
Space Profiling for
Parallel Functional Programs

Daniel Spoonhower1, Guy Blelloch1,
Robert Harper1, & Phillip Gibbons2

1Carnegie Mellon University
2Intel Research Pittsburgh

23 September 2008
ICFP ’08, Victoria, BC



Improving Performance – Profiling Helps!

Profiling improves functional program performance.

Good performance in parallel programs is also hard.

This work: space profiling for parallel programs



Improving Performance – Profiling Helps!

Profiling improves functional program performance.

Good performance in parallel programs is also hard.

This work: space profiling for parallel programs



Improving Performance – Profiling Helps!

Profiling improves functional program performance.

Good performance in parallel programs is also hard.

This work: space profiling for parallel programs



Example: Matrix Multiply

Näıve NESL code for matrix multiplication

function dot(a,b) = sum ({ a ∗ b : a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n3) space for n × n matrices!

I compare to O(n2) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”

Short answer: It depends on the implementation.



Example: Matrix Multiply

Näıve NESL code for matrix multiplication

function dot(a,b) = sum ({ a ∗ b : a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n3) space for n × n matrices!

I compare to O(n2) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”

Short answer: It depends on the implementation.



Example: Matrix Multiply

Näıve NESL code for matrix multiplication

function dot(a,b) = sum ({ a ∗ b : a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n3) space for n × n matrices!

I compare to O(n2) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”

Short answer: It depends on the implementation.



Example: Matrix Multiply

Näıve NESL code for matrix multiplication

function dot(a,b) = sum ({ a ∗ b : a; b })
function prod(m,n) = { { dot(m,n) : n } : m }

Requires O(n3) space for n × n matrices!

I compare to O(n2) for sequential ML

Given a parallel functional program, can we determine,

“How much space will it use?”

Short answer: It depends on the implementation.



Scheduling Matters

Parallel programs admit many different executions

I not all impl. of matrix multiply are O(n3)

Determined (in part) by scheduling policy

I lots of parallelism; policy says what runs next



Semantic Space Profiling

Our approach: factor problem into two parts.

1. Define parallel structure (as graphs)
I circumscribes all possible executions

I deterministic (independent of policy, &c.)

I include approximate space use

2. Define scheduling policies (as traversals of graphs)
I used in profiling, visualization

I gives specification for implementation



Contributions

Contributions of this work:
I cost semantics accounting for. . .

I scheduling policies

I space use

I semantic space profiling tools

I extensible implementation in MLton



Talk Summary

Cost Semantics, Part I: Parallel Structure

Cost Semantics, Part II: Space Use

Semantic Profiling



Talk Summary

Cost Semantics, Part I: Parallel Structure

Cost Semantics, Part II: Space Use

Semantic Profiling



Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions

I nodes represent units of work

I edges represent sequential dependencies

Each schedule corresponds to a traversal

I every node must be visited; parents first

I limit number of nodes visited in each step

A policy determines schedule for every program



Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions

I nodes represent units of work

I edges represent sequential dependencies

Each schedule corresponds to a traversal

I every node must be visited; parents first

I limit number of nodes visited in each step

A policy determines schedule for every program



Program Execution as a Dag

Model execution as directed acyclic graph (dag)

One graph for all parallel executions

I nodes represent units of work

I edges represent sequential dependencies

Each schedule corresponds to a traversal

I every node must be visited; parents first

I limit number of nodes visited in each step

A policy determines schedule for every program



Program Execution as a Dag (con’t)



Program Execution as a Dag (con’t)

Graphs are NOT. . .

I control flow graphs

I explicitly built at runtime

Graphs are. . .

I derived from cost semantics

I unique per closed program

I independent of scheduling



Breadth-First Scheduling Policy

Scheduling policy defined by:

I breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

I break ties by taking leftmost node

I visit at most p nodes per step
(p = number of processor cores)

Variation implicit in impls. of NESL
& Data Parallel Haskell

I vectorization bakes in schedule



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Illustrated (p = 2)



Breadth-First Scheduling Policy

Scheduling policy defined by:

I breadth-first traversal of the dag
(i.e. visit nodes at shallow depth first)

I break ties by taking leftmost node

I visit at most p nodes per step
(p = number of processor cores)

Variation implicit in impls. of NESL
& Data Parallel Haskell

I vectorization bakes in schedule



Depth-First Scheduling Policy

Scheduling policy defined by:

I depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

I break ties by taking leftmost node

I visit at most p nodes per step
(p = number of processor cores)

Sequential execution
= one processor depth-first schedule



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Illustrated (p = 2)



Depth-First Scheduling Policy

Scheduling policy defined by:

I depth-first traversal of the dag
(i.e. favor children of recently visited nodes)

I break ties by taking leftmost node

I visit at most p nodes per step
(p = number of processor cores)

Sequential execution
= one processor depth-first schedule



Work-Stealing Scheduling Policy

“Work-stealing” means many things:

I idle procs. shoulder burden of communication

I specific implementations, e.g. Cilk

I implied ordering of parallel tasks

For the purposes of space profiling, ordering is important

I briefly: globally breadth-first, locally depth-first



Computation Graphs: Summary

Cost semantics defines graph for each closed program

I i.e.. defines parallel structure

I call this graph computation graph

Scheduling polices defined on graphs

I describe behavior without data structures,
synchronization, &c.



Talk Summary

Cost Semantics, Part I: Parallel Structure

Cost Semantics, Part II: Space Use

Semantic Profiling



Heap Graphs

Goal: describe space use independently of schedule

I our innovation: add heap graphs

Heap graphs also act as a specification

I constrain use of space by compiler & GC

I just as computation graph constrains schedule

Computation & heap graphs share nodes.

I think: one graph w/ two sets of edges



Heap Graphs

Goal: describe space use independently of schedule

I our innovation: add heap graphs

Heap graphs also act as a specification

I constrain use of space by compiler & GC

I just as computation graph constrains schedule

Computation & heap graphs share nodes.

I think: one graph w/ two sets of edges



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)

e1 e2



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)

e1 e2



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)

e1 e2



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)

e1 e2



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)

e1 e2



Cost for Parallel Pairs

Generate costs for parallel pair,

{e1, e2}

(see paper for
inference rules)

e1 e2



From Cost Graphs to Space Use

Recall, schedule = traversal of computation graph

I visiting p nodes per step to simulate p processors

Each step of traversal divides set of nodes into:

1. nodes executed in past

2. notes to be executed in future

Heap edges crossing from future to past are “roots”

I i.e. future uses of existing values



From Cost Graphs to Space Use

Recall, schedule = traversal of computation graph

I visiting p nodes per step to simulate p processors

Each step of traversal divides set of nodes into:

1. nodes executed in past

2. notes to be executed in future

Heap edges crossing from future to past are “roots”

I i.e. future uses of existing values



Determining Space Use



Determining Space Use



Determining Space Use



Determining Space Use



Determining Space Use



Determining Space Use



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)

e1

e2



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)

e1

e2



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)

e1

e2



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)

e1

e2

values of e3



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)

e1

e2

values of e3



Heap Edges Also Track Uses

Heap edges also added as
“possible last-uses,” e.g.,

if e1 then e2 else e3

(where e1 7→∗ true)

e1

e2

values of e3



Heap Graphs: Summary

Heap edge from B to A indicates a dependency on A
. . . given knowledge up to time corresponding to B

Some push back on semantics from implementation

I semantics must be implementable

I e.g., “true” vs. “provable” garbage



Heap Graphs: Summary

Heap edge from B to A indicates a dependency on A
. . . given knowledge up to time corresponding to B

Some push back on semantics from implementation

I semantics must be implementable

I e.g., “true” vs. “provable” garbage



Example Graphs
Matrix multiplication

I computation graph on left; heap on right



Talk Summary

Cost Semantics, Part I: Parallel Structure

Cost Semantics, Part II: Space Use

Semantic Profiling



Semantic Profiling

Analysis of costs

I not a static analysis

Semantics yields one set of costs per input

I run program over many inputs to generalize

Semantic ⇒ independent of implementation

6 loses some precision

4 acts as specification



Semantic Profiling

Analysis of costs

I not a static analysis

Semantics yields one set of costs per input

I run program over many inputs to generalize

Semantic ⇒ independent of implementation

6 loses some precision

4 acts as specification



Semantic Profiling

Analysis of costs

I not a static analysis

Semantics yields one set of costs per input

I run program over many inputs to generalize

Semantic ⇒ independent of implementation

6 loses some precision

4 acts as specification



Semantic Profiling

Analysis of costs

I not a static analysis

Semantics yields one set of costs per input

I run program over many inputs to generalize

Semantic ⇒ independent of implementation

6 loses some precision

4 acts as specification



Visualizing Schedules

Distill graphs, focusing on parallel structure

I coalesce sequential computation

I use size, color, relative position

I omit less interesting edges

Graphs derived from semantics,
. . . compressed mechanically,
. . . then laid out with GraphViz



Visualizing Schedules

Distill graphs, focusing on parallel structure

I coalesce sequential computation

I use size, color, relative position

I omit less interesting edges

Graphs derived from semantics,
. . . compressed mechanically,
. . . then laid out with GraphViz



Matrix Multiply (Breadth-First, p = 2)



Matrix Multiply (Work Stealing, p = 2)



Quick Hull



Quick Hull (Depth First, p = 2)



Quick Hull (Work Stealing, p = 2)



Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:

0

500

1000

1500

2000

2500

2 4 6 8 10 12

sp
ac

e
hi

gh
-w

at
er

m
ar

k
(u

ni
ts

)

input size (# rows/columns)

〈work queue〉
[b,a]

[m,u]
append (#1 lr, #2 lr)

〈remainder〉



Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:

0

500

1000

1500

2000

2500

2 4 6 8 10 12

sp
ac

e
hi

gh
-w

at
er

m
ar

k
(u

ni
ts

)

input size (# rows/columns)

〈work queue〉
[b,a]

[m,u]
append (#1 lr, #2 lr)

〈remainder〉

Scheduler Overhead



Space Use By Input Size

Matrix multiply w/ breadth-first scheduling policy:

0

500

1000

1500

2000

2500

2 4 6 8 10 12

sp
ac

e
hi

gh
-w

at
er

m
ar

k
(u

ni
ts

)

input size (# rows/columns)

〈work queue〉
[b,a]

[m,u]
append (#1 lr, #2 lr)

〈remainder〉

Scheduler Overhead

Closures



Verifying Profiling Results

Implemented a parallel extension to MLton

I including three different schedulers

I compared predicted and actual space use



Verifying Profiling Results

Implemented a parallel extension to MLton

I including three different schedulers

I compared predicted and actual space use



Matrix Multiply – MLton Space Use

0

5

10

15

20

25

30

35

0 50 100 150 200

m
ax

liv
e

(M
B

)

input size (# of rows/columns)

Depth-First
Work-Stealing

Breadth-First



Quicksort – MLton Space Use

0

50

100

150

200

250

300

350

400

0 1000 2000 3000 4000 5000 6000

m
ax

liv
e

(M
B

)

input size (# elements)

Depth-First

Work-Stealing

Breadth-First



Initial Quicksort Results

I predicted: breadth-first outperforms depth-first

I initial observation: same results!



Initial Quicksort Results

I predicted: breadth-first outperforms depth-first

I initial observation: same results!



Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Without a cost semantics, there is no bug!



Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Without a cost semantics, there is no bug!



Space Leak Revealed

Cause: reference flattening optimization
(representing reference cells directly in records)

Now fixed in MLton source repository

Without a cost semantics, there is no bug!



Also in the Paper

More details, including. . .

I rules for cost semantics

I discussion of MLton implementation
I efficient method for space measurements

I more plots (profiling, speedup, &c.)

I application to vectorization (in TR)



Selected Related Work

Cost semantics

I Sansom & Peyton Jones. POPL ’95

I Blelloch & Greiner. ICFP ’96

Scheduling

I Blelloch, Gibbons, & Matias. JACM ’99

I Blumofe & Leiserson. JACM ’99

Profiling

I Runciman & Wakeling. JFP ’93

I ibid. Glasgow FP ’93

http://doi.acm.org/10.1145/199448.199531
http://doi.acm.org/10.1145/232627.232650
http://doi.acm.org/10.1145/301970.301974
http://doi.acm.org/10.1145/324133.324234
http://citeseer.ist.psu.edu/cache/papers/cs/842/http:zSzzSzwww.cs.york.ac.ukzSz%7EcolinzSzpaperszSzjfp93hp.pdf/runciman93heap.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.9437


Conclusion

Semantic profiling for parallel programs. . .

I accounts for scheduling, space use

I constrains implementation (and finds bugs!)

I supports visualization &
predicts actual performance



Conclusion

Semantic profiling for parallel programs. . .

I accounts for scheduling, space use

I constrains implementation (and finds bugs!)

I supports visualization &
predicts actual performance



Thanks!

Thanks to MLton developers, and
Thank you for listening!

Questions?
spoons@cmu.edu

Download binaries, source code, papers, slides:
http://www.cs.cmu.edu/~spoons/parallel/

svn co svn://mlton.org/mlton/...

branches/shared-heap-multicore mlton

mailto:spoons@cmu.edu
spoons@cmu.edu
http://www.cs.cmu.edu/~spoons/parallel/
http://www.cs.cmu.edu/~spoons/parallel/

	Introduction
	Title
	Improving Performance -- Profiling Helps!
	Example: Matrix Multiply
	Scheduling Matters
	Semantic Space Profiling
	Contributions
	Talk Summary

	Cost Semantics I: Parallel Structure
	Program Execution as a Dag
	Program Execution as a Dag (con't)
	Program Execution as a Dag (con't)
	Breadth-First Scheduling Policy
	Breadth-First Illustrated (p=2)
	Breadth-First Scheduling Policy (con't)
	Depth-First Scheduling Policy
	Depth-First Illustrated (p=2)
	Depth-First Scheduling Policy (con't)
	Work-Stealing Scheduling Policy
	Computation Graphs: Summary

	Cost Semantics II: Space Use
	Heap Graphs
	Cost for Parallel Pairs
	From Cost Graphs to Space Use
	Determining Space Use
	Heap Edges Also Track Uses
	Heap Graphs: Summary
	Example Graphs

	Semantic Profiling
	Semantic Profiling
	Visualizing Schedules
	Matrix Multiply (Breadth-First, p=2)
	Matrix Multiply (Work Stealing, p=2)
	Quick Hull
	Quick Hull (Depth First, p=2)
	Quick Hull (Work Stealing, p=2)
	Space Use By Input Size
	Verifying Profiling Results
	Matrix Multiply -- MLton Space Use
	Quicksort -- MLton Space Use
	Initial Quicksort Results
	Space Leak Revealed

	Conclusion
	Also in the Paper
	Selected Related Work
	Conclusion
	Thanks!


