Space Profiling for
Parallel Functional Programs

Daniel Spoonhower*, Guy Blelloch',
Robert Harper!, & Phillip Gibbons?

LCarnegie Mellon University
2Intel Research Pittsburgh

23 September 2008
ICFP '08, Victoria, BC

Improving Performance — Profiling Helps!

Profiling improves functional program performance.

Improving Performance — Profiling Helps!

Profiling improves functional program performance.

Good performance in parallel programs is also hard.

Improving Performance — Profiling Helps!

Profiling improves functional program performance.
Good performance in parallel programs is also hard.

This work: space profiling for parallel programs

Example: Matrix Multiply

Naive NESL code for matrix multiplication

function dot(a,b) =sum ({ a*xb:a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Example: Matrix Multiply

Naive NESL code for matrix multiplication
function dot(a,b) =sum ({ a*xb:a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n®) space for n x n matrices!
» compare to O(n?) for sequential ML

Example: Matrix Multiply

Naive NESL code for matrix multiplication

function dot(a,b) = sum ({ a*x b :a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n®) space for n x n matrices!

» compare to O(n?) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”

Example: Matrix Multiply

Naive NESL code for matrix multiplication

function dot(a,b) = sum ({ a*x b :a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n®) space for n x n matrices!

» compare to O(n?) for sequential ML

Given a parallel functional program, can we determine,
“How much space will it use?”

Short answer: It depends on the implementation.

Scheduling Matters

Parallel programs admit many different executions
> not all impl. of matrix multiply are O(n®)

Determined (in part) by scheduling policy
» lots of parallelism; policy says what runs next

Semantic Space Profiling

Our approach: factor problem into two parts.

1. Define parallel structure (as graphs)
» circumscribes all possible executions

» deterministic (independent of policy, &c.)

» include approximate space use

2. Define scheduling policies (as traversals of graphs)
» used in profiling, visualization

» gives specification for implementation

Contributions

Contributions of this work:
» cost semantics accounting for. . .
» scheduling policies

» space use
» semantic space profiling tools

» extensible implementation in MLton

Talk Summary

Cost Semantics, Part |: Parallel Structure
Cost Semantics, Part Il: Space Use

Semantic Profiling

Talk Summary

Cost Semantics, Part |: Parallel Structure
Cost Semantics, Part Il: Space Use

Semantic Profiling

Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions
» nodes represent units of work

» edges represent sequential dependencies

Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions
» nodes represent units of work

» edges represent sequential dependencies
Each schedule corresponds to a traversal
» every node must be visited; parents first

» limit number of nodes visited in each step

Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions
» nodes represent units of work

» edges represent sequential dependencies

Each schedule corresponds to a traversal
» every node must be visited; parents first

» limit number of nodes visited in each step

A policy determines schedule for every program

Program Execution as a Dag (con't)

Program Execution as a Dag (con't)

Graphs are NOT. ..
» control flow graphs

» explicitly built at runtime
Graphs are. ..

» derived from cost semantics

» unique per closed program

» independent of scheduling

Breadth-First Scheduling Policy

Scheduling policy defined by:

» breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)

Breadth-First Illustrated (p = 2)

./'\
/N
-\

—_—
_—

Breadth-First Illustrated (p = 2)

Breadth-First Illustrated (p = 2)

——

¥ i

N

./
~

Breadth-First Illustrated (p = 2)

V-

O,/
~

Breadth-First Illustrated (p = 2)

Breadth-First Illustrated (p = 2)

-

Breadth-First Illustrated (p = 2)

Breadth-First Illustrated (p = 2)

Breadth-First Scheduling Policy

Scheduling policy defined by:

» breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)

Variation implicit in impls. of NESL
& Data Parallel Haskell

» vectorization bakes in schedule

Depth-First Scheduling Policy

Scheduling policy defined by:

» depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)

Depth-First Illustrated (p = 2)

4
:
\

P
4

| /’\.@/’\

-
4
\

o

Depth-First Illustrated (p = 2)

Depth-First Illustrated (p = 2)

——

¥ i

N

./
~

Depth-First Illustrated (p = 2)

V-

O,/
~

Depth-First Illustrated (p = 2)

. {)
——

Depth-First Illustrated (p = 2)

Depth-First Illustrated (p = 2)

Depth-First Illustrated (p = 2)

Depth-First Illustrated (p = 2)

Depth-First Scheduling Policy

Scheduling policy defined by:

» depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

» break ties by taking leftmost node

» visit at most p nodes per step
(p = number of processor cores)

Sequential execution
= one processor depth-first schedule

Work-Stealing Scheduling Policy

“Work-stealing” means many things:
» idle procs. shoulder burden of communication

» specific implementations, e.g. Cilk
» implied ordering of parallel tasks

For the purposes of space profiling, ordering is important
» briefly: globally breadth-first, locally depth-first

Computation Graphs: Summary

Cost semantics defines graph for each closed program
» i.e.. defines parallel structure

» call this graph computation graph

Scheduling polices defined on graphs

» describe behavior without data structures,
synchronization, &c.

Talk Summary

Cost Semantics, Part |: Parallel Structure
Cost Semantics, Part Il: Space Use

Semantic Profiling

Heap Graphs

Goal: describe space use independently of schedule
» our innovation: add heap graphs

Heap graphs also act as a specification
» constrain use of space by compiler & GC

» just as computation graph constrains schedule

Heap Graphs

Goal: describe space use independently of schedule
» our innovation: add heap graphs

Heap graphs also act as a specification
» constrain use of space by compiler & GC
» just as computation graph constrains schedule

Computation & heap graphs share nodes.
» think: one graph w/ two sets of edges

Cost for Parallel Pairs

Generate

Cost for Parallel Pairs

Generate costs for parallel pair,

v &

Cost for Parallel Pairs

Generate costs for parallel pair,

() <

Cost for Parallel Pairs

Generate costs for parallel pair,

{61, 62}

o <—0@

Cost for Parallel Pairs

Generate costs for parallel pair,

{61, 62}

o <—0@

Cost for Parallel Pairs

Generate costs for parallel pair,

{61, 62}

o &0

Cost for Parallel Pairs

Generate costs for parallel pair,

{61, 62}

(see paper for
inference rules)

o &0

From Cost Graphs to Space Use

Recall, schedule = traversal of computation graph
» visiting p nodes per step to simulate p processors

Each step of traversal divides set of nodes into:
1. nodes executed in past
2. notes to be executed in future

From Cost Graphs to Space Use

Recall, schedule = traversal of computation graph
» visiting p nodes per step to simulate p processors

Each step of traversal divides set of nodes into:
1. nodes executed in past
2. notes to be executed in future

Heap edges crossing from future to past are “roots”
» i.e. future uses of existing values

Determining Space Use

Determining Space Use

Determining Space Use

A

Determining Space Use

Determining Space Use

Determining Space Use

Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e; then & else &3

Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e; then & else &3
(where e; —* true)

Heap Edges Also Track Uses

Heap edges also added as <9>
“possible last-uses,” e.g.,

if e; then e, else e3
(where e; —* true)

&

Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e; then & else &3
(where e; —* true)

Heap Edges Also Track Uses

Heap edges also added as é

“possible last-uses,” e.g.,

if e; then & else &3
(where e; —* true)

e @

Heap Edges Also Track Uses

Heap edges also added as é

“possible last-uses,” e.g.,

if e; then & else &3
(where e; —* true)

@)

Heap Edges Also Track Uses

5 ‘

Heap edges also added as
“possible last-uses,” e.g.,

if e; then & else &3
(where e; —* true)

Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e; then & else &3
(where e; —* true)

Heap Graphs: Summary

Heap edge from B to A indicates a dependency on A
... given knowledge up to time corresponding to B

Heap Graphs: Summary

Heap edge from B to A indicates a dependency on A
... given knowledge up to time corresponding to B

Some push back on semantics from implementation
» semantics must be implementable

» e.g., 'true” vs. “provable” garbage

Example Graphs

Matrix multiplication

» computation graph on left; heap on right

Talk Summary

Cost Semantics, Part |: Parallel Structure
Cost Semantics, Part Il: Space Use

Semantic Profiling

Semantic Profiling

Analysis of
» not

Semantic Profiling

Analysis of costs
» not a static analysis

Semantics yields one set of costs per input
» run program over many inputs to generalize

Semantic Profiling

Analysis of costs
» not a static analysis

Semantics yields one set of costs per input
» run program over many inputs to generalize

Semantic = independent of implementation

Semantic Profiling

Analysis of costs
» not a static analysis

Semantics yields one set of costs per input
» run program over many inputs to generalize

Semantic = independent of implementation
loses some precision

v/ acts as specification

Visualizing Schedules

Distill graphs, focusing on parallel structure
» coalesce sequential computation

» use size, color, relative position

» omit less interesting edges

Visualizing Schedules

Distill graphs, focusing on parallel structure
» coalesce sequential computation

» use size, color, relative position
» omit less interesting edges
Graphs derived from semantics,

...compressed mechanically,
... then laid out with GraphViz

Matrix Multiply (Breadth-First, p = 2)

Matrix Multiply (Work Stealing, p = 2)

Quick Hull

)

2

p:

Irst,

Depth F

(

Quick Hull

Quick Hull (Work Stealing, p = 2)

o0 o6
5000 0 o0
SO S O

Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:

S 2500 . , ,

W (work queue) mm

£ 2000 - T

S I [m,u] we

g 1588 append (#1 Ir, #2 Ir) mm

2 1000 - (remainder)

& 500 ‘ ‘

<=

3 U —

% 2 4 6 8 10 12

input size (# rows/columns)

Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:

Scheduler Overhead

workqueue :
g

i L .
1508 append (#1 Ir, #2 Ir) mm

(remainder)

N

o

o

o
T

1000

2 4 6 8 10 12
input size (# rows/columns)

space high-water mark (units)

Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:

S 2500 Scheduler Overhead

i Qwork queue)

=< 2000

£

i 150%8s append (#1 Ir, #

%’ 1000 ‘(remain‘der)

& 500

=

S ==

% 2 4 6 3 10 12

input size (# rows/columns)

Verifying Profiling Results

Verifying Profiling Results

Implemented a parallel extension to MLton
» including three different schedulers

» compared predicted and actual space use

Matrix Multiply — MLton Space Use

35
30
8

20

15

max live (MB

10

input size (# of rows/columns)

Breadth-First /
= Depth-First _
-~ [Work-$tealing
ey </
0 50 100 150 200

Quicksort — MLton Space Use

max live (MB)

ng

h First

400
350
300
250 .
Depth-First
200 - Y
\
150 Y .
\ " _Work-Steali
100 \ e,
v { (
50 e o e T
M _________________ \," Breadt
0 s e rrTrTTTTTTTTITITIT S £
0 1000 2000 3000 4000 5000 6000

input size (# elements)

Initial Quicksort Results

» predicted: breadth-first outperforms depth-first

Initial Quicksort Results

» predicted: breadth-first outperforms depth-first

» initial observation: same results!

Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Without a cost semantics, there is no bug!

Also in the Paper

More details, including. . .
rules for cost semantics

\{

discussion of MLton implementation
» efficient method for space measurements

\4

more plots (profiling, speedup, &c.)

\{

application to vectorization (in TR)

\4

Selected Related Work

Cost semantics
» Sansom & Peyton Jones. POPL '95

» Blelloch & Greiner. ICFP '96
Scheduling
» Blelloch, Gibbons, & Matias. JACM '99

» Blumofe & Leiserson. JACM '99
Profiling
» Runciman & Wakeling. JFP '93

» ibid. Glasgow FP '93

http://doi.acm.org/10.1145/199448.199531
http://doi.acm.org/10.1145/232627.232650
http://doi.acm.org/10.1145/301970.301974
http://doi.acm.org/10.1145/324133.324234
http://citeseer.ist.psu.edu/cache/papers/cs/842/http:zSzzSzwww.cs.york.ac.ukzSz%7EcolinzSzpaperszSzjfp93hp.pdf/runciman93heap.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.9437

Conclusion

Conclusion

Semantic profiling for parallel programs. . .
» accounts for scheduling, space use

» constrains implementation (and finds bugs!)

» supports visualization &
predicts actual performance

Thanks!

Thanks to MLton developers, and
Thank you for listening!

Questions?
spoons@cmu.edu

Download binaries, source code, papers, slides:

http://www.cs.cmu.edu/~spoons/parallel/

svn co svn://mlton.org/mlton/...
branches/shared-heap-multicore mlton

mailto:spoons@cmu.edu
spoons@cmu.edu
http://www.cs.cmu.edu/~spoons/parallel/
http://www.cs.cmu.edu/~spoons/parallel/

	Introduction
	Title
	Improving Performance -- Profiling Helps!
	Example: Matrix Multiply
	Scheduling Matters
	Semantic Space Profiling
	Contributions
	Talk Summary

	Cost Semantics I: Parallel Structure
	Program Execution as a Dag
	Program Execution as a Dag (con't)
	Program Execution as a Dag (con't)
	Breadth-First Scheduling Policy
	Breadth-First Illustrated (p=2)
	Breadth-First Scheduling Policy (con't)
	Depth-First Scheduling Policy
	Depth-First Illustrated (p=2)
	Depth-First Scheduling Policy (con't)
	Work-Stealing Scheduling Policy
	Computation Graphs: Summary

	Cost Semantics II: Space Use
	Heap Graphs
	Cost for Parallel Pairs
	From Cost Graphs to Space Use
	Determining Space Use
	Heap Edges Also Track Uses
	Heap Graphs: Summary
	Example Graphs

	Semantic Profiling
	Semantic Profiling
	Visualizing Schedules
	Matrix Multiply (Breadth-First, p=2)
	Matrix Multiply (Work Stealing, p=2)
	Quick Hull
	Quick Hull (Depth First, p=2)
	Quick Hull (Work Stealing, p=2)
	Space Use By Input Size
	Verifying Profiling Results
	Matrix Multiply -- MLton Space Use
	Quicksort -- MLton Space Use
	Initial Quicksort Results
	Space Leak Revealed

	Conclusion
	Also in the Paper
	Selected Related Work
	Conclusion
	Thanks!

