrices!

» compare to O(n?) for sequential ML

Given a parallel functional program, can we determine,
“How much space will it use?”

Short answer: It depends on the implementation.



Scheduling Matters

Parallel programs admit many different executions
> not all impl. of matrix multiply are O(n®)

Determined (in part) by scheduling policy
» lots of parallelism; policy says what runs next



Semantic Space Profiling

Our approach: factor problem into two parts.

1. Define parallel structure (as graphs)
» circumscribes all possible executions

» deterministic (independent of policy, &c.)

» include approximate space use

2. Define scheduling policies (as traversals of graphs)
» used in profiling, visualization

» gives specification for implementation



Contributions

Contributions of this work:
» cost semantics accounting for. . .
» scheduling policies

» space use
» semantic space profiling tools

» extensible implementation in MLton
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Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions
» nodes represent units of work

» edges represent sequential dependencies

Each schedule corresponds to a traversal
» every node must be visited; parents first

» limit number of nodes visited in each step

A policy determines schedule for every program
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Program Execution as a Dag (con't)

Graphs are NOT. ..
» control flow graphs

» explicitly built at runtime
Graphs are. ..

» derived from cost semantics

» unique per closed program

» independent of scheduling



Breadth-First Scheduling Policy

Scheduling policy defined by:

» breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)
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Breadth-First Scheduling Policy

Scheduling policy defined by:

» breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)

Variation implicit in impls. of NESL
& Data Parallel Haskell

» vectorization bakes in schedule



Depth-First Scheduling Policy

Scheduling policy defined by:

» depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)
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Depth-First Scheduling Policy

Scheduling policy defined by:

» depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)

Sequential execution
= one processor depth-first schedule



Work-Stealing Scheduling Policy

“Work-stealing” means many things:
» idle procs. shoulder burden of communication

» specific implementations, e.g. Cilk
» implied ordering of parallel tasks

For the purposes of space profiling, ordering is important
» briefly: globally breadth-first, locally depth-first



Computation Graphs: Summary

Cost semantics defines graph for each closed program
» i.e.. defines parallel structure

» call this graph computation graph

Scheduling polices defined on graphs

» describe behavior without data structures,
synchronization, &c.
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Heap Graphs

Goal: describe space use independently of schedule
» our innovation: add heap graphs

Heap graphs also act as a specification
» constrain use of space by compiler & GC
» just as computation graph constrains schedule

Computation & heap graphs share nodes.
» think: one graph w/ two sets of edges
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Cost for Parallel Pairs

Generate costs for parallel pair,

{61, 62}

(see paper for
inference rules)

o &0
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From Cost Graphs to Space Use

Recall, schedule = traversal of computation graph
» visiting p nodes per step to simulate p processors

Each step of traversal divides set of nodes into:
1. nodes executed in past
2. notes to be executed in future

Heap edges crossing from future to past are “roots”
» i.e. future uses of existing values
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Heap Graphs: Summary

Heap edge from B to A indicates a dependency on A
... given knowledge up to time corresponding to B

Some push back on semantics from implementation
» semantics must be implementable

» e.g., 'true” vs. “provable” garbage



Example Graphs

Matrix multiplication

» computation graph on left; heap on right
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Semantic Profiling

Analysis of costs
» not a static analysis

Semantics yields one set of costs per input
» run program over many inputs to generalize

Semantic = independent of implementation
loses some precision

v/ acts as specification
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Visualizing Schedules

Distill graphs, focusing on parallel structure
» coalesce sequential computation

» use size, color, relative position
» omit less interesting edges
Graphs derived from semantics,

...compressed mechanically,
... then laid out with GraphViz
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Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:
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Matrix multiply w/ breadth-first scheduling policy:
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Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:
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Verifying Profiling Results

Implemented a parallel extension to MLton
» including three different schedulers

» compared predicted and actual space use



Matrix Multiply — MLton Space Use
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Quicksort — MLton Space Use
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Initial Quicksort Results

» predicted: breadth-first outperforms depth-first




Initial Quicksort Results

» predicted: breadth-first outperforms depth-first

» initial observation: same results!




Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)



Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository



Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Without a cost semantics, there is no bug!



Also in the Paper

More details, including. . .
rules for cost semantics

\{

discussion of MLton implementation
» efficient method for space measurements

\4

more plots (profiling, speedup, &c.)

\{

application to vectorization (in TR)

\4



Selected Related Work

Cost semantics
» Sansom & Peyton Jones. POPL '95

» Blelloch & Greiner. ICFP '96
Scheduling
» Blelloch, Gibbons, & Matias. JACM '99

» Blumofe & Leiserson. JACM '99
Profiling
» Runciman & Wakeling. JFP '93

» ibid. Glasgow FP '93
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http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.9437
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Conclusion

Semantic profiling for parallel programs. . .
» accounts for scheduling, space use

» constrains implementation (and finds bugs!)

» supports visualization &
predicts actual performance



Thanks!

Thanks to MLton developers, and
Thank you for listening!

Questions?
spoons@cmu.edu

Download binaries, source code, papers, slides:

http://www.cs.cmu.edu/~spoons/parallel/

svn co svn://mlton.org/mlton/...
branches/shared-heap-multicore mlton


mailto:spoons@cmu.edu
spoons@cmu.edu
http://www.cs.cmu.edu/~spoons/parallel/
http://www.cs.cmu.edu/~spoons/parallel/
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