
amira 3.1
User’s Guide and Reference Manual

including amiraDev and amiraVR

Copyright Information

c©1995-2003 Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Germany
c©1999-2003 Indeed - Visual Concepts GmbH, Berlin, Germany
c©1999-2003 TGS Template Graphics Software, Inc., USA

All rights reserved.

amira is being jointly developed by Konrad-Zuse-Zentrum für Informationstechnik Berlin and by Indeed - Visual Concepts
GmbH. It is based on the latest release of the Open Inventor toolkit from TGS Template Graphics Software, Inc.

Indeed - Visual Concepts GmbH has selected TGS Template Graphics Software, Inc., as the worldwide distributor for amira.

This document contains proprietary information of Konrad-Zuse-Zentrum für Informationstechnik Berlin and Indeed - Visual
Concepts GmbH, and is protected by German and international law. The contents of this document may not be translated,
copied, or duplicated in any form, in whole or in part, without the express written permission of Konrad-Zuse-Zentrum für
Informationstechnik Berlin or Indeed - Visual Concepts GmbH.

The information contained in this document is subject to change without notice. Neither Konrad-Zuse-Zentrum für Informa-
tionstechnik Berlin nor Indeed - Visual Concepts GmbH or their employees shall be responsible for incidental or consequential
damages resulting from the use of this material or liable for technical or editorial omissions or errors made herein.

Trademark Information: Amira is a registered trademark of Konrad-Zuse-Zentrum für Informationstechnik Berlin. AmiraDev

is a trademark of Indeed - Visual Concepts GmbH. Hewlett-Packard, HP, and HP-UX, are registered trademarks of Hewlett-

Packard, Inc. Windows is a registered trademark of Microsoft Corporation. Visual C++, Visual Studio, Developer Studio, and

Internet Explorer are trademarks of Microsoft Corporation. Netscape is a trademark of Netscape Communications, Inc. OpenGL

is a registered trademark of Silicon Graphics, Inc. Open Inventor, is a trademark of Silicon Graphics Inc. Solaris is a registered

trademark of Sun Microsystems, Inc. OpenWindows, Sun, and SunOS are trademarks of Sun Microsystems, Inc. OSF/Motif

and OSF/1 are trademarks of Open Software Foundation, Inc. UNIX is a registered trademark of UNIX Systems Laboratories,

Inc. CAVE is a registered trademark of the University of Illinois Board of Trustees. HOLOBENCH is a registered trademark of

Helmut Tan. All other products and company names are trademarks or registered trademarks of their respective companies.

Contents

I amira User’s Guide 1

1 Introduction 3

1.1 Overview . 3

1.2 Features . 4

1.2.1 Direct Volume Rendering . 5

1.2.2 Isosurfaces . 5

1.2.3 Segmentation . 5

1.2.4 Surface Reconstruction . 5

1.2.5 Surface Simplification . 6

1.2.6 Generation of Tetrahedral Grids . 6

1.3 Application Areas . 6

1.4 Extensions . 7

2 First steps in amira 9

2.1 Getting Started . 10

2.1.1 Loading Data . 10

2.1.2 Invoking Editors . 13

2.1.3 Visualizing Data . 13

2.1.4 Interaction with the Viewer . 14

2.2 How to load image data . 16

2.2.1 The amira file browser . 17

2.2.2 Reading 3D image data from multiple 2D slices 18

2.2.3 Setting the bounding box . 18

2.2.4 The Stacked Slices file format . 19

2.2.5 Working with Large Disk Data . 20

2.3 Visualizing 3D Images . 22

2.3.1 Orthogonal Slices . 23

2.3.2 Simple Data Analysis . 23

2.3.3 Resampling the Data . 24

2.3.4 Displaying an Isosurface . 25

2.3.5 Cropping the Data . 25

2.3.6 Volume Rendering . 26

2.4 Working with Multi-Channel Images . 28

2.4.1 Loading Multi-Channel Images into amira 29

2.4.2 Using OrthoSlice with a MultiChannelField 30

2.4.3 Using ProjectionView with a MultiChannelField 31

2.4.4 Using Voltex with a MultiChannelField . 31

2.4.5 Saving a MultiChannelField in a Single AmiraMesh File 33

2.5 Segmentation of 3D Images . 33

2.5.1 Interactive Image Segmentation . 33

2.5.2 Volume Measurement . 35

2.5.3 Threshold Segmentation . 35

2.5.4 Refining Threshold Segmentation Results 36

2.6 Surface Reconstruction from 3D Images . 37

2.6.1 Extracting Surfaces from Segmentation Results 37

2.6.2 Simplifying the Surface . 38

2.7 Creating a Tetrahedral Grid from a Triangular Surface 39

2.7.1 Simplifying the Surface . 39

2.7.2 Editing the Surface . 40

2.7.3 Generation of a Tetrahedral Grid . 42

2.8 Warping and Registration Using Landmarks . 44

2.8.1 Displaying Data Sets in Two Viewers . 44

ii CONTENTS

2.8.2 Creating a Landmark Set . 45

2.8.3 Registration via a Rigid Transformation . 47

2.8.4 Warping Two Image Volumes . 48

2.9 Alignment of 2D Physical Cross-Sections . 48

2.9.1 Basic Manual Alignment . 49

2.9.2 Alignment Via Landmarks . 51

2.9.3 Optimizing the Quality Function . 54

2.9.4 Resampling the Input Data . 54

2.9.5 Using a Reference Image . 55

2.10 Registration of 3D image datasets . 55

2.10.1 Basic Manual Registration . 56

2.10.2 Automatic Registration . 57

2.10.3 Image Fusion . 58

2.11 Visualization of Vector Fields . 59

2.11.1 Loading the Wing and the Flow Field . 59

2.11.2 Line Integral Convolution . 60

2.11.3 Illuminated Stream Lines . 61

2.12 Creating animated demonstrations . 63

2.12.1 Creating a Network . 64

2.12.2 Animating an OrthoSlice module . 64

2.12.3 Activating a module in the viewer window 66

2.12.4 Using a camera rotation . 68

2.12.5 Editing or removing an already defined event 68

2.12.6 Overlaying the bone with skin . 69

2.12.7 Using clipping to add the skin gradually . 70

2.12.8 More comments on clipping . 72

2.12.9 Breaks and Function Keys . 73

2.12.10 Loops and go-to . 74

2.12.11 Storing and replaying the animation sequence 75

2.13 Creating movie files . 75

CONTENTS iii

2.13.1 Attaching MovieMaker to a camera path . 76

2.13.2 Attaching MovieMaker to DemoMaker . 77

3 Program Description 79

3.1 Interface Components . 79

3.1.1 File Menu . 79

3.1.2 Edit Menu . 81

3.1.3 Create Menu . 83

3.1.4 View Menu . 84

3.1.5 Online Help . 86

3.1.6 Main Window . 88

3.1.7 Viewer Window . 90

3.1.8 Console Window . 93

3.1.9 File Dialog . 94

3.1.10 Job Dialog . 95

3.1.11 Preference Dialog . 97

3.1.12 Snapshot Dialog . 98

3.1.13 System Information Dialog . 99

3.2 General Concepts . 99

3.2.1 Class Structure . 100

3.2.2 Scalar Field and Vector Fields . 101

3.2.3 Coordinates and Grids . 102

3.2.4 Surface Data . 103

3.2.5 Vertex Set . 103

3.2.6 Transformations . 103

3.2.7 Parameters . 104

4 Technical Information 105

4.1 Data Import . 105

4.2 Command Line Options . 106

4.3 Environment Variables . 107

iv CONTENTS

4.4 User-defined start-up script . 108

4.5 Frequently Asked Questions . 109

4.6 System Requirements . 122

4.6.1 On System Stability . 122

4.6.2 Microsoft Windows . 123

4.6.3 Silicon Graphics . 123

4.6.4 HP-UX . 123

4.6.5 SunOS . 124

4.6.6 Linux . 124

4.7 Acknowledgments and Copyrights . 124

4.8 Contact and Support . 126

5 Scripting 127

5.1 Introduction . 127

5.2 Introduction to Tcl . 128

5.2.1 Tcl Lists, Commands, Comments . 128

5.2.2 Tcl Variables . 129

5.2.3 Tcl Command Substitution . 130

5.2.4 Tcl Control Structures . 130

5.3 amira Script Interface . 134

5.3.1 Predefined Variables . 135

5.3.2 Object commands . 136

5.3.3 Global commands . 136

5.4 amira Script File . 147

5.5 Configuring Popup Menus . 148

II amira Reference Manual 151

6 Alphabetic Index of Modules 153

6.1 Access LargeDiskData . 153

6.2 AlignPrincipalAxes . 154

CONTENTS v

6.3 AlignSlices . 155

6.3.1 Tool Bar . 156

6.3.2 Resize options . 158

6.3.3 Menu Bar . 158

6.3.4 Alignment Methods . 163

6.3.5 Image Viewer . 164

6.3.6 Key Bindings . 165

6.4 AlignSurfaces . 168

6.5 Animate . 169

6.6 Annotation . 170

6.7 AnonymizeImageStack . 171

6.8 Apply Transform . 172

6.9 ArbitraryCut . 174

6.10 Arithmetic . 176

6.11 Axis . 179

6.12 BoundaryConditions . 181

6.13 BoundingBox . 182

6.14 CastField . 182

6.15 ChannelWorks . 184

6.16 ClippingPlane . 186

6.17 ClusterDiff . 186

6.18 ClusterGrep . 188

6.19 ClusterSample . 189

6.20 ClusterView . 189

6.21 Color Combine . 192

6.22 Colorwash . 193

6.23 CombineLandmarks . 195

6.24 CompareLatticeData . 195

6.25 ComponentField . 196

6.26 ComputeContours . 197

vi CONTENTS

6.27 ConePlot . 198

6.28 ConnectedComponents . 201

6.29 ContourView . 202

6.30 ContrastControl . 203

6.31 ConvertToLargeDiskData . 206

6.32 CorrectZDrop . 206

6.33 CorrelationPlot . 207

6.34 Curl . 211

6.35 Cutting Plane . 211

6.36 CylinderSlice . 212

6.37 DataProbe . 213

6.38 Delaunay2D . 216

6.39 DemoMaker . 218

6.40 Digital Image Filters . 228

6.41 Displace . 228

6.42 DisplayColormap . 229

6.43 DisplayISL . 230

6.44 DisplayTime . 233

6.45 DistanceMap . 234

6.46 Divergence . 236

6.47 DoseVolume (Tetrahedra) . 236

6.48 DuplicateNodes . 237

6.49 FieldCut . 238

6.50 GetCurvature . 240

6.51 Gradient . 241

6.52 GridBoundary . 242

6.53 GridCut . 243

6.54 GridView . 245

6.55 GridVolume . 245

6.56 Grouping . 247

CONTENTS vii

6.57 HeightField . 248

6.58 HexToTet . 249

6.59 HexaView . 250

6.60 Histogram . 251

6.61 IlluminatedLines . 253

6.62 InterpolLabels . 254

6.63 Interpolate . 255

6.64 InterpolateLabels . 256

6.65 Intersect . 257

6.66 Isolines . 258

6.67 Isolines (Surface) . 260

6.68 Isosurface (Hexahedra) . 261

6.69 Isosurface (Regular) . 262

6.70 Isosurface (Tetrahedra) . 264

6.71 IvDisplay . 265

6.72 IvToSurface . 265

6.73 LabelVoxel . 266

6.74 LandmarkSurfaceWarp . 268

6.75 LandmarkView . 268

6.76 LandmarkWarp . 269

6.77 LegoSurfaceGen . 270

6.78 LineProbe . 270

6.79 LineSetProbe . 271

6.80 LineSetView . 272

6.81 LineStreaks . 274

6.82 MagAndPhase . 275

6.83 Magnitude . 275

6.84 Measuring . 276

6.85 Merge . 277

6.86 MovieMaker . 279

viii CONTENTS

6.87 MoviePlayer . 281

6.87.1 The Amira Movie Format . 281

6.87.2 Optimized Amira Movies . 282

6.87.3 Which movie or image format should I use ? 282

6.88 ObliqueSlice . 284

6.89 OrthoSlice . 287

6.90 Parametric Surface . 289

6.91 PlanarLIC . 292

6.92 PointProbe . 294

6.93 PointWrap . 294

6.94 ProbeToLineSet . 295

6.95 ProjectionView . 296

6.96 ProjectionViewCursor . 298

6.97 Registration . 299

6.98 Relabel . 302

6.99 Resample . 303

6.99.1 Resampling non-labeled data fields . 303

6.99.2 Resampling labeled data fields . 304

6.99.3 Coordinates of the resampled data set . 304

6.99.4 Resampling in progress . 305

6.100 Scale . 306

6.101 ScanConvertSurface . 307

6.102 SeedSurface . 308

6.103 SelectRoi . 309

6.104 Shear . 310

6.105 Smooth Surface . 311

6.106 Splats . 312

6.107 SplineProbe . 313

6.108 StandardView . 313

6.109 StreamRibbons . 315

CONTENTS ix

6.110 StreamSurface . 317

6.111 SurfaceArea . 318

6.112 SurfaceCut . 319

6.113 SurfaceDistance . 321

6.114 SurfaceField . 322

6.115 SurfaceGen . 323

6.116 SurfaceLIC . 325

6.117 SurfaceView . 327

6.118 TetToHex . 329

6.119 TetraCombine . 330

6.120 TetraGen . 331

6.121 TetraQuality . 332

6.122 TimeSeriesControl . 333

6.123 TissueStatistics . 335

6.124 TriangleQuality . 337

6.125 VRML Export . 338

6.126 VectorProbe . 340

6.127 Vectors . 342

6.128 Vectors (Tetrahedra) . 343

6.129 Vectors/Normals (Surface) . 345

6.130 Vertex Morph . 346

6.131 Vertex View . 347

6.132 VertexDiff . 350

6.133 VertexShift . 351

6.134 ViewBase . 351

6.135 VolPro-1000 . 355

6.136 Voltex . 360

6.137 VolumeEdit . 363

6.138 VoxelView . 365

7 Alphabetic Index of Ports 367

x CONTENTS

7.1 Port . 367

7.2 Connection . 369

7.3 MasterConnection . 370

7.4 Port3DPointList . 371

7.5 PortButtonList . 373

7.6 PortButtonMenu . 375

7.7 PortChannelConfig . 376

7.8 PortColorList . 377

7.9 PortColormap . 378

7.10 PortDoIt . 379

7.11 PortDrawStyle . 379

7.12 PortFilename . 380

7.13 PortFloatSlider . 382

7.14 PortFloatTextN . 384

7.15 PortGeneric . 385

7.16 PortInfo . 387

7.17 PortIntSlider . 388

7.18 PortIntTextN . 388

7.19 PortMultiChannel . 389

7.20 PortMultiMenu . 389

7.21 PortRadioBox . 390

7.22 PortSeparator . 391

7.23 PortTabBar . 391

7.24 PortText . 392

7.25 PortTime . 393

7.26 PortToggleList . 395

8 Alphabetic Index of Data Types 397

8.1 AnnaScalarField3 . 397

8.2 AnnaVectorField3 . 398

8.3 CameraRotate . 400

CONTENTS xi

8.4 Cluster . 400

8.5 ColorField3 . 401

8.6 Colormap . 402

8.7 Data . 404

8.8 Field3 . 405

8.9 IvData . 405

8.10 LabelField3 . 405

8.11 LandmarkSet . 407

8.12 LargeDiskData . 408

8.13 Lattice3 . 409

8.14 Light . 410

8.15 LineSet . 413

8.16 Movie . 414

8.17 MultiChannelField3 . 417

8.18 Object . 418

8.19 ScriptObject . 419

8.20 SpatialData . 423

8.21 SpreadSheet . 425

8.22 Surface . 425

8.23 TetraGrid . 427

8.24 Time . 428

8.25 VertexSet . 429

9 Alphabetic Index of File Formats 431

9.1 ACR-NEMA . 431

9.2 AVS Field . 431

9.3 AVS UCD Format . 432

9.4 Amira Script . 432

9.5 Amira Script Object . 432

9.6 AmiraMesh Format . 432

9.6.1 Fields with uniform coordinates . 435

xii CONTENTS

9.6.2 Fields with stacked coordinates . 436

9.6.3 Fields with rectilinear coordinates . 437

9.6.4 Fields with curvilinear coordinates . 438

9.6.5 Label fields for segmentation . 439

9.6.6 Landmarks for registration . 440

9.6.7 Line segments . 441

9.6.8 Colormaps . 442

9.7 AmiraMesh as LargeDiskData . 443

9.8 Analyze 7.5 . 443

9.9 AnalyzeAVW . 444

9.10 BMP Image Format . 444

9.11 Bio-Rad Confocal Format . 444

9.12 DICOM . 445

9.13 DXF . 449

9.14 Encapsulated Postscript . 449

9.15 FIDAP NEUTRAL . 450

9.16 Fluent / UNS . 450

9.17 HTML . 450

9.18 HxSurface . 450

9.19 Hypermesh . 455

9.20 IDEAS universal format . 456

9.21 Icol . 456

9.22 JPEG Image Format . 456

9.23 LargeDiskData . 457

9.24 Leica 3D TIFF . 457

9.25 Leica Binary Format (.lei) . 457

9.26 Leica Slice Series (.info) . 458

9.27 Metamorph STK Format . 458

9.28 Open Inventor . 458

9.29 PNG Image Format . 458

CONTENTS xiii

9.30 PNM Image Format . 459

9.31 PSI format . 459

9.32 Plot 3D Single Structured . 460

9.33 Ply Format . 463

9.34 Raw Data . 463

9.35 Raw Data as LargeDiskData . 465

9.36 SGI-RGB Image Format . 465

9.37 STL . 465

9.38 Stacked-Slices . 465

9.39 Stacked-Slices as LargeDiskData . 466

9.40 TIFF Image Format . 467

9.41 VRML . 469

10 Alphabetic Index of Editors 471

10.1 CameraPath Editor . 471

10.2 Color Dialog . 472

10.3 Colormap Editor . 474

10.3.1 Description of the user interface elements 475

10.3.2 How to modify a colormap . 478

10.4 Digital Image Filters . 479

10.4.1 Minimum Filter . 481

10.4.2 Maximum Filter . 481

10.4.3 Unsharp Masking . 481

10.4.4 Laplacian Zero-Crossing Filter . 481

10.4.5 Median Filter . 481

10.4.6 Gauss Filter . 482

10.4.7 Sobel Filter . 482

10.4.8 Histogram Filter . 482

10.4.9 Edge-Preserving Smoothing . 482

10.4.10 Lanczos Filter . 483

10.4.11 Sigmoid Filter . 483

xiv CONTENTS

10.4.12 Brightness and Contrast Filter . 483

10.4.13 Moments Filter . 483

10.5 Grid Editor . 484

10.6 ImageCrop Editor . 488

10.6.1 Cropping an image by dragging and moving the box 489

10.6.2 Cropping an image by setting values explicitly in the text fields 489

10.6.3 Adding new slices . 489

10.6.4 Changing the size of the bounding box . 489

10.6.5 Flipping slices in one dimension . 490

10.6.6 Exchanging two dimensions . 490

10.7 LandmarkEditor . 490

10.8 LineSet Editor . 491

10.9 Parameter Editor . 492

10.10 Plot Tool . 492

10.10.1 Plot basics . 493

10.10.2 Editing parameters . 493

10.10.3 Working with plot objects . 496

10.10.4 Printing . 497

10.10.5 Saving data . 497

10.10.6 Saving the plot state . 497

10.11 Segmentation Editor . 499

10.11.1 Overview of the segmentation editor . 500

10.11.2 Manipulating the material list . 502

10.11.3 Working in 4 viewer mode . 503

10.11.4 Edit buttons . 504

10.11.5 Segmentation tools . 505

10.11.6 Selection Filters . 508

10.11.7 Label Filters . 511

10.11.8 Key bindings . 512

10.12 Simplification Editor . 513

CONTENTS xv

10.13 Surface Editor . 515

10.13.1 Menu Entries . 517

10.13.2 Selectors . 519

10.13.3 Tools . 520

10.14 Transform Editor . 521

III amira Programmer’s Manual 525

11 Introduction 527

11.1 Overview of the amira Developer Version . 527

11.1.1 Packages and Shared Objects . 527

11.1.2 Package Resource Files . 528

11.1.3 The Local amira Directory . 528

11.1.4 External Libraries . 528

11.2 System Requirements . 529

11.2.1 SGI IRIX . 529

11.2.2 HP-UX . 530

11.2.3 Sun Solaris . 530

11.2.4 Linux . 530

11.2.5 Windows . 530

11.3 Structure of the amira File Tree . 531

11.3.1 The amira Root Directory . 531

11.3.2 The Local amira Directory . 531

11.4 Quick Start Tutorial . 532

11.5 Compiling and Debugging . 534

11.5.1 Windows Visual Studio 6 . 535

11.5.2 Unix . 536

11.6 Maintaining Existing Code . 537

11.6.1 Upgrading to amiraDev 3.1 . 537

11.6.2 Renaming an Existing Package . 538

xvi CONTENTS

12 The Development Wizard 539

12.1 Starting the Development Wizard . 539

12.2 Setting Up the Local amira Directory . 540

12.3 Adding a New Package . 542

12.4 Adding a New Component . 543

12.5 Adding an Ordinary Module . 543

12.6 Adding a Compute Module . 545

12.7 Adding a Read Routine . 545

12.8 Adding a Write Routine . 546

12.9 Creating the Build System Files . 546

12.10 The Package File Syntax . 549

13 File I/O 553

13.1 On file formats . 553

13.2 Read Routines . 554

13.2.1 A Reader for Scalar Fields . 555

13.2.2 A Reader for Surfaces and Surface Fields . 558

13.2.3 More About Read Routines . 562

13.3 Write Routines . 563

13.3.1 A Writer for Scalar Fields . 564

13.3.2 A Writer for Surfaces and Surface Fields . 567

13.4 The AmiraMesh API . 570

13.4.1 Overview . 570

13.4.2 Writing an AmiraMesh File . 571

13.4.3 Reading an AmiraMesh File . 572

14 Writing Modules 575

14.1 A Compute Module . 575

14.1.1 Version 1: Skeleton of a Compute Module 576

14.1.2 Version 2: Creating a Result Object . 579

14.1.3 Version 3: Reusing the Result Object . 581

CONTENTS xvii

14.2 A Display Module . 583

14.2.1 Version 1: Displaying Geometry . 583

14.2.2 Version 2: Adding Color and a Parse Method 588

14.2.3 Version 3: Adding an Update Method . 589

14.3 A Module With Plot Output . 591

14.3.1 A Simple Plot Example . 591

14.3.2 Additional Features of the Plot API . 596

15 Data Classes 599

15.1 Introduction . 599

15.1.1 The Hierarchy of Data Classes . 599

15.1.2 Remarks About the Class Hierarchy . 601

15.2 Data on Regular Grids . 602

15.2.1 The Lattice Interface . 603

15.2.2 Regular Coordinate Types . 606

15.2.3 Label Fields and the Label Lattice Interface 608

15.2.4 Color Fields . 609

15.3 Unstructured Tetrahedral Data . 609

15.3.1 Tetrahedral Grids . 610

15.3.2 Data Defined on Tetrahedral Grids . 611

15.4 Unstructured Hexahedral Data . 612

15.4.1 Hexahedral Grids . 612

15.4.2 Data Defined on Hexahedral Grids . 613

15.5 Other Issues Related to Data Classes . 614

15.5.1 Procedural Interface for 3D Fields . 614

15.5.2 Transformations of Spatial Data Objects . 615

15.5.3 Parameters and Materials . 617

16 Documentation of Modules in amiraDev 619

16.1 The documentation file . 619

16.2 Generating the documentation . 622

xviii CONTENTS

17 Miscellaneous 623

17.1 Time-Dependent Data And Animations . 623

17.1.1 Time Series Control Modules . 623

17.1.2 The Class HxPortTime . 624

17.1.3 Animation Via Time-Out Methods . 625

17.2 Important Global Objects . 626

17.3 Save-Network Issues . 627

17.4 Troubleshooting . 629

17.4.1 Compile-Time Problems . 629

17.4.2 Run-Time Problems . 630

17.4.3 Debugging Problems . 631

18 Online Class Documentation 633

IV amiraVR Manual 635

19 amiraVR Configuration 637

19.1 amiraVR essentials . 638

19.2 Flat screen configurations . 639

19.2.1 Example: A two-channel passive stereo configuration 639

19.2.2 Example: A super-wide configuration with soft-edge blending 641

19.2.3 Example: A tiled four-channel 2x2 monitor configuration 643

19.3 Immersive configurations . 644

19.3.1 Example: A Workbench configuration . 645

19.3.2 Example: A Holobench configuration . 647

19.3.3 Example: A 4-side CAVE configuration . 649

19.4 Calibrating the tracking system . 652

19.5 The amiraVR cluster version . 654

20 Working with amiraVR 657

20.1 3D user interaction . 657

CONTENTS xix

20.1.1 The 3D menu . 658

20.2 User-defined 3D menu items . 658

20.2.1 3D module controls . 662

20.2.2 Navigation modes . 663

20.2.3 Tcl event procedures . 663

20.2.4 The 2D mouse mode . 664

20.3 Writing amiraVR custom modules . 665

21 amiraVR Reference 671

21.1 Config file reference . 671

21.2 amiraVR control module . 675

21.3 amiraVR show config module . 677

21.4 Tracker Emulator . 679

21.5 amiraVR - Tracking module . 681

xx CONTENTS

Part I

amira User’s Guide

Chapter 1

Introduction

amira is a 3D visualization and modelling system. It allows you to visualize scientific data sets from
various application areas, e.g. medicine, biology, chemistry, physics, or engineering. 3D objects can be
represented as grids suitable for numerical simulations, notably as triangular surface and volumetric
tetrahedral grids. amira provides methods to generate such grids from voxel data representing an
image volume, and it includes a general purpose interactive 3D viewer.

Section 1.1 (Overview) provides a short overview of the fundamentals of amira, i.e. its object-oriented
design and the concept of data objects and modules.

Section 1.2 (Features) summarizes key features of amira, for example direct volume rendering, image
processing, and surface simplification.

Section 1.3 (Application Areas) illustrates some typical application areas of amira and shows what
kinds of problems can be solved using the system.

Section 1.4 (Extensions) shortly describes optional extension packages available for amira and what
they can be used for.

1.1 Overview

amira is a modular and object-oriented software system. Its basic system components are modules and
data objects. Modules are used to visualize data objects or to perform some computational operations
on them. The components are represented by little icons in the object pool. Icons are connected
by lines indicating processing dependencies between the components, i.e., which modules are to be
applied to which data objects. Data objects of specific types are created automatically from file input
data when reading such or as ouput of module computations, modules matching an existing data object
are created as instances of particular module types via a context-sensitive popup menu. Networks can
be created with a minimal amount of user interaction. Parameters of data objects and modules can be

Figure 1.1: Data objects and modules are represented as little icons in the object pool (top right). In the 3D graphic window a
surface colored according to its curvature is shown. Curvature information has been computed by a computational module and is
stored as a separate data object. In the mid right window the parameters of selected modules (here: Curvature and SurfaceView)
are shown. The window at the bottom provides a Tcl-command shell.

modified in amira’s interaction area.

For some data objects such as surfaces or colormaps there exist special-purpose interactive editors that
allow the user to modify the objects. All amira components can be controlled via a Tcl command
interface. Commands can be read from a script file or issued manually in a separate console window.

The biggest part of the screen is occupied by a 3D graphics window. Additional 3D views can be
created if necessary. amira is based on the latest release of the TGS Open Inventor graphics toolkit.
In addition, several modules apply direct OpenGL rendering to achieve special rendering effects or to
maximize performance. In total, there are more than 120 data object and module types. They allow
the system to be used for a broad range of applications. User-defined extensions are facilitated by the
amira developer version.

1.2 Features

amira provides a large number of module types allowing you to visualize various kinds of scien-
tific data as well as to create polygonal models from 3D images. All visualization techniques can be
arbitrarily combined to produce a single scene. Moreover, multiple data sets can be visualized simulta-
neously, either in several viewer windows or in a common one. A built-in transformation editor makes
it easy to register data sets with respect to each other or to deal with different coordinate systems.

4 Chapter 1: Introduction

1.2.1 Direct Volume Rendering

One of the most intuitive and most powerful techniques for visualizing 3D image data is direct volume
rendering. Light emission and light absorption parameters are assigned to each point of the volume.
Simulating the transmission of light through the volume makes it possible to display your data from any
view direction without constructing intermediate polygonal models. By exploiting modern graphics
hardware, amira is able to perform direct volume rendering almost in realtime, even for data volumes
of 40 megabytes and more. Volume rendered images can be combined with any type of polygonal
display. This improves the usefulness of this technique significantly. Moreover, multiple data sets
can be volume rendered simultaneously – a unique feature of amira. Transfer functions with different
characteristics required for direct volume rendering can either be generated automatically or edited
interactively using an intuitive colormap editor.

1.2.2 Isosurfaces

Isosurfaces are most commonly used for analyzing arbitrary scalar fields sampled on a discrete grid.
Applied to 3D images, the method provides a very quick, yet sometimes sufficient method for recon-
structing polygonal surface models. Beside standard algorithms, amira provides an improved method
which generates significantly fewer triangles with very little computational overhead. In this way large
3D data sets can be displayed interactively even on smaller desktop graphics computers. Like other
polygonal models, isosurfaces can be colored in order to visualize a second independent data set. An-
other highlight comprises the realistic view-dependent way of rendering semi-transparent surfaces. By
correlating transparency with local orientation of the surface relative to the viewing direction, complex
spatial structures can be understood much more easily.

1.2.3 Segmentation

amira also provides a component for 3D image segmentation with several special-purpose features.
This component is called image segmentation editor. It offers a large set of segmentation tools, rang-
ing from purely manual to fully automatic. Among others, the following tools are provided: brush
(painting), lasso (contouring), magic wand (region growing), thresholding, intelligent scissors, contour
fitting (snakes), contour interpolation and extrapolation, various filters including smoothing, cleaning,
and connected component analysis. Although the display is slice-oriented, many tools can be applied
in both 2D and 3D. Since the editor does not store contours surrounding regions but region labels, a
unique and well-defined classification is guaranteed.

1.2.4 Surface Reconstruction

Once the interesting features in a 3D image volume have been segmented, amira is able to create
a corresponding polygonal surface model. The surface may have non-manifold topology if there are
locations where three or more regions join. Even in this case the polygonal surface model is guaranteed
to be topologically correct, i.e. free of self-intersections. Fractional weights which are automatically

Features 5

generated during segmentation allow the system to produce smooth boundary interfaces. This way
realistic high-quality models can be obtained, even if the underlying image data are of low resolution or
contain severe noise artifacts. Making use of innovative acceleration techniques, surface reconstruction
can be performed very quickly. Moreover, the algorithm is robust and fail-safe.

1.2.5 Surface Simplification

Surface simplification is another prominent feature of amira. It can be used to reduce the number
of triangles in an arbitrary surface model according to a user-defined value. Thus, models of finite-
element grids, suitable for being processed on low-end machines, can be generated. The underlying
simplification algorithm is one of the most elaborate ones available. It is able to preserve topological
correctness, i.e., self-intersections commonly produced by other methods are avoided. In addition,
the quality of the resulting mesh, according to measures common in finite element analysis, can be
controlled. For example, triangles with long edges or triangles with bad aspect ratio can be suppressed.

1.2.6 Generation of Tetrahedral Grids

amira allows you not only to generate surface models from your data but also to create true volumetric
tetrahedral grids suitable for advanced 3D finite-element simulations. These grids are constructed
using a flexible advancing-front algorithm. Again, special care is taken to obtain meshes of high
quality, i.e., tetrahedra with bad aspect ratio are avoided. Several different file formats are supported,
so that the grid can be exported to many standard simulation packages. In the developer version
additional file formats can easily be added by the user.

1.3 Application Areas

amira is successfully being used in a number of different application areas. Among these are:

• Medicine

• Biology

• Material Sciences

• Computational Fluid Dynamics

• Physics

• Geophysics

• Astrophysics

Examples from these disciplines are illustrated by several demo scripts contained in the online version
of the user’s guide.

6 Chapter 1: Introduction

1.4 Extensions

amira extensions are additional sets of modules providing solutions for dedicated application areas.
Extensions can be added to a standard amira installation at any time. Usually, for each extension a
separate license is required. Currently, the following extensions are available for amira 3.1:

• amiraMol- molecular visualization and biochemical data analysis. Among others, this extension
allows you to visualize trajectories (dynamic data), to compute configuration densities, to create
molecular surfaces, and to align nuclide or protein sequences. Readers for several different
molecular file formats are included.

• amiraDeconv- deconvolution of microscopic images. This extension provides blind and non-
blind deconvolution algorithms for enhancing the quality of confocal and widefield 3D image
stacks. Several other tools for image preprocessing or computing PSF’s from theory or from
bead measurements also included.

• amiraVR- virtual reality extension. This extension makes it possible to run amira on a big
tiled screen or even in an immersive environment with head-tracking and 3D user interaction.
amiraVR supports multi-pipe rendering and multi-threading. 3D floating menus are provided
to facilitate user interaction in 3D space.

In addition to these extensions amiraDev is available, an add-on which allows you to develop your
own custom modules, file readers, and file writers using the C++ programming language. For more in-
formation about amiraDev and amira extensions please refer to the amira web site www.amiravis.com
or to www.tgs.com.

Extensions 7

8 Chapter 1: Introduction

Chapter 2

First steps in amira

This chapter contains step-by-step tutorials illustrating the use of amira. The tutorials are almost
independent of each other, so after reading the basics in the Getting Started section it is possible to
follow each tutorial without knowing the others. If you go through all tutorials you will get a good
survey of amira’s basic features. In particular, these topics will be covered:

• Getting started - the basics of amira
• How to load image data - about bounding box and voxel size

• Visualizing 3D images - slices, isosurfaces, volume rendering

• Multi-channel data - grouping multiple 3D images

• Image segmentation - segmentation of 3D image data

• Surface reconstruction - surface reconstruction from 3D images

• Grid generation - creating a tetrahedral grid from a triangular surface

• Warping - how to work with landmark sets

• Slice alignment - how to align physical cross-sections

• 3D image registration - how to register 3D image datasets

• Vector fields - stream lines and other techniques

• Creating animated demonstration - working with the DemoMaker module

• Creating movie files - how to use the MovieMaker module

In all tutorials the steps to be performed by the user are marked by a dot. If you only want to get a
quick idea how to work with amira you may skip the explanations between successive steps and just
follow the instructions. But in order to get a deeper understanding you should refer to the text.

Note: If you want to visualize your own data, please first refer to Section 4.1. This section contains
some general hints on how to import data sets into amira.

2.1 Getting Started

In this section you will learn how to

1. start the program

2. load a demo data set into the system

3. invoke editors for editing the data

4. connect visualization modules to the data

5. interact with the 3D viewer.

The following text has the form of a short step-by-step tutorial. Each step builds on the steps described
before. We recommend that you read the text online and carry out the instructions directly on the
computer. Instructions are indicated by a dot so you can execute them quickly without reading the
explanations between the instructions.

• On a Windows system, select the amira icon from the start menu. On a Unix system, start amira
by entering amira in a shell window.

If there is no such command, the software has not been properly installed. In this case try to execute
the script bin/start located in the amira root directory.

When amira is running, windows like those shown in Figure 2.1 appear on the screen. The user inter-
face is divided into four major parts. The 3D viewer window displays visualization results, e.g., slices
or isosurfaces. The object pool will contain small icons representing data objects and modules. The
working area displays interface elements (ports) associated with amira objects. Finally, the console
window prints system messages and lets you enter amira commands.

amira provides an integrated hypertext browser. You may use this browser to read the user’s guide
online. In order to activate the browser, type help in the console window or select User’s Guide from
the Help menu of amira’s main window.

2.1.1 Loading Data

Usually, the first thing you will do after starting amira is to load a data set. Let’s see how this can be
done:

• Choose Load ... from the File menu.

After selecting this menu item, the file dialog appears (see Figure 2.2). By default the dialog displays
the contents of the first directory defined in the environment variable AMIRA DATADIR. If no such
variable exists the contents of amira’s demo data directory are displayed. You can quickly switch to
other directories, e.g., to the current working directory, using the directory list located in the upper part
of the dialog window.

10 Chapter 2: First steps in amira

Figure 2.1: The amira user interface consists of four major parts: the 3D viewer (1), the object pool (2), the working area (3),
and the console window (4).

Figure 2.2: Data sets can be loaded into amira using the file browser. In most cases, the file format can be determined
automatically. This is done by either analyzing the file header or the file name suffix.

Getting Started 11

Figure 2.3: Data objects are represented by little green icons in the object pool. Once an icon has been selected information
about the data set such as its size or its coordinate type is displayed in the working area.

amira is able to determine many file formats automatically, either by analyzing the file header or the
file name suffix. The format of a particular file will be printed in the file dialog right beside the file
name.

Now, we would like to load a scalar field from one of the demo data directories contained in the amira
distribution.

• Change to the directory data/tutorials, select the file lobus.am and press OK.

The data will be loaded into the system. Depending on its size this may take a few seconds. The file
is stored in amira’s native AmiraMesh format. The file lobus.am contains 3D image data of a part
of a fruit fly’s brain, namely an optical lobe, obtained by confocal microscopy. This means the data
represents a series of parallel 2D image slices across a 3D volume. Once it has been loaded, the data
set appears as a little green icon in the object pool. In the following we call this data set “lobus data
set”.

• Click on the green data icon with the left mouse button to select it.

This causes some information about the data record to be displayed in the working area (Figure 2.3).
In our case we can read off the dimensions of the data set, the primitive data type, the coordinate type,
as well as the voxel size. To deselect the icon, click on an empty area in the object pool window. You
may also pick the icon with the left mouse button and drag it around in the object pool.

12 Chapter 2: First steps in amira

2.1.2 Invoking Editors

After selecting an object, in addition to the textual information, some buttons appear in the working
area, right next to the data object’s name. These buttons represent editors which can be used to inter-
actively manipulate the data object in some way. For example, all data objects provide a parameter
editor. This editor can be used to edit arbitrary attributes associated with the data set, e.g. filename,
original size, or bounding box. Another example is the transform editor which can be used to translate
or rotate the data in world coordinates. However, at this point we don’t want to go into details. We just
want to learn how to create and delete an editor:

• Invoke one of the editors by clicking on an editor icon.

• Close the editor by clicking again on the editor icon.

Further information about particular editors is provided in the user’s reference manual.

2.1.3 Visualizing Data

Data objects like the lobus data can be visualized by attaching display modules to them. Each icon in
the object pool provides a popup menu from which matching modules, i.e., modules that can operate
on this specific kind of data, can be selected. To activate the popup menu

• click with the right mouse button on the green data icon. Choose the entry called BoundingBox.

After you release the mouse button a new BoundingBox module is created and is automatically con-
nected to the data object. The Bounding Box object is represented by a yellow icon in the object pool
and the connection is indicated by a blue line connecting the icons. At the same time, the graphics
output generated by the BoundingBox module becomes visible in the 3D viewer. Since the output is
not very interesting, in this case we will connect a second display module to the data set:

• Choose the entry called OrthoSlice from the popup menu of the lobus data set.

Now a 2D slice through the optical lobe is shown in the viewer window. Initially, a slice oriented per-
pendicular to the z-direction and centered inside the image volume is displayed. Slices are numbered
0, 1, 2, and so on. The slice number as well as the orientation are parameters of the OrthoSlice module.
In order to change these parameters, you must select the module. Like for the green data icon, this
is done by clicking on the OrthoSlice icon with the left mouse button. By the way, in contrast to the
BoundingBox, the OrthoSlice icon is orange, indicating that this module can be used for clipping.

Getting Started 13

Figure 2.4: In order to attach a module to a data set, click on the green icon using the right mouse button. A popup menu
appears containing all modules which can be used to process this particular type of data.

• Select the OrthoSlice module.

Now you should see various buttons and sliders in the working area, ordered in rows. Each row
represents a port allowing you to adjust one particular control parameter. Usually, the name of a port
is printed at the beginning of a row. For example, the port labeled Slice Number allows you to change
the slice number via a slider.

• Select different slices using the Slice Number port.

By default, OrthoSlice displays slices with axial orientation, i.e., perpendicular to the z-direction.
However, the module can also extract slices from the image volume perpendicular to x- and y-direction.
These two alternate orientations are referred to as sagittal and coronal (these are standard phrases used
in radiology).

2.1.4 Interaction with the Viewer

The 3D viewer lets you look at the model from different positions. Moving the mouse inside the viewer
window with the left mouse button pressed lets you rotate the object. With the middle mouse button
you can translate the object. For zooming press both the left and the middle mouse button at the same
time and move the mouse up or down.

Notice that the mouse cursor has the shape of a little hand inside the viewer window. This indicates that
the viewer is in viewing mode. By pressing the ESC key you can switch the viewer into interaction
mode. In this mode, interaction with the geometry displayed in the viewer is possible by mouse
operations. For example, when using OrthoSlice you can change the slice number by clicking on the

14 Chapter 2: First steps in amira

Figure 2.5: Visualization results are displayed in the 3D viewer window. Parameters or ports of a module are displayed in the
working area after you select the module.

slice and dragging it.

• Select different buttons of the Orientation port of the OrthoSlice module.

• Rotate the object in a more general position.

• Disable the adjust view toggle in the Options port.

• Change the orientation using the Orientation port again.

• Choose different slices using the Slice Number port or directly in the viewer with the interaction
mode described above.

Each display module has a viewer toggle by which you can switch off the display without removing
the module. This button is attached to the colored bar where the module name is shown as illustrated
below.

• Deactivate and activate the display of the OrthoSlice or BoundingBox module using the viewer
toggle.

If you want to remove a module permanently, select it and choose Remove from the edit menu. Choose
Remove All from the same menu to remove all modules.

Getting Started 15

Figure 2.6: The OrthoSlice module is able to extract arbitrary orthogonal slices from a regular 3D scalar field or image volume.

• Remove the BoundingBox module by selecting its icon and choosing Remove from the Edit
menu.

• Remove all remaining modules by choosing Remove All from the same menu.

Now the object pool should be empty again. You may continue with the next tutorial, i.e., the one on
scalar field visualization.

2.2 How to load image data

Loading image data is one of the most basic operations in amira. Other than with 2D images, there
are not many standardized file formats containing 3D images. This tutorial guides you by means of
examples on how to load the different kinds of 3D images into amira. In particular this tutorial covers
the following topics:

1. Using the File / Load browser and setting the file format.

2. Reading 3D image data from multiple 2D slices.

3. Setting the bounding box or voxel size of 3D images.

4. The Stacked Slices file format.

5. Working with LargeDiskData.

16 Chapter 2: First steps in amira

Figure 2.7: The Format option of the file browser

2.2.1 The amira file browser

Image data is loaded in amira with the File/Load dialog. All file formats supported by amira are
recognized automatically either by a data header or by the file name suffix. What follows is only of
concern in these cases:

• The automatic file format detection fails.

• 3D image data is stored in several 2D files.

• The data is larger than the available main memory.

2.2.1.1 Setting the file format

In most cases the format of a file is determined automatically, either by checking the file header or
by comparing the file name suffix with a list of known suffixes. In the load dialog the file format is
displayed in a separate column in detail view.

Example:

• Files containing the string AmiraMesh in the first line are considered AmiraMesh files.

• Files with the suffix .stl are considered STL files.

If automatic file format detection fails, e.g. because some non-standard suffix has been used, the
format may be set manually using the Format entry in the pop-up menu of the Load dialog (right
mouse button).

How to load image data 17

Figure 2.8: Loading multiple 2D images

2.2.2 Reading 3D image data from multiple 2D slices

A common way to store 3D image data is to write a separate 2D image file for each slice. The 2D
images may be written in TIFF, BMP, JPEG, or any other supported image file format. In order to load
such data in amira, all 2D slices have to be selected simultaneously in the file browser. This can be
done by clicking the first file and shift clicking the last one.

• Open the File / Load dialog.

• Browse to the /Amira-3.1/data/multichannel/channel/ directory.

• Select the first file pvcca1.0001.jpeg

• Shift-click the last file (pvcca1.0048.jpeg).

• Click OK.

2.2.3 Setting the bounding box

When loading a series of bitmap images, usually the physical dimensions of the images are not known
to amira. Therefore an Image Read Parameter dialog appears that prompts you for entering the phys-
ical extent of the so-called bounding box. Alternatively, the size of a single voxel can be set. In amira
the bounding box of an object is the smallest rectengular, axes aligned volume in 3D space that encom-
passes the object. Note that in amira the bounding box of a uniform data set extends from the center
of the first voxel to the center of the last one. For example, if you have 256 voxels and you know the
voxel size to be 1 mm the bounding box should be set to 0 - 255 (or to some shifted range).

• Enter 0.85 in the 1st and 2nd text field and 3.5 in 3rd text field of the Voxel Size port.

• Click OK.

18 Chapter 2: First steps in amira

Figure 2.9: The definition of the bounding box in amira. Different grey shades depict the intensity values defined on the regular
grid (white lines). The black square depicts the extent of one voxel. The outer frame depicts the extent of the bounding box.

This method will always create a data set with uniform coordinates, i.e., uniform slice distance. In
case of variable slice distances, the so-called StackedSlices format should be used.

2.2.4 The Stacked Slices file format

Especially with histological serial sections it often happens that slices are lost during preparation.
To handle such cases, amira provides a special data type corresponding to a file format, called
Stacked Slices. This file format allows to read a stack of individual image files with optional z- values
for each slice. The slice distance is not required to be constant. The images must be one-channel or
RGBA images in an image format supported by amira (e.g. TIFF). The reader operates on an ASCII
description file, which can be written with any editor. Here is an example of a description file:

Amira Stacked Slices
Directory where image files reside
pathname C:/data/pictures
Pixel size in x- and y-direction
pixelsize 0.1 0.1
Image list with z-positions
picture1.tif 10.0
picture7.tif 30.0
picture13.tif 60.0
colstars.jpg 330.0

How to load image data 19

end

Some remarks on the syntax:

• # Amira Stacked Slices is an optional header that allows amira to automatically deter-
mine the file format.

• pathname is optional and can be included if the pictures are not in the same directory as the
description file. A space separates the tag ”pathname” from the actual pathname.

• pixelsize is optional, too. The statement specifies the pixel size in x- and y-direction. The
bounding box of the resulting 3D image is set from 0 to pixelsize*(number of pixels-1).

• picture1.tif 10.0 is the name of the slice and its z-value, separated by a space character.

• end indicates the end of the description file.

• Comments are indicated by a hash-mark character (#).

2.2.5 Working with Large Disk Data

Sometimes image data are that large that they do not fit into the main memory of the computer. Since
the amira visualization modules rely on the fact that data are in physical memory this would mean
that such data cannot be displayed in amira. To overcome this, a special purpose module is provided
that leaves most of the data on disk and retrieves only a user specified subvolume. This subvolume can
then be visualized with the standard visualization modules in amira.

• Use the Load dialog and go to c:/Program Files/Amira-3.1/data/medical/

• Right-click on the reg005.ctdata.am and select the Format entry from the pop-up dialog

• Select AmiraMesh as LargeDiskData as format and confirm your choice with OK.

• Press the Load button.

The data will be displayed in the object pool as a regular green data icon. The info line indicates that
it belongs to the data class HxStackedSlicesAsExternalData.

• Right mouse click, attach a BoundingBox module.

• Right mouse click, attach an Access module.

• Select the Access module in the object pool and enter 224, 161, and 59 into the BoxSize text
fields.

• Check Subsample and enter 4 4 2 into the Subsample fields and hit the (re)load button.

This retrieves a down-sampled version of the data. Disconnect the reg005.view.am data icon from the
Access module and use it as an overview (e.g. with OrthoSlice).

• Select the Access module in the object pool and deselect the subsample check box.

20 Chapter 2: First steps in amira

Figure 2.10: The usage of AmiraMesh as LargeDiskData. For instantaneous update, the (re)load and DoIt buttons have been
locked

• Use the dragger box in the viewer to resize the subvolume.

• Press the (re)load button.

• Attach an Isosurface module to the reg005.view2.am (set threshold set to 100).

Tip: To browse the data lock the (re)load and DoIt button of the Access and Isosurface module,
respectively. This is done by clicking the tiny red square in the button. Now each time the blue
subvolume dragger is repositioned, the visualization is updated automatically.

Loading AmiraMesh, StackedSlices, and Raw ”asLargeDiskData” is a convenient and fast way of
exploring data that exceed the size of system memory. However, especially with StackedSlices it is not
always the most efficient way of doing this. amira can store the image data in a special format that
facilitates the random retrieval of data from disk.

• Choose from the Create/Data menu ConvertToLargeDiskData

• Click Browse from the Input port.

• Go to /Amira-3.1/data/medical/ and select reg005.ctdata.am and click Add.

• Click Browse from the Output port.

• Go to C:/tmp/ and enter a filename of your choice.

• Click the DoIt button.

Although you will most likely not notice any difference with the small image data used in this tutorial,
this method for retrieving large data significantly accelerates the (re)load operation.

How to load image data 21

Figure 2.11: The Input dialog of the ConvertToLargeDiskData module.

2.3 Visualizing 3D Images

This chapter provides a step-by-step introduction to the visualization of regular scalar fields, e.g.,
3D image data. amira is able to visualize more complex data sets, such as scalar fields defined on
curvilinear or tetrahedral grids. Nevertheless, in this section we consider the simplest case, namely
scalar fields with regular structure. Each step builds on the step before. In particular, the following
topics will be discussed:

1. orthogonal slices

2. simple threshold segmentation

3. resampling the data

4. displaying an isosurface

5. cropping the data

6. volume rendering

We start by loading the data you already know from Section 2.1 (Getting Started): a 3D image data set
of a part of a fruit fly’s brain. The data set has been recorded with a confocal laser scanning microscope
at the University of Wuerzburg.

• Load the file lobus.am located in subdirectory data/tutorials.

22 Chapter 2: First steps in amira

Figure 2.12: Lobus data set visualized using three orthogonal slices.

2.3.1 Orthogonal Slices

The fastest and in many cases most “standard” way of visualizing 3D image data is by extracting
orthogonal slices from the 3D data set. amira allows you to display multiple slices with different
orientations simultaneously within a single viewer.

• Connect a BoundingBox module to the data (use right mouse on lobus.am).

• Connect an OrthoSlice module to the data.

• Connect a second and third OrthoSlice module to the data.

• Select OrthoSlice2 and press coronal in the orientation port.

• Similarly, for OrthoSlice3 choose sagittal orientation.

• Rotate the object in the viewer to a more general position.

• Change the slice numbers of the three OrthoSlice modules in the respective ports or directly in
the viewer as described in section Getting Started.

In addition to the OrthoSlice module, which allows you to extract slices orthogonal to the coordinate
axes, amira also provides a module for slicing in arbitrary orientations. This more general module is
called ObliqueSlice. You might want to try it by selecting it from the lobus data popup menu.

2.3.2 Simple Data Analysis

The values of the data window port of the OrthoSlice module determine which scalar values are
mapped to black or white, respectively. If you choose a range of e.g., 30...100, any value smaller
or equal to 30 will become black, and all pixels with an associated value of more then 100 will become

Visualizing 3D Images 23

Figure 2.13: By adjusting the data window of the OrthoSlice module a suitable value for threshold segmentation can be found.
Intensity values smaller than the min value will be mapped to black, intensity values bigger than the max value will be mapped
to white.

white. Try modifying the range. This port provides a simple way of determining a threshold, which
later can be used for segmentation, e.g., in biology or medicine to separate background pixels from
anatomical structures. This can be most easily done by making the minimum and maximum values
coincide.

• Remove two of the OrthoSlice modules.

• Select the remaining OrthoSlice module.

• Make sure that the mapping type is set to linear.

• Change the minimum and maximum values of the data window port until these values are the
same and a suitable segmentation result is obtained. For this data set 85 should be a good
threshold value.

A more powerful way of quantitatively examining intensity values of a data set is to use a data probing
module PointProbe or LineProbe. However, we will not discuss these modules in this introductory
tutorial.

2.3.3 Resampling the Data

Now we are going to compute and display an iso-surface. Before doing so, we will resample the
data. The resampling process will produce a data set with a coarser resolution. Although this is
not necessary for the iso-surface tool to work, it decreases computation time and improves rendering
performance. In addition, you will get acquainted with another type of module. The Resample module
is a computational module. Computational modules are represented by red icons and typically have

24 Chapter 2: First steps in amira

a DoIt button to start the computation. After you press this button they produce a new data object
containing the result.

• Connect a Resample module to the data and select it.

• Enter values for a coarser resolution, e.g., x=64, y=64, z=43.

• Press the DoIt button.

A new green data icon representing the output of the resample computation named lobus.Resampled is
created. You can treat this new data set like the original lobus data. In the popup menu of the resampled
lobus you will find exactly the same attachable modules and you can save and load it like the original
data.

You may want to compare the resampled data set with the original one using the OrthoSlice module.
You can simply pick the blue line indicating the data connection and drag it to a different data source.
Whenever the mouse pointer is over a valid source, the connection line appears highlighted in yellow.

2.3.4 Displaying an Isosurface

For 3D image data sets, isosurfaces are useful for providing an impression of the 3D shape of an object.
An isosurface encloses all parts of a volume that are brighter than some user-defined threshold.

• Turn off the viewer toggle of the OrthoSlice module.

• Connect an Isosurface module to the resampled data record and select it.

• Adjust the threshold port to 85 or a similar value.

• Press the Do It button.

2.3.5 Cropping the Data

Cropping the data is useful if you are interested in only a part of the field. A crop editor is provided
for this purpose. Its use is described below:

• Remove the resampled data lobus.Resampled.

• Activate the display of the OrthoSlice module.

• Select the lobus.am data icon.

• Click on the green cropping icon in the working area ().

A new window pops up. There are two ways to crop the data set. You can either type the desired
ranges of x, y, and z coordinates into the crop editor’s window or put the viewer into interaction mode
and adjust the crop box using the green handles directly in the viewer window.

• Put the viewer into interaction mode.

Visualizing 3D Images 25

Figure 2.14: Lobus data set visualized in 3D using an isosurface.

• With the left mouse button, pick one of the green handles attached to the crop volume. Drag and
transform the volume until the part of the data you are interested in is included.

• Press OK in the crop editor’s dialog window.

The new dimensions of the data set are given in the working area. If you want to work with this
cropped data record in later sessions you should save it by choosing Save Data As ... from the File
menu.

As you already might have noticed, the crop editor also allows you to rescale the bounding box of the
data set. By changing the bounding box alone, no voxels will be cropped. You may also use the crop
editor to enlarge the data set, e.g., by entering a negative value for the k min number. In this case the
first slice of the data set will be duplicated as many times as necessary. Also, the bounding box will be
updated automatically.

2.3.6 Volume Rendering

Volume Rendering is a visualization technique that gives a 3D impression of the whole data set without
segmentation. The underlying model is based on the emission and absorption of light that pertains to
every voxel of the view volume. The algorithm simulates the casting of light rays through the volume
from pre-set sources. It determines how much light reaches each voxel on the ray and is emitted or
absorbed by the voxel. Then it computes what can be seen from the current viewing point as implied
by the current placement of the volume relative to the viewing plane, simulating the casting of sight
rays through the volume from the viewing point.

You can choose between two different methods for these computations: maximum intensity projections
or an ordinary emission-absorption model.

26 Chapter 2: First steps in amira

Figure 2.15: The crop editor works on uniform scalar fields. It allows you to crop a data set, to enlarge it by replicating boundary
voxels, or to modify its coordinates, i.e. to scale or shift its bounding box.

• Remove all objects in the Object Pool other than the lobus.am data record.

• Connect a Voltex module to the data.

• Select the data icon and read off the range of data values printed on the first info line (22...254).

• Select the Voltex module and enter the range in the Colormap port.

• Click the DoIt button in order to perform some texture preprocessing which is necessary for
visualizing the data.

By default emission-absorption volume rendering is shown. The amount of light being emitted and
absorbed by a voxel is taken from the color and alpha values of the colormap connected to the Voltex
module. In our example the colormap is less opaque for smaller values. You may try to set the lower
bound of the colormap to 40 or 60 in order to get a better feeling for the influence of the transfer
function. In order to compute maximum intensity projections, choose the mip option of port Mode.

Internally, the voltex module makes heavy use of OpenGL texture mapping. Both textures modes,
2D and 3D, are implemented. 3D textures yield slightly better results. However, this mode is not
supported by all graphics boards. The 3D texture mode requires you to adjust the number of slices cut
through the image volume. The higher this number the better the results are.

Alternatively, 2D textures can be used for volume rendering. In this case slices perpendicular to the
major axes are used. You may observe how the slice orientation changes if you slowly rotate the data
set. The 2D texture mode is well suited for mid-range graphics workstations with hardware accelerated
texture mapping. If your computer does not support hardware texture mapping at all, you should use
visualization techniques other than volume rendering.

• Set the em/ab button of port Mode.

Visualizing 3D Images 27

Figure 2.16: The Voltex module can be used to generate maxmimum intensity projections as well as volume renderings based
on an emission-absoprtion model. In both cases, 2D or 3D texture mapping techniques can be applied applied.

• If you are using 3D texture mode, choose about 200 slices.

• Click with the right mouse button on port Colormap and choose volrenRed.icol.

• Set Lookup to RGBA and change the min and max values of the colormap to 40 and 150.

• Finally, press Do It in order to initialize the Voltex textures.

Whenever you choose a different colormap or change the min and max values of the colormap, you
must press the Do It button again. This causes the internal texture maps to be recomputed. An excep-
tion are SGI systems with Infinite Reality graphics. On these platforms a hardware-specific OpenGL
extension is exploited, causing colormap changes to take effect immediately.

2.4 Working with Multi-Channel Images

This is a step-by-step tutorial on how to visualize multi-channel image data. To follow this tutorial
you should be familiar with the basic concepts of amira. In particular you should be able to load files,
to interact with the 3D viewer, and to connect display modules to data modules. All these issues are
discussed in the getting started section.

We are going to load a set of multi-channel images into the workspace, attach a MultiChannelField
group object to the data and visualize it with several display modules. The steps are:

1. Load data into amira.

2. Create a MultiChannelField and attach channels to it.

3. Using OrthoSlice with a MultiChannelField.

28 Chapter 2: First steps in amira

Figure 2.17: Data objects are connected to the MultiChannelField object with a right mouse click on the rectangular field
indicated by the arrow.

4. Using ProjectionView with a MultiChannelField.

5. Using Voltex with a MultiChannelField.

6. Saving multi-channel images in a single AmiraMesh file.

2.4.1 Loading Multi-Channel Images into amira

The data we will be working with in this tutorial are confocal stacks of the prothoracic ganglion of the
locust Locusta migratoria. They were kindly provided by Dr. Paul Stevenson, University of Leipzig,
Germany. Two different channels were recorded and stored as separate files.

amira supports a number of proprietary multi-channel formats of several microscope manufacturers
(e.g., Leica and Zeiss). In such formats all channels are stored in a single file. Therefore the first steps
described in this tutorial, namely grouping the channels manually, can often be omitted.

• Load channel 1 data by selecting the file /data/multichannel/channel1.info

• Load channel 2 data by selecting the file /data/multichannel/channel2.info

• Create a MultiChannelField object by selecting MultiChannelField from the Edit Create menu
of the amira main window.

A dark green icon is displayed in the object pool. After selecting the object an info port is displayed
saying ”no channels connected”.

• Connect channel1.info to the MultiChannelField by selecting ’Channel 1’ from the MultiChan-
nelField’s connection menu (right mouse click in the small field on the left side of the icon) and
releasing it on the channel1.info icon.

• Repeat the above procedure with channel2.info

When the MultiChannelField is selected you will note that two entries, channel 1 and channel 2,

Working with Multi-Channel Images 29

Figure 2.18: When connected to a MultiChannelField object the OrthoSlice module has additional check boxes whose number
depend on the number of connected channels.

appeared in the module’s control panel. Each entry has two range text fields and a color button. The
range text fields work very much like those in OrthoSlice. Pressing the color button pops up a color
dialog that lets you freely define the color of each channel. Now perhaps it is a good idea to activate
the pins corresponding to Channel 1 and Channel 2 in the working area. This will keep the control
elements of the MultiChannelField module permanent in the working area.

2.4.2 Using OrthoSlice with a MultiChannelField

• Connect an OrthoSlice module to the MultiChannelField by right clicking on the icon and se-
lecting OrthoSlice from the context menu.

When selecting the OrthoSlice module you will see that there are two additional check boxes in its
control panel corresponding to the two channels. Clicking these check boxes lets you selectively
switch on/off each channel. First we adjust the intensity mapping of each channel separately.

• Switch off channel 2 by deselecting its check box.

• Enter 23 and 200 in the min and max range fields of channel 1.

As a result weak stainings - potentially unspecific staining - disappears and those structures that exhibit
good staining become even more intense.

30 Chapter 2: First steps in amira

Figure 2.19: Multi channel data visualized using the OrthoSlice module.

• Click off channel 1 and click on channel two.

• Enter the values 8 and 200 in the min and max text fields of channel 2. Move through the slices
and control the result.

2.4.3 Using ProjectionView with a MultiChannelField

• Switch off the OrthoSlice by clicking on the viewer toggle of its icon (orange rectangle).

• Connect a ProjectionView module to the MultiChannelField by right clicking on the icon and
selecting ProjectionView from the Display sub-menu.

Similar as with the OrthoSlice two new check boxes are shown in the module’s control panel which
can be used to display channels separately or simultaneously. In this way you may efficiently adjust
color and intensity of each channel before diplaying them simultaneously.

2.4.4 Using Voltex with a MultiChannelField

• Switch off the ProjectionView by clicking on the viewer toggle of its icon (orange rectangle).

• Connect a Voltex module to the MultiChannelField by right clicking on the icon and selecting
Voltex from the Display sub-menu.

Also here, two channel check boxes are available. In addition to that the familiar colormap field is
missing. Instead there is a slider labelled Gamma. Now the color of each channel is determined
by that defined in the MultiChannelField and the Gamma-slider controls the steepness of the alpha
value (opacity) mapping used for volume rendering. Because volume rendering makes intensive use

Working with Multi-Channel Images 31

Figure 2.20: Multi channel data visualized using the ProjectionView module.

Figure 2.21: Multi channel data visualized using the Voltex module.

32 Chapter 2: First steps in amira

of hardware texture mapping and most consumer graphics adapter are limited in texture memory size
it is recommended to enter at least factors of 2 2 1 in the Downsample text fields of the Voltex module.

• Press the DoIt button.

Now each time you want to display another channel you have to press the DoIt button again.

2.4.5 Saving a MultiChannelField in a Single AmiraMesh File

When the MultiChannelField icon is selected in the object pool choose Save Data As from the File
menu, enter a filename and click OK. The data will be stored in AmiraMesh format so that each time
you load the data the two channel stacks and the MultiChannelField group object will be restored.

2.5 Segmentation of 3D Images

By following this step-by-step tutorial you will learn how to interactively create a segmentation of
a 3D image. A segmentation assigns to each pixel of the image a label describing to which region
or material the pixel belongs, e.g., bone or the kidney. The segmentation is stored in a separate data
object called a LabelField. A segmentation is the prerequisite for surface model generation or accurate
volume measurement.

This tutorial comprises the following steps:

1. Creation of an empty LabelField.

2. Interactive editing of the labels in the Image Segmentation Editor.

3. Measuring the volume of the segmented structures.

4. An alternative segmentation method: Threshold segmentation.

2.5.1 Interactive Image Segmentation

• Load the lobus.am data file from the directory data/tutorials.

• Right click on the green icon and choose LabelField from the Labelling section.

A new green icon appears, the LabelField that will hold the segmentation results. Simultaneously, a
new window opens: The image segmentation editor.

• Use the slider on the top, to scroll through the slices. Go to slice 20. You see two bigger
structures and one structure just appearing on the top.

• Click on the leftmost button under the label Tools:, the brush.

• Mark the rightmost structure with the mouse. Hold down the control button to unselect wrongly
selected pixels if necessary.

Segmentation of 3D Images 33

Figure 2.22: Image segmentation editor after selecting and assigning pixels for two structures in one slice

• When done, select the entry Inside in the Materials: list. Then hit the + button under the
Selection: label.

The previously selected pixels are now assigned to the material Inside. You can right click on the entry
Inside in the Materials: list and choose a different draw style.

• Click into the material list and choose New Material from the right button menu.

• Mark the middle structure using the brush, select the new material in the Materials list and assign
the pixels to that structure.

• Go to slice 21 and practice by segmenting the two structures.

If a structure does not change a lot from slice to slice, you can use interpolation.

• Go to slice 22 and mark the right structure using the brush. Go to slice 31 and mark the same
structure.

• Choose from the menu bar: Selection/Interpolate.

• Scroll through the data set. You should see that the in between slices 23 to 30 are selected too.

• In order to assign the selected pixels in all slices to the Inside material, select the 3D toggle near
the Zoom buttons, select the Inside material in the list, and click the + button. Then untoggle the
3D button again.

34 Chapter 2: First steps in amira

• Repeat the procedure between slice 32 and 50.

• Repeat the procedure for the middle structure.

Hints:

• It is highly recommended to frequently save the segmentation results while working. In order to
do so, select the label field in the amira main window and choose Save or Save As... from the
amira File menu.

• The brush is only the most basic segmentation tool. The segmentation editor provide many more
functions, that are described on its reference page.

• There are many useful key bindings, including SPACE and BACKSPACE to change the slice
number or ’d’ to toggle the draw style.

• Of course you can give the materials more meaningful names or colors using the context menu
(right mouse button in the list).

At this point you may want to close the editor by choosing Close from the Edit menu. Save the label
field. In the next tutorial you will learn how to create a 3D surface model from the segmentation
results.

2.5.2 Volume Measurement

Once one or multiple structure is segmented, you easily measure its volume:

• Right click on the LabelField’s green icon. Choose Measure/TissueStatistics.

• Click DoIt. A new icon appears.

• Select this icon and hit show.

The units in the volume column depend on the units you have specified the voxel size. In case of the
lobus.am, the voxel size is in µm, therefore the volume is in µm3.

2.5.3 Threshold Segmentation

We now describe an alternative way of segmentation, which can require less manual interaction, but
only works for images with good quality.

In some cases a satisfying segmentation can be achieved automatically purely based on the grey values
of the image data set.

The first step is to separate the object from the background. This is done by segmenting the volume
into exterior and interior regions on the basis of the voxel values.

• Load the lobus.am data record from the directory data/tutorials.

• Attach a LabelVoxel module to the data icon and select it.

Segmentation of 3D Images 35

• Type 85 into the text field of port Exterior-Inside. You may also determine some other threshold
that separates exterior and interior as described in the tutorial on Image Data Visualization.

• Press the DoIt button of port Action.

By this procedure each voxel having a value lower than the threshold is assigned to Exterior and each
voxels whose value is greater than or equal to the threshold is assigned to Interior. This may, however,
cause artifacts that are not part of the object, but have voxel values above the threshold, being assigned
to the interior. This can be suppressed by setting the remove couch option which assures that only the
biggest coherent area will be labeled as the interior and all other voxels are assigned to the exterior.

After pressing the DoIt button a new data object is computed and its icon appears in the Object Pool.
The data object is denoted lobus.Labels. It is of type LabelField, represents a cubic grid with the
same dimensions as lobus.am, and contains an interior or exterior label for each voxel according to the
segmentation result.

2.5.4 Refining Threshold Segmentation Results

You can visualize and manually modify a LabelField by using amira’s image segmentation editor. A
more detailed description of this tool is contained in the User’s Reference guide. Here, we use the
image segmentation editor to smooth the data in order to get a nicer looking surface of the object.

• Select the lobus.Labels icon and click on the icon in the green title bar in the Working Area that
shows a pencil.

In response the image segmentation editor is popped up.

• Change the slice slider in the upper part of the editor’s window to slice 39.

• Choose a magnification ratio of 4:1 by pushing the zoom-up button in the left part of editor’s
window.

The image segmentation editor shows the image data to be segmented (lobus.am) as well as green
contours representing the borders between interior and exterior regions as contained in the lobus.Labels
data object. As you can see, the borders are not so smooth and there are many little islands, bordered
by green contours. This is what we want to improve now.

• Choose Remove Islands from the editor’s Label Filter menu. In response, a little dialog window
appears.

• In the dialog window select the all slices mode. Then press Remove in order to apply the filter
in all slices. Note how the segmentation results become less noisy.

• To further clean up the image, choose Smooth Labels from the editor’s Label Filter menu. An-
other dialog box appears.

• Select the 3D volume mode and push the Apply button in order to execute the smoothing opera-
tion.

36 Chapter 2: First steps in amira

Figure 2.23: Data from confocal microscopy is segmented using amira’s image segmentation editor.

• To examine the results of the filter operations, browse through the label field slice by slice. In
addition to the slice slider you may also use the cursor-up and cursor-down keys for this.

• Click onto the pencil icon in the Working Area to close the image segmentation editor.

2.6 Surface Reconstruction from 3D Images

By following this step-by-step tutorial, you will learn how to generate a triangular surface grid for an
object embedded in a voxel data set. A surface grid allows for producing a 3D view of the object’s
surface and can be used for numerical simulations.

The generation process consists of these steps:

1. Extracting Surfaces from Segmentation Results

2. Simplifying the Surface

As a prerequisite for the following steps, you need a label field, which holds the result of a previous
image segmentation. You can either use the label field which you created in the previous tutorial or
load the provided lobus.labels data set from the data/tutoirals directory.

2.6.1 Extracting Surfaces from Segmentation Results

Now we let amira construct a triangular surface of the segmented object.

• Connect a SurfaceGen module to the lobus.Labels data.

Surface Reconstruction from 3D Images 37

Figure 2.24: Surface representation of optical lobus as triangular grid

• Press Triangulate in the Action port.

The option add border ensures that the created surface be closed. A new data object lobus.surf is
generated. Again, it is represented by a green icon in the Object Pool.

2.6.2 Simplifying the Surface

Usually the number of triangles created by the SurfaceGen module is far too large for subsequent
operations. Thus, the number of triangles must be reduced in a surface simplification step. In amira a
Surface Simplification Editor is provided for this purpose.

• Select the surface lobus.surf.

• Click on the triangle mesh icon (first from the right in the title bar) in the Working Area.

• Set the desired number of faces to 3500 in the Simplify port.

• Turn on the fast toggle in the Options port. This option disables some time-consuming intersec-
tion tests.

• Push the Simplify now button in the Action port.

The number of triangles is reduced to about 3500 now. The progess bar tells you how much of the
simplification task has already been done.

To examine the simplified surface, attach a SurfaceView module to the lobus.surf data object.

The SurfaceView module maintains an internal buffer and displays all triangles stored in this buffer. By
default the buffer shows all triangles forming the boundary to the exterior. If you change the selection
at the Materials port, the newly selected triangles are highlighted, i.e., they are displayed using a red

38 Chapter 2: First steps in amira

wireframe representation. The Add and Remove buttons cause the highlighted triangles to be added to
or removed from the buffer, respectively. You may easily visualize a subset of all triangles using a 3D
selection box or by drawing contours in the 3D viewer.

2.7 Creating a Tetrahedral Grid from a Triangular Surface

By following this step-by-step tutorial, you will learn how to generate a volumetric tetrahedral grid
from a triangular surface as created in the previous tutorial. A tetrahedral grid is the basis for producing
various views of inner parts of the object, e.g., cuts through it, and is frequently used for numerical
simulations.

The generation process consists of these steps:

1. Simplifying the Surface

2. Editing the Surface

3. Generating a Tetrahedral Grid

As a prerequisite for the following steps, you need a triangular surface, which is usually the result of a
previous surface reconstruction. Load the supplied lobus.surf data set from the data/tutorials directory.

2.7.1 Simplifying the Surface

Usually the number of triangles created by the SurfaceGen module is far too large for subsequent
operations, e.g., for a numerical simulation. Thus, the number of triangles should be reduced in a
surface simplification step. In amira a Surface Simplification Editor is provided for this purpose.
There may be different goals for the simplification:

• In computer craphics, one wants to prescribe just the number of faces, because this determines
the rendering speed.

• For a numerical simulation, one often wants to specify the maximum edge length occuring in
the grid model.

This tutorial shows how the maximum edge length can be controlled during simplification.

• Select the surface lobus.surf.

• Click on the triangle mesh icon (first from the right in the title bar) in the Working Area.

• Set the desired number of faces to 1000 and the desired maximal distance (i.e. edge length) to
10 in the Simplify port.

• Leave the fast toggle turned off in the Options port. This will cause intersection tests to be per-
formed during simplification, which will considerably reduce the probability that the simplified
surface contains self intersections.

Creating a Tetrahedral Grid from a Triangular Surface 39

Figure 2.25: Surface representation of optical lobus as triangular grid

• Push the Simplify now button in the Action port.

Simplification terminates when either of the limits given by the number of faces or the maximum
distance is reached. The progress bar tells you how much of the simplification task has already been
done. In this example the maximum distance will be the limiting factor, and the resulting surface will
contain about 6000 faces.

Besides the maximum edge length, the minimum edge length occuring in the surface should also be
controlled, because the ratio of maximum and minimum edge length will influence the quality of the
resulting tetrahedral grid. This ratio should not be much larger than 10. If edges that are too short
occur in the simplified surface, they can be removed as follows.

• Set the desired minimum distance to 2 in the Simplify port.

• Observe the number of faces as shown at the Surface port, and press the Contract edges button
in port Action. All edges shorter than 2 will be contracted. In this example about 30 small edges
will be detected. You will observe that the number of faces slightly decreases.

2.7.2 Editing the Surface

As a second step of preparation for tetrahedral grid generation, invoke the Surface Editor.

• Select the surface lobus.surf.

• Leave the Surface Simplification Editor by again clicking on the triangle mesh icon.

• Enter the Surface Editor by clicking on the wrench icon (second from the right in the title bar)
in the Working Area.

40 Chapter 2: First steps in amira

Automatically, a SurfaceView module will be attached to the lobus.surf surface. For details about that
module see its description.

When the Surface Editor is invoked, some menus and additional buttons appear on the top of amira’s
Viewer window. The Tests menu contains 5 specific tests which are useful for preparing a tetrahedral
grid generation. Each of the tests creates a buffer of triangles which can be cycled through using the
back and forward buttons.

• Select Intersection test from the Tests menu. The total number of intersecting triangles is printed
in the console window. Intersections shouldn’t occur too often if toggle fast was switched off
during surface simplification. In case they occur, the first of the intersecting triangles and its
neighbors are shown in the viewer window.

• You can manually repair intersections using four basic operations: Edge Flip, Edge Collapse,
Edge Bisection, and Vertex Translation. See the description of the Surface Editor for details.

• After repairing, invoke the intersection test again by selecting it from the Tests menu or by
pressing the Compute button.

• When the intersection test has been successfully passed, select the Orientation test from the
Tests menu. After surface simplification, the orientation of a small number of triangles may be
inconsistent, resulting in a partial overlap of the materials bounded by the triangles. In case
of such incorrect orientations, which should occur quite rarely, there is an automatic repair. If
this fails, the detected triangles will be shown, and you can use the above mentioned manual
operations for repair. Note: There are two prerequisites for the orientation test: the surface
must be free of intersections, and the outer triangles of the surface must be assigned to material
Exterior. If the surface does not contain such a material or if the assignment to Exterior is not
correct, the test will falsely report orientation errors.

A successful pass of the intersection and orientation test is mandatory for tetrahedral grid generation.
These tests are automatically performed at the beginning of grid generation. So you can directly enter
the TetraGen module (see below) and try to create a grid. If one of the tests fails, an error message will
be issued in the console window. You can then go back to the Surface Editor and start editing.

The remaining three tests analyze the surface mesh with respect to different quality measures. These
tests have only to be performed if the tetrahedral quality of the volumetric grid plays an important role,
e.g., if the grid will be used for a numerical simulation.

• Select Aspect ratio from the Tests menu. This computes the ratio of the radii of the circumcircle
and the incircle for each triangle. The triangle with the worst (i.e. largest) value is shown
first, and the actual value is printed in the console window. The largest aspect ratio should be
below 20 (better below 10). Fortunately there is an automatic tool for improving the aspect ratio
included in the Surface Editor.

• Select Flip edges from the Edit menu. A small dialog window appears. Set the limit for triangle
quality to 10. Select mode operate on whole surface. Press button Flip. All triangles with an
aspect ratio larger than 10 will be inspected; if the aspect ratio can be improved via an edge

Creating a Tetrahedral Grid from a Triangular Surface 41

flip, this will be done automatically. The console window will tell you the total number of bad
triangles and how many of them could be repaired. Press the Close button to leave the Flip edges
tool.

• Select again Aspect ratio from the Tests menu. Only a small number of triangles with large
aspect ratio should remain after applying the Flip edges tool.

• Select Dihedral angle from the Tests menu. For each pair of adjacent triangles, the angle be-
tween them at their common edge will be computed. The triangle pair including the worst (i.e.
smallest) angle is shown in the viewer, and the actual value is printed in the console window.
The smallest dihedral angle should be larger than 5 degrees (better larger than 10).

• For a manual repair of a small dihedral angle proceed as follows: select the third points of both
triangles (i.e. the points opposite to the common edge) and move them away from each other.
For moving vertices you must enter Vertex Translation mode by clicking on the first icon from
the right on the top of the viewer window or by pressing the "t" key. If the viewer is in viewing
mode, switch it into interaction mode by pressing the ESC key or by clicking on the arrow icon
(the first icon from the top) on the right of the viewer window. Click on the vertex to be moved.
At the picked vertex a point dragger will be shown. Pick and translate the dragger for moving
the vertex.

• In some cases an edge flip might also improve the situation. Enter Edge Flip mode by clicking
on the fourth icon from the right on the top of the viewer window or by pressing the "f" key.
Switch the viewer into interaction mode. Click on the edge to be flipped.

• Select Tetra quality from the Tests menu. For each surface triangle the aspect ratio of the tetrahe-
dron which would probably be created for that triangle will be calculated. The aspect ratio for a
tetrahedron is defined as the ratio of the radii of the circumsphere and the inscribed sphere. The
triangle with the worst (i.e. largest) value is shown in the viewer, and the actual value is printed
in the console window. The largest tetrahedral aspect ratio should be below 50 (better below 25).
If all small dihedral angles have already been repaired, the tetra quality test will mainly detect
configurations where the normal distance between two triangles is small compared to their edge
lengths. Again, the vertex translation and the edge flip operation are best suited for a manual
repair of large tetrahedron aspect ratios.

• Leave the Surface Editor by again clicking on the wrench icon in the Working Area.

2.7.3 Generation of a Tetrahedral Grid

The last step is the generation of a volumetric tetrahedral grid from the surface. This means that the
volume enclosed by the surface is filled with tetrahedra.

Because the computation of the tetrahedral grid may be time consuming it can be performed as a batch
job. You can then continue working with amira while the job is running. However, for demonstration
purposes we want to compute the grid right inside amira.

• Connect a TetraGen module to the lobus.surf surface by choosing Compute TetraGen from the
popup menu over the lobus.surf icon.

42 Chapter 2: First steps in amira

• Leave toggle improve grid switched on and toggle save grid switched off at the Options port.
The improve grid option will invoke an automatic post-processing of the generated grid, which
improves tetrahedral quality by some iterations that move inner vertices and flip inner edges and
faces. See the description of the Grid Editor for details.

If toggle save grid is selected, an additional port Grid appears, where you can enter a filename.
The resulting tetrahedral grid will be stored automatically under that name. If you want to run
grid generation as a batch job, you must select the save grid option.

• Push button Meshsize at port Action. An editor window will appear. It allows you to define a
desired mesh size, i.e., mean length of the inner edges to be created, for each region. For this
you must enter the bundle of that region, and select parameter MeshSize. Then you can change
the value in the text field at the lower border of the editor. There are some predefined region
names in amira for which a default mesh size will be automatically set. Make sure that the
default values are suitable for your application. If you are not sure about a suitable value, set the
desired mesh size to 0. In this case the mean edge length of the surface triangles will be used.

• Push the Run now button at port Action. A pop-up dialog appears asking you whether you really
want to start the grid generation. Click Continue in order to proceed.

Once grid generation is running, the progress bar informs you about the number of tetrahedra which
already have been created. In some situations grid generation may fail, for example, if the input surface
intersects itself. Then an error message will occur at the Console Window. In this case go back to the
Surface Editor to interactively fix any intersections.

After the tetrahedral grid has been successfully created, a new icon called lobus.grid will be put in
the Object Pool. You can select this icon in order to see how many tetrahedra the created grid con-
tains. If grid generation takes too long, you may also load the pre-computed grid lobus.grid from the
data/tutorials directory.

As the very last step you may want to have a look at the fruits of your work:

• Attach a GridVolume module to the lobus.grid.

• Select the GridVolume icon and push the Add to button of the Buffer port.

The GridVolume module maintains an internal buffer and displays all tetrahedra stored in this buffer.
By default the buffer is empty, but all tetrahedra are highlighted, i.e., they are displayed using a red
wireframe representation. The Add to button causes the highlighted tetrahedra to be added to the buffer.
You may easily visualize a subset of all tetrahedra using a 3D selection box or by drawing contours in
the 3D viewer.

Similar to the Surface Editor, there is a Grid Editor which can be invoked by selecting the green icon
of the tetrahedral grid and clicking on the pencil icon (first from the right in the title bar) in the Working
Area. The editor allows for selecting tetrahedra with respect to different quality measures, e.g., aspect
ratio, dihedral angles at tetrahedron edges, solid angles at tetrahedron vertices, and edge length. The
editor contains several modifiers that can be applied for improving mesh quality.

Creating a Tetrahedral Grid from a Triangular Surface 43

Figure 2.26: Volumetric representation of optical lobe as tetrahedral grid

2.8 Warping and Registration Using Landmarks

This is an advanced tutorial. You should be able to load files, interact with the 3D viewer, and be
familiar with the 2-viewer layout and the viewer toggles.

We will transform two 3D-objects into each other by first setting landmarks on their surfaces and then
defining a mapping between the landmark sets. As a result we shall see a rigid transformation and a
warping which deforms one of the objects to match it with the other. The steps are:

1. Displaying Data Sets in Two Viewers.

2. Creating a Landmark Set.

3. Alignment via a Rigid Transformation.

4. Warping Two Image Volumes.

2.8.1 Displaying Data Sets in Two Viewers

The data we will be working with in this tutorial are of the same kind you have already seen before:
Two optical lobes of a drosophila’s brain.

• Load the two lobes by executing the script share/examples/landmark.hx.

This script will load two data sets called lobus.am and lobus2.am. In addition, two isosurface modules
connected to each of the data sets will be created. In the viewer the two lobes are visualized by iso-
surfaces, the first in yellow and the second in blue. As we can see, the lobes are orientated differently.
We want to look at each lobe in its own viewer.

44 Chapter 2: First steps in amira

Figure 2.27: Two lobes visualized with isosurfaces in 2-viewer layout.

• Choose 2 Viewers from the View Layout menu.

You can see the two lobes in both viewers.

• Visualize the first lobe (yellow) in the first viewer and the second lobe (blue) in the second
viewer by switching off the viewer toggles in the isosurface modules.

2.8.2 Creating a Landmark Set

Now, let us create a landmark set object.

• From the main window’s Edit menu select Create Landmarks

in order to create an empty set of landmarks. The new object will show up in the object pool. We are
going to match two objects by means of corresponding landmarks, i.e., we actually have to produce
two landmark sets. Make this number known to the Landmarks object.

• Select object Landmarks.

• Type Landmarks setNumSets 2 in the console window. Instead of manually typing the name of
the object you want to send commands to, e.g., Landmarks, you may simply press the tab key
on the empty command line.

• Start the Landmark Editor by clicking on the button with the disk-shaped icon.

When starting the editor, a LandmarkView module is automatically created and connected to the Land-
marks data object. As indicated on the info line, two empty landmark sets are available now. We use

Warping and Registration Using Landmarks 45

Figure 2.28: The image shows how the viewer toggles and Point Set ports should be set.

the editor to define some markers in both objects. For the following, it is useful to pin the three ports
on the landmark editor. In order to do so, select the grey pin toggles left from the port’s labels.

• Connect a second LandmarkView module to the Landmarks object.

• Select the first LandmarkView module and choose Point Set: Point Set 1.

• Shift-select the second LandmarkView module and choose Point Set: Point Set 2.

• Adjust the viewer toggles of the two display modules such that the first is visible in the first
viewer and the second in the second viewer.

Before starting to set landmarks it is helpful to rotate the two lobes in their viewers such that they are
approximately aligned. This will make it easier to locate corresponding features in the two objects and
to select reasonable positions for landmarks.

• Rotate the two lobes to align them roughly.

Now, we are ready to define and set corresponding landmarks. Select the LandmarkSet object if nec-
essary and choose the option

Edit mode: Add.

46 Chapter 2: First steps in amira

To set corresponding landmarks simply click with the left mouse button anywhere on the surface in
the first viewer first and click on the surface in the second viewer subsequently. The landmarks are
visualized as small spheres, the first landmark in yellow and the corresponding landmark in blue.
Make sure to always set the first landmark on the first (yellow) surface and the second landmark on the
second (blue) surface!!

If you want to change the position of an existing landmark set

Edit mode: Move

and select the respective landmark (blue or yellow) by clicking on it with the left mouse button. Then
just click at the desired position.

You can also delete existing landmarks by setting

Edit mode: Remove

and clicking on the respective landmark. Both corresponding landmarks (blue and yellow) will be
removed, no matter which one was selected.

You should now be able to create several landmarks. You may want to change the view of the objects
to set landmarks on the back. In case you have problems to define landmarks you may use an existing
set of landmarks by loading the file landmarkSet from the directory data/tutorials. Once
landmarks have been created, the next step is to transform the two objects into each other.

2.8.3 Registration via a Rigid Transformation

To register one object to the other connect a LandmarkWarp module to the LandmarkSet object by
clicking with the right mouse button on the LandmarkSet icon in the object pool and selecting Compute
LandmarkWarp.

We want to perform an alignment of the first lobe to the second. Therefore the LandmarkWarp module
must be connected to the image data of the first lobe (use the right mouse button in the tiny rectangle
of the LandmarkWarp icon).

The LandmarkWarp module is able to perform several transformations. We start with a purely rigid
transformation to match the corresponding landmarks as good as possible by perfoming only rotations
and translations of the first object. To do that choose

Method: Rigid

in the LandmarkWarp module and make sure that Direction is set to

Direction: 1 → 2.

Warping and Registration Using Landmarks 47

Then press DoIt to start the computation. The module creates a new data object named lobus.Warped.
To visualize the result, connect the isosurface that was initially connected to the data of the first lobe
to the result, select it and press the DoIt button. In order to compare the result with the second lobe,
adjust the viewer toggle of its Isosurface module to display it in the first viewer. You should see that
the result of the transformation fits the second object quite well.

2.8.4 Warping Two Image Volumes

Using the rigid transformation the object will not be deformed. To perform a deformation and obtain
a better fit we can use another transformation method of the LandmarkWarp module. Select the latter
and choose

Method: Bookstein and press the DoIt button.

To visualize the result, the isosurface has to be recomputed. Having done that you can see both the
deformed and the second lobe in the first viewer. To merely see the resulting deformation in the first
viewer, switch off the viewer toggle of the second lobe’s Isosurface module. Only a little deformation
will be seen because the two original objects were rather similar. Using more different data sets results
in larger deformations.

We hope you have had some fun with our tutorials, got to know the basic features of amira and
learned to use them. For details and more information about other features see chapter 3, the
Program Description.

2.9 Alignment of 2D Physical Cross-Sections

Many microscopic techniques require the sample to be physically cut into slices. Then images are
taken from each cross-section separately. Usually the images will be misaligned relative to each other.
Before a 3-dimensional model of the sample can be reconstructed the images have to be aligned taking
into account translation and rotation. This tutorial shows how this task can be performed using the
amira module Align Slices.

The following issues will be discussed:

1. Basic manual alignment

2. Alignment via landmarks

3. Optimizing the quality function

4. Resampling the input data

5. Other alignment options

48 Chapter 2: First steps in amira

Figure 2.29: Result of landmark-based elastic warping using the Bookstein method.

2.9.1 Basic Manual Alignment

In this tutorial we want to align 10 microscopic cross-sections of a leaf showing a stomatal pore. The
images are located in the amira data directory in the subdirectory align. Each slice is stored as a
separate JPEG image. The file leaf.info defines a 3D image stack consisting of the 10 individual slices.
It is a simple ASCII file as described in the stacked slices file format section.

• Load the file data/align/leaf.info into amira.

• Create an align module by choosing Compute AlignSlices from the popup menu over the leaf.info
icon.

• Press the Edit button of AlignSlices.

A new graphics window is popped up allowing you to interactively align the slices of the 3D image
stack. To facilitate this task usually two consecutive slices are displayed simultaneously. One of the
two slices is editable, i.e., it can be translated and rotated using the mouse. On default the upper slice
is editable. This is indicated in the tool bar of the align window (the “upper slice” button is selected).

• Translate the upper slice by moving the mouse with the left mouse button pressed down.

• Rotate the upper slice by moving the mouse with the left mouse button and the Ctrl key pressed

Alignment of 2D Physical Cross-Sections 49

Figure 2.30: User-interface of the align tool.

50 Chapter 2: First steps in amira

down. Alternatively, slices can be rotated using the middle mouse button.

• Make the lower slice editable by selecting the “lower slice” tool button. Translate and rotate the
lower slice.

• Hold down key number 1. While this key is hold down only the lower slice is displayed.

• Hold down key number 2. While this key is hold down only the upper slice is displayed.

• Pressing key number 1 and 2 also changes the editable slice. Note, how the slice tool buttons
change their state.

Other pairs of slices can be selected using the slider in the upper left part of the align window. Note,
that the number displayed in the text field at the right side of the slider always refers to the editable
slice. The next or the previous pair of slices can also be selected using the space bar or using the
backspace key, respectively. The cursors keys are used to translate the current slice by one pixel in
each direction.

• Browse through all slices using the space bar and the backspace key. Translate and rotate some
slices in an arbitrary way.

• Translate all slices at once by moving the mouse with the left mouse button and the Shift key
pressed down.

• Rotate all slices at once by moving the mouse with the left mouse button and the Shift and Ctrl
key pressed down.

Transforming all slices at once can be useful in order to move the region of interest into the center of
the image.

2.9.2 Alignment Via Landmarks

Besides manual alignment four automatic alignment options are supported, namely alignment using
a principal axes transformation, automatic optimization of a quality function, edge detection-based
alignment and alignment via user-defined landmarks. The principal axes method and the edge detection
method is only suitable for images showing an object which clearly separates from the background.
The optimization method requires that the images are already roughly aligned. Often such a pre-
alignment can be achieved using the landmarks method.

Alignment via landmarks first requires to interactively define the positions of the landmarks. This can
be done in landmark edit mode.

• Activate landmark edit mode by pressing the arrow-shape tool button located between the hand-
shape button and the lower slice button.

In landmark edit mode only one slice is displayed instead of two. Two default landmarks are defined
in every slice.

Alignment of 2D Physical Cross-Sections 51

• Click on one of the default landmarks. The landmark gets selected and is drawn with a red
border.

• Click somewhere into the image in order to reposition the selected landmark.

• Click somewhere into the image while no landmark is selected. This causes the next landmark
to be selected automatically.

• Click at the same position again in order to reposition the next landmark.

The double click method makes it very easy to define landmark positions. Of course, additional land-
marks can be defined as well. Landmarks can also be deleted, but the minimum number of landmarks
is two.

• Choose Add from the Landmarks menu.

• Click anywhere into the image in order to define the position of the new landmark.

• Select the yellow landmark by clicking on it.

• Choose Remove from the Landmarks menu in order to delete the selected landmark again.

Two landmarks should be visible now, a red one, and a blue one. Next, let us move theses landmarks
to some reasonable positions so that we can perform an alignment.

• Select slice number 0.

• Place the landmarks as shown in Figure 2.31. Make use of the double click method.

• In all other slices place the landmarks at the same positions.

Once all landmarks have been set, we can align the slices. It is possible to align only the current pair
of slices, or to align all slices at once. Note that all alignment actions as well as landmark movements
can be undone by pressing Ctrl-Z.

• Switch back to transform mode by pressing the hand-shape tool button. Two slices should be
displayed again.

• Align the current pair of slices by pressing the second tool button from the right (the one with
only two lines).

• Align all slices by pressing the first tool button from the right (the one with many lines).

• Move and rotate the whole object into the center of the image using the mouse with the Shift
key hold down.

In most slices the alignment now should be quite good. However, looking at the pairs 3-4 and 4-5
(displayed in the lower left corner of the align window) you’ll notice that there is something wrong.
In fact, slice number 4 has been accidently inverted when taking the microscopic images. Fortunately,
this error can be compensated in amira.

• Select slice pair 3-4 and make sure that the upper slice, i.e., slice number 4, is editable.

52 Chapter 2: First steps in amira

Figure 2.31: The figure shows how the landmarks should be set in the tutorial.

Alignment of 2D Physical Cross-Sections 53

• Invert the upper slice by pressing the invert button (third one from the right).

• Realign the current pair of slices by pressing the second button from the right).

• Select slice pair 4-5 and realign this pair of slices as well.

Alternatively, you could have aligned all slices from scratch by pressing the first button from the right.

2.9.3 Optimizing the Quality Function

Once all slices are roughly aligned we can further improve the alignment using the automatic opti-
mization method. At the bottom of the align window the quality of the current alignment is displayed.
This is a number between 0 and 100, where 100 indicates a perfect match. The quality function is
computed from the squared grey value differences of the two slices. The optimization method tries
to maximize the quality function. Since only local maxima are found, it is required that the slices are
reasonably well aligned in advance.

• Activate the optimization mode by pressing the tool button with the sum x squared symbol.
Remember the current quality measure.

• Align the current pair of slices by pressing the second button from the right. Observe, how the
quality is improved.

Automatic alignment is an iterative process. It may take quite a long time depending on the resolution
of the images and of the quality of the pre-alignment. You can interrupt automatic alignment at any
time using the amira stop button.

• Automatically align all slices by pressing the first button from the right.

2.9.4 Resampling the Input Data

If you are satiesfied with the alignment you can resample the input data set in order to create a new
aligned 3D image. This is done using the Resample button of the AlignSlices module.

• Press the Resample button of the AlignSlices module.

• Attach an OrthoSlice module to the resulting object leaf.align and verify that the slices are
aligned.

Sometimes you may want to improve an alignment later on. In this case it is a bad idea to align the
resampled data set a second time, since this would require a second resampling operation. Instead, you
could write the transformation data into the original image object and store this object in AmiraMesh
format. After reloading the AmiraMesh file you can attach a new AlignSlices module and continue
with the stored transformations.

54 Chapter 2: First steps in amira

• Choose Save transformation from the Options menu of the align tool. This will store the trans-
formation data in the parameter section of the input object leaf.info.

• Delete the AlignSlices module.

• Save leaf.info in AmiraMesh format.

• Reload the saved object leaf.am.

• Attach a new AlignSlices module to leaf.am and click the Edit button. Note that the original
alignment is restored.

2.9.5 Using a Reference Image

In some cases you might want to correct the alignment after image segmentation has been performed.
In order to avoid segmenting the newly resampled image from scratch, you can apply the same trans-
formations to a label field using a reference image.

• Delete any existing align tool.

• Load the file data/align/leaf-unaligned.labels into amira.

• Attach a new AlignSlices module to the label field.

In the label field the guard cells of the stomatal pore are marked. Segmentation has been performed
before the images were aligned. Now we want to apply the same transformation defined for the image
data to the labels.

• Connect the Reference port of AlignSlices to leaf.am (this is done by activating the popup menu
over the small rectangular area at the left side of the leaf.am icon). Observe how the transfor-
mations are applied to the label field.

• Export an aligned label field by pressing the Resample button.

The image volume used in this tutorial is an RGBA color field. However, the image segmentation
editor only supports gray level images. Therefore you must convert the color field into a scalar field
using CastField before you can invoke the image segmentation editor for the resampled labels.

2.10 Registration of 3D image datasets

In medical imaging a frequent task has become the registration of images from a subject taken with
different imaging modalities, where the term modalities here refers to imaging techniques such as
Computed Tomography (CT), Magnetic Resonance Tomography (MRT) and Positron Emission To-
mography (PET). The challenge in inter-modality registration lies in the fact that e.g in CT images
’bright’ regions are not necessarily bright regions in MRT images of the same subject.

In registration typically one of the datasets is taken as the reference, and the other one is transformed

Registration of 3D image datasets 55

until both datasets match. amira’s Registration module provides an affine registration, i.e. it deter-
mines an optimal transformation with respect to translation, rotation, anisotrope scaling, and shearing.

Closely related to registration is the task of image fusion, i.e. the simultaneous visualization of two
registered image datasets.

This tutorial shows how a registration can be performed and how to visualize the results. The following
issues will be discussed:

1. Basic manual registration using the Transform Editor

2. Automatic registration

3. Image fusion

2.10.1 Basic Manual Registration

In this tutorial we want to register a CT and an MRT dataset of a patient, showing the pelvic region.
The images are located in the amira data directory in the subdirectory registration.

• Load the files data/registration/CT-data.am and data/registration/MRT-
data.am into amira.

• Attach an OrthoSlice module to each of the datasets.

• Select Coronal at the Orientation port of the OrthoSlice module connected to the MRT data.

• Select a camera position for the 3D viewer where you can see both the axial slices of the CT
data and the coronal slices of the MRT data.

• Select slice 31 at the Slice Number port of the OrthoSlice module connected to the CT data.

Now one OrthoSlice module should show an axial slice through the hip joints. Move the coronal slice
through the MRT data. You will observe that the two datasets are not correctly aligned.

• Select the green icon of the MRT dataset. Invoke the Transform Editor by pressing the transform
box button (the third button from the right in the title bar) in the Working Area. The Transform
Editor enables you to specify an affine transformation, including translation, rotation, and scal-
ing. This transformation will be applied to the corresponding 3D dataset. You can edit the
transformation interactively in the 3D viewer using different Open Inventor draggers. You can
also enter transformations numerically.

• Press the Dialog button. A dialog window will pop up.

• Enter -2 at the third text field at Port Translation of the dialog window. This means a translation
of -2 cm in the z direction.

• Enter 5 at the first text field at the Rotation port. This means a rotation of 5 degrees. The axis
of rotation is defined at the next ports, here it is the z-axis.

• Press the Close button of the dialog window. Leave the Transform Editor by pressing again the
transform box button.

56 Chapter 2: First steps in amira

Inspect some coronal slices through the MRT dataset. Now there is a better alignment of the CT and
MRT data, but it’s still not perfect.

2.10.2 Automatic Registration

The Registration module provides an automatic registration via optimization of a quality function. For
registration of datasets from different imaging modalities, the Normalized Mutual Information is the
best suited quality function. In short, it favors an alignment which ’maps similar gray values to similar
gray values’. A hierarchical strategy is applied, starting at a coarse resampling of the datasets, and
proceeding to finer resolutions later on.

• Attach an Registration module to the MRT dataset by choosing Compute/AffineRegistration from
the popup menu over the MRT-data.am icon.

• Connect the second input port Reference of module Registration to the CT dataset. For this click
with the right mouse button on the small rectangle at the left hand side of the module’s icon.

• Select toggle Extended options. More ports of the Registration module will become visible.

The first three ports of the Registration module define the optimization strategy. The default settings
mean that an ExtensiveDirection optimizer is used for the coarse levels and a QuasiNewton optimizer
for the finest two levels of the resampling hierarchy. At the CoarsestResampling port you can select
the resampling rate for the coarsest resolution level. The default resampling rate is smaller in the z
direction because the reference dataset has a finer resolution in the x and y direction (0.17 cm) than in
the z direction (0.5 cm). For the default settings (8,8,3), the resampling hierarchy will consist of four
levels: (8,8,3), (4,4,2), (2,2,1), and the original resolution, (1,1,1).

The Normalized Mutual Information is calculated from gray value histograms. The selected histogram
ranges should enclose the essential information of each dataset. Normally you can choose the same
range as for visualization via an OrthoSlice module.

• Set -200 and 200 at the two text fields of the Histogram range reference port.

At the Transformation port you can specify the type of affine transformation. The default settings
mean that only rigid body motions will be applied, i.e. translations and rotations.

Option IgnoreFinestLevel means that optimization is done on all but the finest level of the resampling
hierarchy. This will slightly reduce the accuracy, but save a large amount of computing time.

Automatic registration may take some time depending on the resolution of the images and the quality
of the pre-alignment. You can interrupt automatic registration at any time using the stop button. Inter-
ruption may take some seconds. The progress bar shows the current hierarchy level and the progress
at that level.

• Start automatic registration by pressing the Register button at the Action port.

Registration of 3D image datasets 57

2.10.3 Image Fusion

The task of image fusion is the simultaneous visualization of two datasets. To that end amira offers for
all types of slicing modules (Orthoslice and ObliqueSlice) the Colorwash module. Using Colorwash,
the images from one dataset can be overlayed over that of another taking into account their orientaion
in space.

• Remove the OrthoSlice module connected to the MRT dataset.

• Select the green icon of the MRT dataset.

• Select a Colorwash module from the popup menu over the icon of the OrthoSlice module con-
nected to the CT dataset.

• Select the yellow icon of the Colorwash module.

• Select the physics.icol colormap at port Colormap.

• Set 70 as the upper bound for the colormap range.

• Select the icon of the OrthoSlice module.

• Inspect axial slices with slice numbers between 15 and 45.

You will observe a good alignment of the pelvic bone from both datasets. The soft tissue contours are
not perfectly aligned because there was some soft tissue deformation between both scans. This cannot
be described by a rigid transformation.

In image fusion it is sometimes necessary to observe all three orthogonal directions simultaneously.
For that the StandardView module can be used for image fusion. The StandardView module opens a
separate window with four viewers, three of them showing the three orthogonal slices of the image
data and a fourth being a new instance of the 3D viewer.

• Attach a StandardView module to the CT dataset by choosing Display StandardView from the
popup menu over the CT-data.am icon. amira’s Viewer window will now be split into four parts
showing three orthogonal slices through the CT data, and the 3D Viewer in the upper left part.

• Connect the second input port OverlayData of the StandardView module to the MRT dataset.
For this, click with the right mouse button on the small rectangle at the left hand side of the
module’s icon.

• Select slice numbers 179, 149, and 31 at ports Slice x, Slice y, and Slice z, respectively. The
three orthogonal slices will show the hip joints now.

• Increase the zoom-factor by clicking twice on button ¿ at the Zoom port.

• Select checkerboard at the Overlay mode port.

• Vary the size of the checkerboard tiles by moving the slider at the Pattern size port. In this way
you can again check the alignment of the CT and MRT datasets.

The bone contours around the hip joints show a good match. Note that bone is represented by white
(i.e high intensity) voxels in the CT data, but may occur as both white and black voxels in the MRT
data. In the axial slice you can observe larger deviations of the outer body contour between the CT and

58 Chapter 2: First steps in amira

Figure 2.32: Open Inventor geometry of the airfoil.

MRT data.

2.11 Visualization of Vector Fields

This step-by-step-tutorial briefly explains some amira modules for vector field visualization. The use
of these modules is explained by way of data representing the flow around an airfoil. The two methods
referred to in steps 2 and 3 are independent of each other. These topics will be covered:

1. Loading the Wing and the Flow Field

2. Line Integral Convolution

3. Illuminated Stream Lines

2.11.1 Loading the Wing and the Flow Field

As in the previous tutorials, we use the file dialog to import data.

• Import the geometry of the wing by loading the file wing.iv from the directory
data/tutorials.

• Attach an IvDisplay module to this data object.

• Load the vector field data set called wing.am from the directory data/tutorials.

The extension .iv indicates that the wing geometry is defined in the Open Inventor file format. The
IvDisplay module can be used for displaying geometry in this format. The vector field itself is stored

Visualization of Vector Fields 59

in amira’s native AmiraMesh file format. The data represents the flow around an airfoil computed on
a regular grid with curvilinear coordinates. By selecting the green data icon wing.am, you can find out
that the number of grid nodes in x,y,z-direction is 125 x 41 x 21.

2.11.2 Line Integral Convolution

Line Integral Convolution (LIC) is a method for visualizing 2D vector fields, i.e., depicting the vector
field direction for a suitably sampled subset of points in the 2D domain. The direction is represented
by local streamlines, i.e. by curves whose tangent vectors coincide with those of the given vector field.
Local streamlines are computed such that all image pixels are covered. The streamlines are projected
onto a random noise input texture map of the same size as the vector field domain. The projection step
involves summations of texture pixel intensities along streamline paths by way of a convolution integral
with a filter kernel. This causes pixel intensities in the resulting image to be highly correlated along
individual streamlines but statistically independent perpendicular to the latter. Thus the directional
structure of the vector field becomes clearly visible.

Here we use the 3D vector field that we have already loaded and visualize two-dimensional slices:

• Connect a PlanarLIC module to the vector field wing.am and select it.

• Choose the slice number 22 in the Translate port.

• Set filter length to 40 and resolution to 200.

• Press the Do It button of the Action port.

Whenever the projection plane of the PlanarLIC module is changed or other values for filter length
or resolution are taken, the LIC texture must be recalculated, i.e., the Do It button must be pressed
again. Otherwise, a checkerboard pattern will be displayed. Experiment with different filter lengths
and resolution values to see what kinds of textures can be produced.

To get an impression of the magnitude of the vectors, you can apply a colormap to the image. Some
default colormaps are already loaded when amira starts up. The corresponding icons usually will be
hidden. In order to use one of the colormaps, you have to select it explicitly:

• From the main window’s Edit Show menu select temperature.icol or any other colormap: the
corresponding icon becomes visible.

• Select Magnitude from port Colorize of the PlanarLIC module. A new port labeled Colormap
appears in the working area.

• Connect the colormap port to temperature.icol by clicking with the right mouse button in the red
rectangle and choosing temperature.icol from the appearing popup menu.

The two integer values of the colormap port specify the range of values to which the colormap is
applied. Vector magnitudes within this range are depicted symbolically by coloring streamline pixels
such that each pixel gets the unique color associated with the magnitude value by the temperature.icol
colormap.

60 Chapter 2: First steps in amira

Figure 2.33: Air flow around the wing visualized using Line Integral Convolution

• Select the wing.am icon and read off the magnitude range.

• Shift-select the PlanarLIC icon and enter the magnitude range into the Colormap port.

2.11.3 Illuminated Stream Lines

Illuminated Stream Lines is a technique for interactive 3D vector field visualization which makes use
of large numbers of properly illuminated stream lines. A realistic shading model is employed which
significantly increases realism of the resulting images and enhances spatial perception.

Now you will learn which tools are used for illuminated stream line visualization and how to use them
to get a 3D impression of our airflow vector field.

• Remove the PlanarLIC module or disable its display.

• Connect a DisplayISL module to the vector field wing.am.

• Set Num Lines to 300.

• Press the DoIt button of the Distribute port.

• Click on the TabBox button of port Box and zoom out the viewer if you cannot see a box.

A TabBox appears in the viewer. Only stream lines flowing through this box are visible. The green
ticks at the corners and edges of the box allow you to change the dimensions of the box.

• Switch the viewer into interaction mode.

• Try out what happens if you click with the left mouse button on one of the green ticks on the
corners or edges of the TabBox and drag them around.

Visualization of Vector Fields 61

Figure 2.34: Illuminated streamlines around a wing

• To move the whole TabBox, click with the left mouse button in the box and move it.

• Try to get the TabBox into a shape and position as shown in the image.

• Press DoIt button again in order to recalculate the stream lines.

Now some information about Console Window commands. Most amira modules provide more control
features than those that are available by the ports displayed in the Working Area. All of them are
available by commands that you type in the console window. You can get a list of commands associated
with a particular module currently in use just by entering its name. Now we will use such commands
to form and position the TabBox exactly as in the image above.

• Type “DisplayISL” into the Console Window.

• Type “DisplayISL getBox” into the Console Window.

The first command lists all commands of the DisplayISL module and the second shows the scale and
translation of the current TabBox. The first word of a command always has to be the name of a module
as shown on its icon. Note that module commands are not recognized unless corresponding modules
have been loaded into the object pool. However, you do not need to select a module for typing in its
commands.

• Type “DisplayISL setBoxTranslation -0.31 0.00 0.17”

• Type “DisplayISL setBoxScale 0.11 0.04 0.14”

Now the sub-field that corresponds to the clipping of the vector field as implied by the settings of the
TabBox should look like the one shown in the image above.

62 Chapter 2: First steps in amira

2.12 Creating animated demonstrations

In this tutorial you learn how to use the DemoMaker module for creating an animated sequence of
operations within amira. In our example, we will visualize a polygon model using effects such as
transparency, camera rotation, and clipping to make the visualization more meaningful and attractive.

The tutorial covers the following topics:

• creating an initial network for the demo

• animating an OrthoSlice module

• activating additional modules during the demo

• using a camera rotation or path

• editing or removing events that are already defined

• overlaying a bone model with a transparent skin model

• using clipping to make the skin appear gradually over the bone

• advanced clipping issues

• inserting breaks and defining demo segments

• using function keys for jumping between demo segments

• defining partial loops within the demo sequence

• storing and replaying a demo sequence

Once you have learned how to define an animated demo sequence, you can further learn how to record
the demonstration into a movie file in Section 2.13.

Creating animated demonstrations 63

2.12.1 Creating a Network

First, we need an amira network that contains all the data and modules for the visualization and
animation we want to do. In our example, we pick the medical CT scan dataset reg005. Start by
loading data/medical/reg005.ctdata.am from the amira root directory. By right-clicking
on the green data icon and selecting from the dataset’s popup menu, attach a BoundingBox module as
well as a OrthoSlice module to the data. If you use the mouse to navigate around the model in the 3D
viewer, you should manage to get a result similar to this:

(load network)

2.12.2 Animating an OrthoSlice module

Let us move the OrthoSlice plane up and down to show what the data looks like. Note that the Or-
thoSlice module has a port called Slice Number. If you change the value of that slider, you see the
plane move in the viewer.

Now let us animate this slider using the DemoMaker module as our first exercise. From the menu bar,
select Create / Animation/Demo / DemoMaker. A blue script object appears in the object pool:

64 Chapter 2: First steps in amira

Click on the blue icon to see its user interface. Whenever you want to animate some port of the
current network, you must select that port in the selection list called GUI element. Try to find the entry
called OrthoSlice/Slice Number, which corresponds to the Slice Number port of the current OrthoSlice
module. If you cannot find the entry, you may need to press the Update button to the left of the
selection menu (see below for an explanation).

Once you have selected OrthoSlice/Slice Number, you see two more ports appear in the DemoMaker
module: Start/end value as well as Start/end time. The start and end value specify between which two
values the OrthoSlice slider will be moved. Click the mouse into the start or end value fields, hold
down the Shift key, and drag the mouse with Shift held down. With this feature called the virtual
slider you can quickly set the desired value within the allowed range. Set the start value to 0 and the

Creating animated demonstrations 65

end value to 30. Then, set the start time to 0 and the end time to 0.2. These time values specify times
on the Time slider of the DemoMaker module (first port in the module). You have now specified an
event starting at time 0 and ending at time 0.2, varying the OrthoSlice slice number between 0 and 30
during that time.

Now press the Add button in the Event List port to add the newly defined event to the list of events.
This list of events is represented in the selection menu above the Add button.

Test the result by pressing the play button of DemoMaker’s time slider, represented by the triangle
pointing to the right. When you press it, the time slider will start moving from the left to the right.
When the time value is between 0 and 0.2, you should see that the OrthoSlice plane is moving between
the specified start and end values in the viewer (load network). You can also play your demo backwards
using the play button to the left of the time slider, or simply click somewhere on the time slider to jump
to any point in time of the demonstration.

If the demo sequence runs too slow or too fast, you can adjust this by right-clicking anywhere on the
time slider and selecting Configure from the popup menu. Change the Increment value in the dialog
box that appears. A smaller increment will make the animation slower, whereas a larger increment
makes it faster. If you choose too big an increment value, the animation might become “jerky”.

2.12.3 Activating a module in the viewer window

Next, let us add a visualization of the bone structure in the dataset after we have moved the OrthoSlice.
Load the dataset data/medical/reg005.surf in addition to the current network. Attach a
SurfaceView module to it. Click on the yellow SurfaceView module to see its user interface. Press the
Clear button in the Buffer port, then select Bone and All in the Materials port and press the Add button
in the buffer port. This will visualize the bone surface of the model.

66 Chapter 2: First steps in amira

If you want to switch the bone visualization on and off manually, you would use the viewer toggle (or-
ange rectangle) of the SurfaceView module. If you want to include this action in your demo sequence,
you need to do the following:

• Click on the DemoMaker module.

• Click on the Update button in the GUI element port. This is necessary whenever you add new
modules to the object pool after you have created the DemoMaker module.

• Select SurfaceView/View Mask/Viewer 0 from the GUI element list.

• Enter on in the Toggle to value port.

• Enter 0.2 in the Trigger time port.

• Press the Add button in the Event List port to add this newly defined event to the event list.

To test the newly added event, first toggle the SurfaceView module off using its orange viewer toggle
icon. Now click to the very left of the DemoMaker time slider to jump to the start of the demo sequence.
Click the play button. As before, the slice moves up. When it reaches the maximum value at time 0.2,
the bone model is switched on (load network).

Creating animated demonstrations 67

2.12.4 Using a camera rotation

To look at the 3D patient model from all sides, let us add a camera rotation to our demo sequence.
Select Create / CameraRotate from the menu. Try the rotation by playing the time slider in the Cam-
eraRotate module. If you do not like the axis of rotation, reset the time slider to 0, navigate to a good
starting view in the viewer window, and click on recompute in the CameraRotate module. Note that
the values of the CameraRotate time slider range from 0 to 360.

Once you are satisfied with the camera rotation, add it to the event list:

• Click on the DemoMaker module.

• Click on the Update button.

• Select CameraRotate / Time

• Enter 0 and 360 as the start and end value.

• Enter 0.2 and 0.4 as the start and end time.

• Click on the Add button in the Event List port.

Now play the demo to see the result. After moving the slice and switching on the bone model, the view
is rotated so that the bone can be seen from all sides (load network).

2.12.5 Editing or removing an already defined event

When you look at the demo sequence so far, you may think that it would be nice to wait for a short
time before rotating the bone model. This can be done by starting the rotation at a later time step. We
can easily correct this in the DemoMaker module:

• Select the 0.2 ... 0.4: CameraRotate event in the EventList port.

• You see the start/end value and start/end time of this event appear in the lower part of the De-
moMaker module.

• Change the start/end time to 0.3 and 0.5.

• Click on the Replace button in the Event List port. This replaces the currently selected event in
the list by the event as defined in the lower part of the module.

Now you have moved the camera rotation event from 0.2-0.4 to 0.3-0.5 on the time line. Check the
results by playing the time slider (load network).

68 Chapter 2: First steps in amira

Please note that you can delete an event from the list by simply selecting it from the Event List menu
and clicking the Remove button.

2.12.6 Overlaying the bone with skin

Now we want to show the patient’s outer surface overlayed over the bone model.

• Attach a second SurfaceView module to the reg005.surf dataset. Since Exterior and All are
selected as the default materials, this brings up the patient’s exterior surface.

• Click on the second SurfaceView module. It should be called SurfaceView2.

• Select transparent from the Draw Style port.

• It will be helpful to show the bone underneath the exterior surface, so jump to time step 0.2 or
later in the DemoMaker module.

• Adjust the grade of transparency using the BaseTrans slider in SurfaceView2.

• Smooth out the outer surface by clicking on more options in the Draw Style port and selecting
Vertex normals.

Like we did with the bone model, we can switch on the skin model at some point in the demo sequence:

• Click on the DemoMaker module.

• Click on the Update button in the GUI element port.

• Select SurfaceView2/View Mask/Viewer 0 from the GUI element list.

• Check on in the Toggle to value port.

• Enter 0.6 in the Trigger time port.

• Click on Add in the Event List port.

Creating animated demonstrations 69

Again, check out the results by playing the demo sequence.

2.12.7 Using clipping to add the skin gradually

Instead of just switching the skin on at one point, we can make it appear gradually over the bone from
bottom to top. In order to do so, we use the OrthoSlice plane to clip the skin model, and then move the
OrthoSlice plane up.

First, we need to move the OrthoSlice plane down again to where we want to start the clipping:

• Click on the DemoMaker module.

• Select OrthoSlice/Slice Number from the GUI element list.

• Enter 30 and 3 as the start/end values.

• Enter 0.3 and 0.5 as the start/end time.

• Click on Add in the Event List port.

Now, when you play the demo, the OrthoSlice plane will move down again during the camera rotation
(load network).

Now, we will clip the skin model using the OrthoSlice plane:

• Click on the DemoMaker module.

• Select SurfaceView2 / Clip using OrthoSlice from the GUI element list.

• Enter on as toggle value and 0.6 as trigger time.

• Click on Add in the Event List port.

70 Chapter 2: First steps in amira

When you run the animation now, you will not see the skin surface. This is because it is clipped above
the OrthoSlice plane, and only visible below that plane. To see the partial surface below the plane, we
must make the Orthoslice display transparent:

• Click on the DemoMaker module.

• Select OrthoSlice / Transparency from the GUI element list.

• Select None and Alpha as the from/to values.

• Enter 0.6 as the trigger time.

• Click on Add in the Event List port.

This way we have specified that at time 0.6, the Transparency port of the OrthoSlice module will be
changed from value None to the new value Alpha. When running the demo sequence, the result should
look like this:

As you see, part of the skin model is showing below the transparent OrthoSlice plane. To show all of
the skin, we simply move the plane upwards pretty much the same way we did before:

Creating animated demonstrations 71

• Click on the DemoMaker module.

• Select OrthoSlice / Slice Number from the GUI element list.

• Enter 3 and 58 as the start/end value.

• Enter 0.6 and 0.9 as the start/end time.

• Click on Add in the Event List port.

Now you see the skin slowly appearing over the bone as the clipping plane moves upwards.

As a last step, you might want to rotate the view again while the skin is appearing. You can simply
reuse the old camera rotation during a second time range:

• Click on the DemoMaker module.

• Select 0.3 ... 0.5: CameraRotate from the Event List menu.

• You will see start/end value and start/end time appear in the lower part.

• Change the start/end time to 0.6 and 0.9.

• Click on Add in the Event List port. This will leave the old event untouched and add a second
camera rotation event to the list.

You can check out the final animation by loading a saved network script.

2.12.8 More comments on clipping

Clipping can sometimes be a little bit more complicated than in our example, because clipping can be
applied to a plane in two different orientations. This means that you can either clip away everything
above the plane, or below the plane. Unfortunately it is not always obvious which of the two cases you
are in.

However, you can simply invert the orientation of the clipping in DemoMaker. In our example, you
would simply select OrthoSlice / Invert clipping orientation from the GUI elements port and add that
event at the very beginning of your demo sequence (e.g., at some time before the clipping takes effect).

72 Chapter 2: First steps in amira

You do not need to use an OrthoSlice module to do clipping. As you have seen, the OrthoSlice might
occlude parts of what you want to show. In that case, it is better to create an empty ClippingPlane
module by selecting Create / Clippping Plane from the menu. Attach the module to the dataset you
want to clip (e.g., to reg005.surf in our example), and then use the ClippingPlane for clipping just as
you used the OrthoSlice before.

2.12.9 Breaks and Function Keys

The demo sequence that we have created in this tutorial automatically runs through the complete time
range that we defined. Sometimes it might be desirable to split the sequence into several segments, so
that the demo will stop at some point and can be continued whenever the user desires to do so.

To take this into account, you can insert breaks in the DemoMaker event list. Let us insert one such
break right after the bone model appears:

• Click on the DemoMaker module.

• Select *Break, continue on keystroke from the GUI elements list.

• Enter 0.21 as the trigger time.

• Click on Add in the Event List port.

This way the demo will stop at time 0.21, which is right after the time when the bone model is switched
on (0.2). When you play the demo from the start, you will notice that after the bone is switched on,

Creating animated demonstrations 73

the demo will stop.

Let us insert a second break at time step 0.51, which is right before the skin is starting to show. Proceed
as above, using a trigger time of 0.51 instead of 0.21 (load network).

If you run the demo from the very beginning, it will stop after the bone is displayed, and you can read
a message in the console window telling you that DemoMaker just stopped and you may press F4 to
continue. Try this by pressing the function key F4. The demo continues.

Likewise, the demo will stop just before showing the skin. Again, you can continue the demo by
pressing F4. In general, at any point while the demo is running, you can press the F3 key to stop it
manually. Pressing F4 will continue from the point where the demo stopped.

If you have defined breaks as we did above, there are two more interesting function keys that in some
sense allow you to navigate through the demo segments: pressing F9 will jump back to the previous
break or to the very beginning of the demo, and F10 will jump to the next break, or to the very end of
the demo. If you use F9/F10 when the demo is stopped, it will just jump, and you need to press F4
to start playing it from the new time step. If you press F9/F10 while the demo is running, it will just
jump to the new time step and continue running.

Please note that you can disable the breaks by checking the skip break toggle in the Options port of the
DemoMaker module. You may even disable the definition of function keys by checking the options
toggle in the Functions port, and then unchecking function keys in the second Options port. This is
especially important if you want to use multiple DemoMaker modules, since only one of the modules
can define the keys.

2.12.10 Loops and go-to

One more feature that might be required for certain kinds of demos is the definition of loops. If you
just want the whole demo to run in a loop, you can do this easily using the built-in features of the
time port slider: right-click on the slider and select loop or swing. Now if you play the time slider,
it will start over from the beginning (loop mode), or play forwards, backwards, forwards ... (swing
mode).

However, you may want to define some part of the demo to run in a loop, and then stop the loop and
continue with the demo upon key press. You can easily do this with the go-to feature of DemoMaker:

• Click on the DemoMaker module.

• Select *Go-to, jump to user-specified time step from the GUI elements list.

• Enter 0.19 as the Trigger time.

74 Chapter 2: First steps in amira

• Enter 0.0 as the Time to jump to.

• Click on Add in the Event List port.

When you run the demo sequence now, it will loop in the first segment, only showing the OrthoSlice
move up, jump down, move up again . . . You can stop this by clicking on the stop button of the
DemoMaker time slider or by pressing F3. To continue after the loop, you need to jump to the next
segment by pressing F10, and then start playing again by pressing F4.

2.12.11 Storing and replaying the animation sequence

As you may have noticed by now, storing a demo sequence once you have defined it is quite easy: sim-
ple save the whole amira network by selecting File / Save Network... from the menu. The DemoMaker
module will be saved along with the network, and so will the demo sequence you have defined.

When you load the network back into amira, the state of the network will be the same as it was when
you saved it. This means that you should be careful to reset the DemoMaker time slider to 0 before
saving the network, if you want the demo to start from the beginning.

After loading the network, you can start the demo by clicking on the play button of the DemoMaker
module, or by pressing F4. If you want to run the demo automatically right after the network is loaded,
you can use the auto start feature that you find when you check options in the Functions port:

Just check the auto start toggle and save the network. When you load it again, the demo will start
running automatically (load network).

2.13 Creating movie files

In this turorial you learn how to record a self-created animated sequence into a movie file using the
MovieMaker module.

In our first example we will just use a camera path to animate the scene, whereas in our second example
we will rely on the demo sequence created in Section 2.12.

Creating movie files 75

2.13.1 Attaching MovieMaker to a camera path

If you have created a visualization of your data and want to create a movie showing this visualization
from all sides or from certain interesting viewpoints, you can create an appropriate camera path and
record a movie by following the camera along that path.

Let us create a simple example. Load the lobus.am dataset from the tutorial subdirectory and
attach an Isosurface module to it. Choose an iso surface threshold of 70 and press the Do It button.
The result should look similar to this:

The easiest way to create a simple camera path is to use the CameraRotate module. Select Create
/ CameraRotation from the menu, and press the play button of the newly created module. You can
watch the scene rotate in the viewer while the time slider is playing (load network).

To record an animated scene into a movie file, you need to attach a MovieMaker module to a module
that posses a time slider port. The movie is recorded by going through the individual time steps and
taking snapshots of the viewer along the way.

In our example, the CameraRotate module has a time slider, so we can attach a MovieMaker module
to it by right-clicking on the CameraRotate icon in the object pool and selecting MovieMaker from the
popup menu:

76 Chapter 2: First steps in amira

In the MovieMaker module, first click on the Browse button in the Filename port and enter a movie file
name like c:/tmp/test.mpg. The .mpg suffix suggests that the movie file format will be MPEG,
which is a widely accepted standard format for digital movies achieving a good compression ratio.

Next, adjust the parameters of the MovieMaker module to your liking, e.g., change the number of
frames, the image size, or the compression quality. Please refer to the MovieMaker documentation for
details.

In our example, let us choose 180 frames and leave all other parameters untouched. Since the Camer-
aRotate module does a full rotation of 360 degrees, each of the 180 frames will represent a rotation of
two degrees with respect to the previous frame. Press the Create Movie button to start recording.

Wait for some time while the MovieMaker module drives the CameraRotate module and accumulates
the snapshots. Please note that the speed during the recording process is different than the playback
speed of the movie. Now view the resulting movie file test.mpg with a movie player of your choice
(e.g., Windows Media Player or a similar tool). Experiment with the recording parameters until you
get the desired result (e.g., control the file size and image quality by changing the Compression quality
value, choose different image sizes to see up to which image size your computer is capable of smoothly
displaying the movie, and change the number of frames to control the speed of the rotation).

2.13.2 Attaching MovieMaker to DemoMaker

Now we try to record a movie of a more complex animated scene. To this end, we load one of the
networks that we have created in in Section 2.12: load network.

As you might remember, the basic idea of the DemoMaker module was that you define a set of events
to be executed on a certain time line. Check this out by clicking the play button of the time slider in
the DemoMaker module. You should see a nicely animated demonstration.

Creating movie files 77

If you remember the previous section in this tutorial, you might already have an idea of how we can
record this animated demonstration into a movie file. Like the CameraRotation module in the first
example, the DemoMaker module is controlled via a time slider that we can attach to. So simply right-
click on the DemoMaker icon in the object pool and attach a MovieMaker module. Like before, enter
a movie file name and select the number of frames before you click on the Create Movie button to start
recording.

78 Chapter 2: First steps in amira

Chapter 3

Program Description

This chapter contains a detailed description of amira interface components and data types. No in-depth
knowledge of amira is required to understand the following sections, but it is a good idea to have a
look at one of the tutorials contained in Chapter 2, particularly the very first one described in Section
2.1 (Getting Started).

3.1 Interface Components

In this section the following interface components are described:

• File Menu, Edit Menu, Create Menu, View Menu, Help Menu

• Main Window, Viewer Window, Console Window

• File Dialog, Job Dialog, Preferences Dialog, Snapshot Dialog, System Information

3.1.1 File Menu

The file menu lets you load and save data objects as well as amira network scripts. In addition, it gives
you access to amira’s job dialog and allows you to quit the program. In the following text, all menu
entries are discussed separately.

3.1.1.1 Load

The Load button activates amira’s file dialog and lets you import data sets stored in a file. Most
file formats supported by amira will be recognized automatically via the file header or the file name
extension. For each file, the file dialog will display its format. If you try to load a file for which the
format couldn’t be detected automatically, an additional dialog pops up asking you to select the format

manually. You may also manually set the file format for any file by selecting the file, activating the file
dialog’s popup menu using the right mouse button, and then choosing the Format option.

A list of all supported file formats is contained in the reference manual. Hints on how to import your
own data sets are given in Section 4.1.

If you select multiple files in the file dialog, all of them will be loaded, provided all of them are stored
in the same format. 2D images stored in separate files usually will be combined into a single 3D data
object. On the other hand, there are some file formats which cause multiple data objects to be created.
Finally, you can also import and execute amira network scripts using the Load button.

3.1.1.2 Load Time Series

This button also activates the file dialog, but in contrast to the ordinary Load option it is assumed that
all selected files represent different time steps of a single data object. When loading such a time series
an instance of a time series control module is created. This module provides a time slider allowing
you to adjust the current time step. Whenever a new time step is selected the corresponding data file
is read, and data objects associated with a previous time step are replaced. The module also provides
a cache so that the data files only need to be read once provided the cache is large enough.

3.1.1.3 Save Data

The Save Data button allows you to save a single modified data object again using the same file-
name previously chosen under Save Data As. The button will only be active if the data object to be
saved is selected and if this data object already has been saved using Save Data As. A common ap-
plication of the Save button is to store intermediate results during manual segmentation in amira’s
image segmentation editor.

3.1.1.4 Save Data As

This button lets you write a data object into a file. To do so you must first select the data object (click
on the corresponding green data icon). Then choose Save Data As to activate amira’s file dialog. The
file dialog presents a list of all formats suitable for saving that data object. Choose the one you like
and press OK. Note that you must specify the complete file name including the suffix. amira will not
automatically add a suffix to the file name. However, it will update the suffix whenever you select a
new format from the file format list. Also, amira will ask you before it overwrites an existing file.

Some file formats create multiple files for a single data object. For example, each slice of a 3D image
data set might be saved as a separate raster file. In this case, the file name may contain a sequence of
hashmarks. This sequence will be replaced by consecutive numbers formatted with leading zeros.

If no file format at all has been registered for a certain type of data object, the Save as button will be
disabled. It will also be disabled if more than one data object is selected in the object pool.

80 Chapter 3: Program Description

3.1.1.5 Save Network

This button allows you to save the complete network of icons and connections shown in the object
pool. You need to specify the name of an amira network script in the file dialog. When executed, the
network script restores all data objects and modules as well as the current object transformations and
the camera settings. The feature is useful for resuming work at a point where it was left in a previous
amira run.

Note that usually all data objects must have been stored in a file in order to be able to save the network.
If this is not the case, a dialog is popped up listing all the data objects that still need to be saved. In
the dialog you can specify that all required data objects should be saved automatically in a separate
subdirectory.

Instead of the option amira script you can also choose amira script and data files (pack & go) from
the file dialog’s format menu. In this case all data objects currently loaded will be saved in a separate
directory. More options affecting the export of network scripts can be adjusted in the preference dialog.

3.1.1.6 Recent Files

This button can be used to load recently used files. When choosing this menu entry a submenu appears
listing the five most recent files. If multiple 2D images have been loaded this is indicated with the
name of the first file followed by three periods (...).

3.1.1.7 Recent Networks

This button can be used to load recently used network scripts. When choosing this menu entry a
submenu appears listing the five most recent network scripts.

3.1.1.8 Jobs

This button brings up amira’s job dialog which is used to control the execution of batch jobs running in
the background. For example, tetrahedral grids can be generated in a batch job (see module TetraGen).
However, for most users the batch queue will be of minor interest.

3.1.1.9 Quit

This button terminates amira. The current network configuration will be lost unless you explicitly
save it using Save Network.

3.1.2 Edit Menu

The Edit menu provides control over the visibility of object icons and lets you delete or duplicate
objects. Depending on how many icons are selected in the Object Pool, some menu options might be
disabled.

Interface Components 81

3.1.2.1 Hide

The Hide button hides all currently selected objects. The object’s icons are removed from the Object
Pool but the objects themselves are retained. You get the same effect by pressing the Ctrl-H key.
Hidden objects can be made visible again using Show or Show All.

3.1.2.2 Remove

The Remove button deletes all selected objects and removes the corresponding icons from the Object
Pool. You can get the same effect by pressing Ctrl-X. If you want to reuse a data object later on, be
sure to save it in a file before deleting it. If a data object has been modified but has not yet been saved
to a file, it is marked by a little asterisk in the object icon. In the Perferences dialog you can choose
whether a warning dialog should be printed if you try to delete unsaved data objects which cannot
be recomputed by an up-stream compute module. If you delete a data object, all connected modules
will be deleted as well. However, if you delete a module connected data objects (e.g., the results of a
compute module) will be retained.

3.1.2.3 Duplicate

The Duplicate button creates copies of all selected data objects. For each copy a new data icon is put
in the Object Pool. The name of a duplicated data object differs from the original one by one or more
appended digits. The duplicate option is not available if you have selected icons that do not represent
data objects (e.g., display or compute modules).

3.1.2.4 Rename

This button allows you to change the name of a selected object in a small dialog box which is popped
up when the button is pressed. If no object is selected or if multiple objects are selected the button is
disabled. Note, that no two objects in amira can have the same name. Therefore, the name entered in
the dialog may be modified by appending digits to it, if necessary.

3.1.2.5 Show

The Show button allows you to make hidden objects visible, so that their icons are displayed in the
Object Pool. Among the hidden objects there are usually some colormaps which are loaded at start-up.
This option will be unavailable if there are no hidden objects.

3.1.2.6 Show All

The Show All button makes all currently hidden objects visible, so that their icons are displayed in the
Object Pool. This option will be unavailable if there are no hidden objects.

82 Chapter 3: Program Description

3.1.2.7 Remove All

The Remove All button deletes all currently visible icons and the associated objects from the Object
Pool. A pre-loaded colormap that is currently visible is also deleted, but all hidden objects are retained.
If you select the option check if data objects need to be saved in the Preferences dialog, a warning
dialog is popped up if there are data objects which have not yet been saved to a file.

3.1.2.8 Database

The Database button activates an extended version of the Parameter Editor, allowing you to manipulate
amira’s global parameter database. Among others, the parameter database contains a set of predefined
materials (to be used for image segmantation and surface reconstruction) and of predefined boundary
ids (to be used for surface editing and FEM pre-processing). For example, for each material and for
each boundary id a default color can be defined in the database.

Modification, insertion, and removal of parameters is performed in the same way as in the ordinary
parameter editor. In addition, the database dialog provides a menu bar allowing you to load, im-
port, save, or search the global parameter database. amira’s default database is stored in the file
share/materials/database.hm located in the directory where amira was installed. With the
option Set Default Database an arbitrary other database file can be used instead. This change is per-
manent, i.e., it takes effect also if amira is restarted. To switch back to the system default, use the
option Use System Default in the Edit menu.

3.1.2.9 Preferences

This option opens the amira preferences dialog described in Section 3.1.11. Among others, the dialog
controls the way how network scripts are exported. It also lets you choose if warning dialogs should
be popped up if you try to delete data objects which have not yet been saved to file, or if you try to exit
amira without having saved the current network before.

3.1.3 Create Menu

The Create menu lets you create modules or data objects that cannot be accessed via the popup menu
of any other object. The Create menu provides different categories like the popup menu in the object
pool. For example, you can create a procedurally defined scalar field (where you can type in some
arithmetic expression) by choosing Scalarfield from the Data sub-menu. The icon of a newly created
object usually will not be connected to any other object in the Object Pool. In order to establish
connections later on, use the popup menu over the small rectangular connection area of the object’s
icon. You can also put in links to scripts in the Create menu. Details are defined in Section 5.5
(Configuring popup menus).

Interface Components 83

3.1.4 View Menu

The View menu provides control over several Viewer options affecting the display independent of the
Viewer input.

3.1.4.1 Layout

The Layout button lets you select between one, two, or four 3D viewers. All viewers will be placed
inside a common window using a default layout. If you want to create an additional viewer in a separate
window, choose Extra Viewer. You may create even more viewers using the Tcl command viewer
<n> show. Starting from n=4, viewers will be placed in separate windows.

3.1.4.2 Background

The Background button opens the background dialog, allowing you to switch between the different
background styles uniform, gradient, and checkerboard. In addition, the dialog allows you to adjust
the two colors used by these styles.

In order to change the background color via the command interface use the viewer commands viewer
<n> setBackgroundColor and viewer <n> setBackgroundColor2. The command in-
terface also allows you to place an arbitrary raster image into the viewer background (see Section 3.1.7,
viewer commands).

3.1.4.3 Transparency

The Transparency button controls the way of calculating pixel values with respect to object transparen-
cies during the rendering process.

• Screen Door: Transparent surfaces are approximated using a stipple pattern.

• Add: Additive alpha blending.

• Add Delay: Additive alpha blending with two rendering passes. Opaque objects come first and
transparent objects come second.

• Add Sorted: Like Add Delay, but transparent objects are sorted by distances of bounding box
centers from the camera and are rendered in back to front order.

• Blend: Multiplicative alpha blending.

• Blend Delay: Multiplicative alpha blending with two rendering passes. Opaque objects come
first and transparent objects come second.

• Blend Sorted: Like Blend Delay, but transparent objects are sorted by distances of bounding
box centers from the camera and are rendered in back to front order.

84 Chapter 3: Program Description

3.1.4.4 Lights

The Lights menu lets you activate different light settings for the 3D viewer. By default, the viewer uses
a single headlight, i.e., a directional light pointing in almost the same direction as the camera is looking.
The headlight can be switch on or off in each viewer via the viewer’s popup menu. Alternatively, the
headlight can be switched on or off for all viewers using the headlight toggle in this Lights menu. This
standard light settings can be restored using the Standard button. More light settings can be defined
by creating appropriate file in $AMIRA ROOT/share/lights. On default, amira provides one
additional light setting including colored lights (BlueRed).

At any time, additional lights can be created via the Create light option. Except for the viewer’s
default headlight, all lights are represented by little blue icons in the Object Pool, just like ordinary
data objects or modules. In order to make all hidden light icons visible, use the Show all icons option.
Hide all icons hides the icons of all light objects. For more information about lights, please refer to
the Reference Section of this manual.

3.1.4.5 Fog

The Fog button introduces a fog effect into the displayed scene and controls how opacity increases
with distance from the camera. The fog effect will only be seen on a uniform background. More fine
tuning is provided by the fogRange Viewer command.

• None: No fog effect (default).

• Haze: Linear increase in opacity with distance.

• Fog: Exponential increase in opacity with distance.

• Smoke: Exponential squared increase in opacity with distance.

3.1.4.6 Axis

The Axis button creates an Axis module named GlobalAxis which immediately displays a coordinate
frame in the viewer window. This button is a toggle, so clicking on it again deletes the GlobalAxis
module and removes the coordinate frame from the viewer window. The axes will be centered at the
origin of the world coordinate system. You may also create local axes by selecting the appropriate
entry from a data object’s popup menu.

3.1.4.7 Fading effect

The Fading effect toggle lets you switch on a fading effect which is applied to all kinds of scene
movements. Before a new image is rendered only a certain fraction of the background will be cleared.
In this way older images remain visible until they fade out after a while. Note that this mode requires
single buffer rendering, and therefore, flickering may be visible in some cases.

Interface Components 85

3.1.5 Online Help

amira user’s documentation is available online. You can access it via the User’s Guide entry of the
main window’s Help menu. The user’s guide contains some introductory chapters, as well as a refer-
ence part containing documentation for specific

• modules,

• data types,

• editors,

• file formats,

• and other components.

You may access the documentation of any such object via a separate index page accesible from the
home page of the online help browser. amira modules also provide a question mark button in the
working area. Pressing this button directly pops up the help browser for the particular module.

Going through the online documents is similar to text handling within any other hypertext browser.
In fact, the documentation is stored in HTML format and can be read with a standard web browser
as well. Some specially marked (colored and underlined) text items allow you to jump quickly to
related or referenced topics, where blue items point to unread sections, and red items to already viewed
sections. Use the Backward and Forward buttons to scroll in the document history and Home to move
to the first page.

Searching the online documentation
The online help browser provides a very simple interface for a full text search. For example, if you are
looking for information about the surface editor, type these two words into the text field in the upper
part of the help window. Then, press the search button in order to perform the search. If you want to
look for multiple words, you must prepend them with a plus sign, e.g., surface +editor.

Running demo scripts
In the demo section of the on-line manual you can easily start any demonstration just by clicking on
the marked text. The script will be loaded and executed immediately. You may interrupt running demo
scripts by using the stop button in the lower right of the amira main window.

Commands

help

Makes the help dialog appear and loads the home page of the online help.

help getFontName

Returns the name of the font of the browser.

help setFontName
Sets the font of the browser.

86 Chapter 3: Program Description

Figure 3.1: amira’s help window.

Interface Components 87

help getFontSize

Returns the size of the font of the browser.

help setFontSize

Sets the size of the font of the browser. In order to permanently change the font size, put this
command in the .amira file in your home directory or in an amira.init file in the current working
directory. For details see Section 4.4.

help load file.html
Load the specified hypertext document in the file browser. Note that only a subset of HTML is
supported.

help reload
Reload the current document.

3.1.6 Main Window

amira’s main window consists of two components, the Object Pool in the upper part of the window
and the Working Area in the lower part. The Object Pool contains icons representing data objects and
modules currently in use as well as lines connecting icons indicating dependencies between objects
and modules. The Working Area is the place where the user interface of selected objects is displayed.
Typically, the interface consists of buttons and sliders arranged in Ports. They can be thought of as
ports because the user can pass information to a module solely through them.

3.1.6.1 Object Pool

Once a data object has been loaded or a module has been created it will be represented by an icon in
the Object Pool. Some objects, especially colormaps, may not be visible here. Such hidden objects
are listed in the Edit Show menu of the main window. Selecting an object from this menu causes the
corresponding icon to be made visible in the Object Pool.

Icon colors indicate different object types. Data objects are shown in green, computational modules in
red, and visualization modules in yellow. Orange icons represent visualization modules of slicing type.
Such modules may be used to clip the graphical output of any other module. Connections between data
objects and processing modules, shown as blue lines, represent the flow of data. You may connect or
disconnect objects by picking and dragging a blue line between object icons.

As you might expect, not all types of processing modules are applicable to all kinds of data objects.
If you click on an icon with the right mouse button, a menu pops up that shows all types of modules
that can be connected to that object. Selecting one of them will automatically create an instance of
that module type and connect it to the data object. A new icon and a connecting line will appear in
response. This way you can set up a more or less complex network that represents the computational
steps required to carry out a specific visualization task and is indeed used to trigger them.

88 Chapter 3: Program Description

Figure 3.2: The object pool contains data objects and module icons.

If you look closer at an object’s icon you will notice a tiny rectangle on its left. If you click on it with
the right mouse button a menu pops up that shows all connection ports of that object. As mentioned
above, for most objects the required connections are automatically established on creation. However, in
order to set up optional connections you must use the connection popup menu. For example, you may
attach an optional scalar field to an Isosurface module in order to let its values on an existing isosurface
be encoded by colors. The colormap used for pseudo-coloring is specified by another connection port.

Once you have selected an entry from the connection popup menu, you can choose a new input object
for that port. In order to do so, click on the input object’s icon in the Object Pool. The blue connection
line will become yellow if the connection port can be connected to the chosen object. In order to
disconnect an input object click on the icon of the module the port belongs to. Data objects possess a
special connection port called Master. This port refers to a computational module or editor the data
object is attached to. It indicates that the computational module or editor controls the data object, i.e.,
that it may modify its contents.

Each object has an associated control panel containing buttons and sliders for setting or changing ad-
ditional parameters of the object. The control panel becomes visible once the object has been selected,
i.e. by clicking on its icon with the right mouse button. In order to select multiple objects you must
shift-click the corresponding icons. Clicking on the icon of a selected object deselects it again. Click-
ing somewhere on the background of the Object Pool causes all selected objects to be deselected. An
icon may be dragged around in the Object Pool by clicking on it and moving the mouse pointer while
holding down the mouse button.

3.1.6.2 Working Area

Once an object has been selected, its input controls will be displayed in the Working Area below the
Object Pool. Each object has a specific set of controllable parameters or options. These are described
in detail for each module in the index section of the reference manual. Computational modules and
visualization modules also provide a question mark button which lets you access the documentation of
that module directly.

Interface Components 89

At the top of an object’s control panel its name is displayed and a number of additional control buttons
are provided. All objects have one or more orange viewer buttons for each 3D viewer. These buttons
control whether any graphical output of an object is displayed in a particular viewer or not. For
example, if you have two viewers and two isosurface modules you may want to display one isosurface
in each viewer.

Display modules of slicing type (orange ones) provide a clip button. Clicking this button will cause
the graphical output of any other module to be clipped by that slice. Clipping does not affect modules
with hidden geometry or modules that are created after the clip button has been pressed.

Data objects provide a number of additional editor buttons. Editors are used in order to modify the
contents of a data object interactively. For example, you can perform manual segmentation of 3D
image data by editing label fields using the image segmentation editor. Some editors display their
controls in the working area like all other objects, while others use a separate dialog window that
allows you to perform object manipulations.

As already mentioned, specific input controls of an object or a module are organized in Ports. Each
port has a pin button on its left. If a port is pinned it will still be visible even when the object is
deselected. The ports are composed of various widgets that reflect an operational meaning, e.g., a
value is entered by a slider, a state is set by radio buttons, a binary choice is presented as a toggle
button. The control elements have a uniform layout and are divided into several basic types. A
description of the basic port types is contained in the component index section of the User’s Reference
Manual.

3.1.7 Viewer Window

The 3D viewer plays a central role in amira. Here all geometric objects are shown in 3D space. The
3D viewer offers powerful and fast interaction techniques. It can be regarded as a virtual camera which
can be moved to an arbitrary position within the 3D scene. The left mouse button is used to change the
view direction by means of a virtual trackball. The middle mouse button is used for panning, while the
left and the middle mouse button pressed together allow you to zoom objects.

Sometimes you need to manipulate objects directly in the 3D viewer. For example, this technique,
called 3D interaction, is used by the transform editor. The editor provides special draggers that can
be picked and translated or rotated in order to specify the transformation of a data object. Before you
can interact with these draggers, you must switch the viewer into interaction mode. This is done by
clicking on the arrow button in the upper right corner. If the viewer is in interaction mode, the mouse
cursor will be an arrow instead of a hand symbol. You can use the [ESC] key in order to quickly
switch between interaction mode and viewing mode. If the viewer is in interaction mode, use the
[Alt] key to temporarily switch to viewing mode.

More than one viewer can be active at a time. Standard screen layouts with one, two, or four viewers
can be selected via the view menu. Additional viewers can be created using the Tcl command viewer
<n> show, where <n> is an integer number between 0 and 15. While viewers 0 to 3 will be placed

90 Chapter 3: Program Description

Figure 3.3: amira’s viewer window provides a virtual trackball for easy navigation. The decoration frame contains several
controls, allowing you for example to switch between viewing mode and interaction mode, to choose certain orienations, or to
take snapshots.

Interface Components 91

in a common panel window, viewers 4 to 15 will create their own top-level window. For more specific
control, the viewer provides an extensive command set, which is documented in Section 5.3.3.1.

The decoration of the viewer window provides several buttons and controls, see Figure 3.3. The precise
meaning of these controls is described below.

• Edit Background Color: Pops up the Background Dialog that allows you to change the ap-
pearance of the viewer background. In Mode you may choose between uniform, gradient, and
checkerboard mode. In Color you may specify the colors by pressing the buttons adjacent to the
color 1 and color 2 labels in which case a Color Editor pops up. The Swap button exchanges the
two colors used with non-uniform backgrounds and the Reset button restores the default.

• Snapshot: Takes a snapshot of the current rendering area and saves it in a file. The filename
as well as the desired output format have to be entered through the snapshot dialog. Snapshots
may also be taken using the viewer command snapshot.

• Seek: Pressing the seek button and then clicking on an arbitrary object in the scene causes the
object to be moved into the center of the viewer window. Moreover, the camera will be oriented
parallel to the normal direction at the selected point. Seeking mode may also be activated by
pressing the [S] key in the viewer window.

• Home: Resets camera to the home position.

• Set Home: Sets the current position as the new home position.

• Pick: Switches the viewer into interaction mode. You can also use the [ESC] key to toggle
between viewing mode and interaction mode.

• View: Switches the viewer into viewing mode. You can also use the [ESC] key to toggle
between interaction mode and viewing mode.

• Home: Resets camera to the home position.

• Set Home: Sets the current position as the new home position.

• Rotate: Rotates the camera around the current view direction. By default, a clockwise rotation
of one degree is performed. If the Shift-key is pressed while clicking, a 90 degree rotation is
done. If the Ctrl-key is pressed, the rotation will be counterclockwise.

• Measuring: Pressing this button creates an instance of a Measuring module that lets you measure
distances and angles on objects within the viewer.

• View All: Repositions the camera so that all objects become visible. The orientation of the
camera will not be changed.

• Perspective/Ortho: Toggles between a perspective and an orthographic camera. By default, a
perspective camera is used. You may want to use an orthographic camera in order to measure
distances or to exactly align objects in 3D space.

• YZ-, XZ- and XY-Views: Adjusts the camera according to the specified viewing direction. The
viewing direction is parallel to the coordinate axis perpendicular to the specified coordinate
plane. Medical doctors are used to viewing series of tomographic images parallel to the XY-
plane with the y-axis pointing downwards. This convention is followed by the XY-button. The
opposite view direction is used if the Shift key is pressed.

92 Chapter 3: Program Description

Figure 3.4: amira’s console window displays info messages and lets you enter Tcl commands.

In addition to theses buttons the amira viewers provide an extensive set of Tcl commands, which are
listed in Section 5.3.3.1.

3.1.8 Console Window

The console window is a command shell allowing to access amira’s advanced control features. It
serves two purposes. First, it gives you some feedback on what is currently going on. Such feedback
messages include warnings, error indications and notes on problems as well as information on results.
Second, it provides a command line interface where amira commands can be entered.

amira’s console commands are based on the Tcl script language (Tool Command Language). Examples
are:

load C:/MyData/something.am
viewer 0 setSize 200 200
viewer 0 snapshot C:/snapshot.tif

The amira scripting syntax and the specific commands are described in the Chapter 5 (Scripting). To
execute a single console command just type in its name and arguments and press ‘Enter’. If you select
an object and then press the [TAB] key on the empty command line, then the name of the object will
be automatically inserted.

You can also type the beginning of a command word and type the [TAB] key to complete the word.
This only works if the beginning is unique. Pressing [TAB] a second time will show the possible
completions. Often, this saves a lot of typing. Commands provided by data objects and modules
are documented in the reference section of the users guide. Pressing the [F1] key for such a com-
mand without any arguments pops up the help text for this command. This is also true for commands
provided by the ports of an object.

Additionally the console window provides a command history mechanism. Use ‘up arrow’ and ‘down
arrow’ to scroll up and down in the history list.

Interface Components 93

Figure 3.5: amira’s file dialog.

To execute a file containing many Tcl commands use source <filename> or load the script
file via amira’s file dialog from the file menu. amira script files are usually identified by the
extension .hx. For advanced script examples take a look at amira’s demo files located in
$AMIRA ROOT/share/demo.

3.1.9 File Dialog

The File Dialog is the user interface component for importing and exporting data into resp. from
amira. It is used at several places in amira, most prominently by the Load, Save Data As, and Save
Network items of the main window’s File menu.

The dialog provides two modes of information, a detail mode and a multi-column mode. In the detail
mode, which is active by default, some file data are shown next to each filename, namely the file size,
the file’s last modification time, and the file format. You may sort the file list according to each of these
properties by clicking on the particular column’s header bar. Subdirectories will always be displayed
first. In multi-column mode only the file name is displayed. You may switch between both modes
using the tool buttons in the upper right part of the dialog window.

Most file formats supported by amira will be recognized automatically, either by analyzing the file

94 Chapter 3: Program Description

header or by looking at the file name suffix. A list of all supported file formats is contained in the
reference section of this manual. You may manually set the format of a file by means of the dialog’s
popup menu (see below).

3.1.9.1 Changing Directories

You can change the current directory by double-clicking a subdirectory in the file list or by entering
a new directory in the dialog’s path list. By default, the path list contains the current directory, the
directory containing the demo data sets provided with amira, as well as all directories defined by the
environment variable AMIRA DATADIR. In AMIRA DATADIR multiple directory names have to be
separated by colons [:] on Unix systems or by semicolons [;] on Windows systems. In addition,
on Windows system the names of the twelve most recently visited directories are stored in the path list.

3.1.9.2 Selecting Files

To select a single file just click on it or type in its name in the file name text field.

In some cases you might want to select more than one file at once, e.g., when loading a 3D image
data set as a series of single 2D images. You can do this by selecting the first file first and then shift-
selecting the last file. Then all intermediate files will be selected as well. Moreover, you may ctrl-click
a file in order to toggle its selection state individually.

3.1.9.3 Using the Filename Filter

The filename filter is visible when the dialog is in import mode (Load File). It is useful to restrict the
list of filenames to a subset matched by the filter expression. The filter expression may contain the
wildcard characters ? (matches any character) and * (matches an arbitrary character sequence). For
example, the expression *.img matches all filenames with the suffix .img.

3.1.9.4 The File Dialog’s Popup Menu

The file dialog provides a popup menu which may be activated by pressing the right mouse button over
the file list. Among others, this menu lets you rename or delete files or directories, provided you have
the permission to do that. Note that you may only delete empty directories.

Using the Format option of the popup menu you may manually set the format to be used when load-
ing a file into amira. This option is useful if for some reason the wrong format has been detected
automatically, or if no format at all could be detected. Note however, that any format specification set
manually will be overwritten when the directory is reread the next time.

3.1.10 Job Dialog

Certain time-consuming operations in amira can be performed in batch mode. For this purpose amira
provides a job queue, where jobs like generation of a tetrahedral grid can be submitted. You can inspect

Interface Components 95

Figure 3.6: The job dialog lets you start, stop, examine, and delete batch jobs.

the current status of the job queue, start and delete jobs from the queue by selecting Jobs from amira’s
file menu. This will bring up the Job Dialog.

In the upper part of the job dialog the current list of jobs of a user is shown. For each job a short
description is displayed, as well as the time when the job has been submitted and the current state of
the job. A job may be waiting for execution, running, finished, or it may have been killed.

The job directory

For each job a temporary directory is created containing any required input data, scripts, state in-
formation, and log files. On Unix systems this directory is created at the location specified by the
environment variable TMPDIR. If no such variable exists, /tmp is used. On Windows systems the
default temporary directory is used. Typically this will be C:/TEMP.

Controlling the job queue

A job’s state may be manipulated using the action buttons shown above the job list. In order to start
the job queue select the first job waiting for execution and then press the Start button. Note that only
one job can be executed at a time. In order to kill a running job, select it in the job list and press the
Kill button. You may delete a job from the job queue using the Delete button. When deleting a job the
temporary job directory will be removed as well.

96 Chapter 3: Program Description

Information about a job

Once you have selected a job in the job queue, more detailed information about it will be displayed
in the lower part of the dialog window, notably the state of the job, the temporary job directory, the
submit time, the time when the job has been started, the run time, and the name of the command to be
executed. Any console output of a running job will be redirected to a log file located in the temporary
job directory. Once such a log file exists and has non-zero size you may inspect it by pushing the View
output button.

Commands

job submit cmd info [tmpdir]
Submits a new job to the job queue. command specifies the command to be executed. info
specifies the info string displayed in the job dialog. tmpdir specifies the temporary job directory.
If this argument is omitted a temporary job directory is created by amira itself. In any case, the
directory will be automatically deleted when the job is removed from the job queue. Example: job
submit "clock.exe" "Test job"

job run
Starts the first job in job queue pending for execution. When a job is finished, execution of the next
job in the queue starts automatically, thus all jobs in the queue will be executed successiveley by
job run.

3.1.11 Preference Dialog

The Preference Dialog allows you to adjust certain global settings of amira. The preferences are
stored in a permanent fashion on a per-user basis, i.e., changes take effect after restarting amira. The
preference dialog is subdivided into two sections. The first one is related to the user interface, while
the second one affects the way how network scripts are exported.

Draw compute indicator
If set a small red rectangle is drawn inside the icon of a module to indicate that the module is currently
working. The default is on.

Auto-select new modules
If set a new module selected from the popup menu of its parent object is shown automatically in the

work area. The default is on.

Deselect previously selected modules
This option can only be set if auto-selection is turned on. If set all objects are deselected before
selecting the new module. Otherwise the new module will be appended at the end of the work area.
The default is on.

Draw viewer toggles on icons
If set small viewer mask toggles are drawn on the icons of data objects and display modules. This

allows to show or hide a module in a viewer without selecting it first. The default is on.

Interface Components 97

Figure 3.7: The snapshot dialog allows you to save or print the contents of a viewer window.

2-pass firing algorithm
If set a slightly more complex firing algorithm is used which ensures that down-stream modules

connected to an up-stream object via multiple paths are only fired once if the up-stream object changes.
The default is off.

Include unused data objects
If set all data objects including hidden colormaps are stored in a network scripts. When executing such
a script all existing objects are removed first. If not set only visible data objects and objects which are
referenced by others are stored in a network script. When executing the script hidden data objects are
not removed. The default is on.

Overwrite existing files in auto-save
If set no overwrite check is performed for data objects which need to be saved automatically in order

to create a network script. Otherwise a unqiue file name will be chosen. The default is on. Details
about the auto-save feature are described in Section 3.1.1.5.

3.1.12 Snapshot Dialog

The Snapshot Dialog provides the user interface of the viewer’s snapshot facility. You get the dialog
by clicking on the camera icon in the left toolbar of the viewer.

• Output: Specifies the output device. With to file the grabbed image is saved to a file, with to
printer the image is sent directly to the printer, and with to clippboard it is sent to the clippboard.
In the to printer mode you first have to select and configure a printer by pushing the Configure
button. In addition, you may enter an arbitrary text string which is printed as an annotation text
below the snapshot image.

• Offscreen: Lets you grab images larger than the actual screen size. When this option is checked,
the output dimensions can be specified in the width: and height: textfields up to a maximum of
2048 x 2048 pixels.

• Render tiles: Use this option to render snapshots of virtually unlimited resolution (e.g. for
high quality printouts). In this mode the scene is divided into n x m tiles where n and m can be
entered into the adjajent text fields. Then the camera position is set such that each tile fills the

98 Chapter 3: Program Description

current viewer and a snapshot is taken. Finally the tiles are internally merged to a single image
and sent to the device specified in the Output: port.

• Filename: Lets you specify the filename if the to file option is set. The Browse button allows
you to browse to a desired location within the filesystem.

• Format: The format option lets you select the file format (EPS or Raster Image) to be pro-
duced for file output. If raster image has been selected the file format will be determined
from the file name suffix. The following formats are supported: TIFF (.tif,.tiff), SGI-
RGB (.rgb,.sgi,.bw), JPEG (.jpg,.jpeg), PNM (.pgm,.ppm), BMP (.bmp), PNG
(.png), and Encapsulated Postscript (.eps). In addition, this port offers three radio buttons
to choose between grayscale, rgb, and rgb alpha type of raster images. If rgb alpha option is
set images are produced such that the viewer background is assigned to the alpha channel. This
option is not available for file formats that do not support an alpha channel.

3.1.13 System Information Dialog

The system information dialog provides diagnostics information allowing the user or the amira support
team to better analyse software problems. The dialog contains a tab bar with two pages. The first page
lists information about the current OpenGL graphics driver. The second page lists version information
about the currently installed amira components. In the lower left part of the dialog you find a button
Save Report. With this button all information can be written into a text file. In case of a support call
you may be asked to send this text file to the hotline.

3.1.13.1 The OpenGL Tab

This page displays information about the current OpenGL graphics driver. In particular, a list of
available OpenGL extensions is printed. This list allows it to check if certain rendering techniques like
direct volume rendering via 3d textures are supported on a particular hardware platform or not.

3.1.13.2 The Libraries Tab

This page displays a list of all DLLs or shared libraries contained in the amira lib directory. For each
library certain version informations as well as an MD5 checksum are printed. In this way it is possible
to check whether a certain patch has already been installed or not. For most libraries the version
information is compiled in. For other libraries this information is read from the version information
files found in share/versions in the amira root directory.

3.2 General Concepts

This section contains some general comments on how data objects are organized and classified in
amira. In particular, the following topics are discussed:

General Concepts 99

• amira Class Structure

• Scalar and Vector Fields

• Coordinates and Grids

• Surface Data

• Vertex Set

• Transformations

• Parameters

3.2.1 Class Structure

In this section we discuss the object-oriented design of amira in a little more detail. You already know
that data objects, e.g., grey level image data or vector field sets, appear as separate icons in the Object
Pool. You also know that there are certain display modules which can be used to visualize the data
objects. While some modules can be connected to many different data objects, e.g., the Bounding
Box module, others cannot, e.g., the Ortho Slice module. The latter can only be connected to voxel
data or to scalar distributions on voxel grids. The reason is that internally both are represented as a
scalar field with uniform Cartesian coordinates. Consequently, the same visualization methods can be
applied to both. On the other hand, for example a volumetric tetrahedral grid model of the object of
interest usually looks completely different. But since it is also a 3D data object, the same Bounding
Box module can be connected to it.

In summary, there are amira data objects that might be conceived of different type, but with respect
to mathematical structure, applicability of viewing and other processing modules, as well as program-
ming interface design have many common properties. Obeying principles of object-oriented design,
the data types of amira are organized in class hierarchies where common properties are attributed to
’higher up’ classes and inherited to ’derived’ classes, as sub-classes of a class are commonly referred
to. Conceptually each object occuring in amira is an instance of a class and each of its predecessors
in the hierarchy that the class belongs to. The classes and their hierarchies are defined within amira.
As the user you normally deal with instances of classes only. For instance, there is a class called
”HxObject” with sub-classes ”HxData” and ”HxModule”. ”HxData” comprises the types of data as-
sociated with data objects used for modeling the objects of interest, e.g., volumetric tetrahedral grids
or surfaces. ”HxModule” comprises data types that have been assigned to display and other process-
ing modules, again in accordance with principles of object-oriented design. This is why amira’s data
objects and processing modules are commonly referred to as ”objects”.

There are also classes in amira that are not derived from ”HxObject” and constitute other data types,
and there are several independent class hierarchies. e.g., there is a class called ”HxPort” from which
all classes supporting the operation and display of interface control elements are derived (see section
Working Area and the List of Ports in the index section of the user’s guide).

A single class hierarchy is usually figured as an upside-down tree, i.e. with the root at the top. Thus
the data class tree is the one to which the information as to which processing module is applicable
to which data object is hooked. Its classes reflect the mathematical structure of the object models

100 Chapter 3: Program Description

supported by amira. For example, scalar fields and vector fields are such structures and derived from
a common ”field” class which represents a mapping R3 → Rn. Deriving a sub-class from this base
class requires a value to be specified for n.

At the same time fields defined on Cartesian grids are distinguished from fields defined on tetrahedral
grids, i.e., this distinction is part of the classification scheme that gives rise to branches in the data
class subtree. In the next section of this chapter you will learn more about the data class hierarchy. In
the second section we discuss how some data types frequently used for various visualization tasks fit
into it.

Internally, all class names begin with a prefix Hx. However, you don’t have to remember these names,
unless you want to use the command shell to create objects. For example, a bounding box is usually
created by choosing the BoundingBox item from the pop-up menu of a data object that is to be visual-
ized, but you may also create it by typing create HxBoundingBox in the command window.

3.2.2 Scalar Field and Vector Fields

The most important fields in amira are three-dimensional ones. These fields are defined on a certain
domain ⊆ R

3. A field can be evaluated at any point inside its domain. If the field is defined on a
discrete grid, this usually involves some kind of interpolation.

3.2.2.1 Scalar Fields

A 3D scalar field is a mapping R3 → R. The base class of all 3D scalar fields in amira is HxS-
calarField3. Various sub-classes represent different ways of defining a scalar field. There are a num-
ber of visualization methods for them, for example pseudo-coloring on cutting planes, iso-surfacing,
or volume rendering. However, many visualization modules in amira rely on a special field represen-
tation. Therefore, they can only operate on sub-classes of a general scalar field. Whenever a given
geometry is to be pseudo-colored, any kind of scalar field can be used (cf. Colorwash, GridVolume,
Isosurface).

The class HxTetraScalarField3 represents a field which is defined on a tetrahedral grid. On each grid
vertex a scalar value, e.g., a temperature, is defined. Values associated to points inside a tetrahedron
are obtained from the four vertex values by linear interpolation. This class does not provide a copy of
the grid itself, instead a reference to the grid is provided. This is indicated in the Object Pool by a line
which connects the grid icon and the field icon. As a consequence, a field defined on a tetrahedral grid
cannot be loaded into the system if the grid itself is not already present.

The class HxRegScalarField3 represents a field which is defined on a regular Cartesian grid. Such a
grid is organized as a three-dimensional array of nodes. In the most simple case these nodes are axis-
aligned and have equal spacings. The coordinates of such a uniform grid can be obtained from a simple
bounding box containing the origin vector and increments for all directions. Stacked coordinates are
another example. Here the spacing in z-direction between subsequent slices may be different. In any
case scalar values inside a hexahedral grid cell are obtained from the eight vertex values using trilinear
interpolation. While the OrthoSlice module can only be used to visualize scalar fields with uniform

General Concepts 101

or stacked coordinates, other modules like ObliqueSlice or Isosurface work for all scalar fields with
regular coordinates.

Yet another example of a scalar field is the class HxAnnaScalarField3. It represents an analytically
defined scalar field. To create such a field, select ScalarField from the Edit Create menu of amira’s
main window. You have to specify a mathematical expression which is used to evaluate the field at each
requested position. Up to three other fields can be connected to the object. These can be combined to
a new scalar field, even if they are defined on different grids.

3.2.2.2 Vector Fields

As for scalar fields amira provides a number of vector field classes, these are derived from the base
classes HxVectorField3 and HxComplexVectorField3. While ordinary vector fields return a three-
component vector at each position, complex vector fields return a six-component vector. Complex
vector fields are used for encoding stationary electromagnetic wave pattern as required by some appli-
cations. Usually complex vector fields are visualized by projecting them into the space of reals using
different phase offsets. The Vectors module even allows you to animate the phase offset. In this way a
nice impression of the oscillating wave pattern is obtained.

3.2.3 Coordinates and Grids

amira currently supports two important grid types, namely grids with hexahedral structure (regular
grids), and unstructured tetrahedral grids. Other types, e.g., unstructured grids with hexahedral cells
or block-structured grids will be added in future releases of amira.

3.2.3.1 Regular Grids

A regular grid consists of a three-dimensional array of nodes. Each node may be addressed by an index
triple (i,j,k). Regular grids are further distinguished according to the kind of coordinates being used.
The most simple case comprises uniform coordinates, where all cells are assumed to be rectangular and
axis-aligned. Moreover, the grid spacing is constant along each axis. A grid with stacked coordinates
may be imagined as a stack of uniform 2D slices. However, the distance between neighbouring slices
in z-direction may vary. In case of rectilinear coordinates the cells are still aligned to the axes, but the
grid spacing may vary from cell to cell. Finally, in case of curvilinear coordinates each node of the grid
may have arbitrary coordinates. Grids with curvilinear coordinates are often used in fluid dynamics
because they have a simple structure but still allow for accurate modeling of complex shapes like rotor
blades or airfoils.

3.2.3.2 Tetrahedral Grids

The TetraGrid class represents a volumetric grid composed of many tetrahedrons. Such grids can
generally be used to perform finite-element simulations, e.g., E-field simulations.

102 Chapter 3: Program Description

A considerable amount of information is maintained in a TetraGrid. For each vertex a 3D coordinate
vector is stored. For each tetrahedron the indices of its four vertices are stored as well as a number
indicating the segment the tetrahedron belongs to as obtained by a segmentation procedure. Beside
this fundamental information a number of additional variables are stored in order for the grid being
displayed quickly. In particular all triangles or faces are stored separately together with six face indices
for each tetrahedron. In addition for each face pointers to the two tetrahedrons it belongs to are stored.
This way the neighborhood information can be obtained efficiently.

When simulating E-fields using the finite-element method, the edges of a grid need to be stored explic-
itly, because vector or Whitney elements are used. These elements and its corresponding coefficients
are defined on a per-edge basis. When a grid is selected information on the number of its vertices,
edges, faces, and tetrahedrons is displayed.

3.2.4 Surface Data

amira provides a special-purpose data class for representing triangular surfaces, called HxSurface.
This class is documented in more detail in the index section of the user’s guide. For the moment, we
only mention that the class maintains connectivity information and that it may represent manifold as
well as non-manifold topologies.

The surface class provides a rich set of Tcl commands. It is a good example of an amira data class
that does not simply store information, but allows the user to query and manipulate the data by means
of special-purpose methods and interfaces.

3.2.5 Vertex Set

Another example of data abstraction and inheritance is the VertexSet class. Many data objects in
amira are derived from this class, e.g., landmark sets, molecules, surfaces, or tetrahedral grids. All
these objects provide a list of points with x-, y-, and z-coordinates. Other modules which require a list
of points as input only need to access the VertexSet base class, but don’t need to know the actual type
of the data object.

One such example of a generic module operating on VertexSet objects is the VertexView module. This
module allows you to visualize vertex positions by drawing dots or little spheres at each point.

3.2.6 Transformations

Data objects in amira can be modified using an arbitrary affine transformation. For example, this
makes it possible to align two different data objects so that they roughly match each other. Internally,
affine transformations are represented by a 4x4 transformation matrix. In particular, a uniform scalar
field remains a uniform scalar field, even if it is rotated or sheared. Display modules like OrthoSlice
still can exploit the simple structure of the uniform field. The possible transformation is automatically
applied to any geometry shown in the 3D viewer.

General Concepts 103

In order to interactively manipulate the transformation matrix use the Transform Editor (documenta-
tion is contained in the index section of the user’s guide).

Be careful when saving transformed data sets! Most file formats do not allow to store affine transfor-
mations. In this case you have to apply the current transformation to the data. This can be done using
the Tcl-command applyTransform. In case of vertex set objects the transformation is applied to
all vertices. Old coordinates are replaced by new ones, and the transformation matrix is reset to identity
afterwards. After a transformation has been applied to a data set, it cannot be unset easily anymore.

If a transformation is applied to uniform fields, e.g., to 3D image data, the coordinate structure is
not changed, i.e., the field remains a uniform one. Instead, the data values are resampled, i.e., the
transformed field is evaluated at every vertex of the final regular grid. The bounding box of the resulting
grid is modified so that it completely encloses the transformed original box.

3.2.7 Parameters

For any data object an arbitrary number of additional parameters or attributes may be defined. Param-
eters can be interactively added, deleted, or edited using the parameter editor. Parameters are useful
for example to store certain parameters of a simulation or of an experiment. In this way the history of
a data object can be followed.

There are certain parameters which are interpreted by several amira modules. The meaning of these
parameters is summarized in the following list:

• Colormap name
This specifies the name of the default colormap used to visualize the data. Some modules
automatically search the object pool for this colormap and for example use it for pseudocoloring.

• DataWindow minVal maxVal
This indicates the preferred data range used for visualizing the data. The OrthoSlice module
automatically maps values below minVal to black and values above maxVal to white.

• LoadCmd cmd
This parameter is usually set by import filters when a data object is read. It is used when saving
the current network into a file and it allows to restore the object automatically. Internal use only.

Note that there are many file formats which do not allow to store parameters. Therefore, informa-
tion might get lost when you save the data set in such a format. If in doubt, use the amira specific
AmiraMesh format.

104 Chapter 3: Program Description

Chapter 4

Technical Information

This chapter contains technical information about amira which is not covered in the previous chapters.

• Data Import

• Command Line Options

• Environment Variables

• amira start-up script

• Frequently Asked Questions

• System Requirements

• Acknowledgements and Copyrights

• Contact and Support

4.1 Data Import

Usually, one of the first things amira users want to know is how to import their own data into the
system. This section contains some advice intended to ease this task.

In the simplest case, your data is already present in a standard file format supported by amira. To
import such files, simply use the File Load menu. A list of all supported formats can be found in the
index section of the user’s guide. Usually, the system recognizes the format of a file automatically
by analyzing the file header or the filename suffix. If a supported format is detected, the file browser
indicates the format name.

Often, 3D image volumes are stored slice by slice using standard 2D image formats such as TIFF
or JPEG. In case of medical images, slices are commonly stored in ACR-NEMA or DICOM format.
If you select multiple 2D slices simultaneously in the file browser, all slices will automatically be
combined into a single 3D data set. Simultaneous selection is most easily achieved by first clicking

the first slice and then shift-clicking the last one.

If your data is not already present in a standard file format supported by amira you will have to
write your own converter or export filter. For many data objects such as 3D images, regular fields,
or tetrahedral grids amira’s native AmiraMesh format is most appropriate. Using this format you can
even represent point sets or line segments for which there is hardly any other standard format. The
AmiraMesh documentation explains the file syntax in detail and contains examples of how to encode
different data objects. One important amira data type, triangular non-manifold surfaces, cannot be
represented in a AmiraMesh file but has its own file format called HxSurface format.

Finally, in case of images or regular fields with uniform coordinates you may also read binary raw data.
Note that for raw data the dimensions and the bounding box of the data volume must be entered
manually in a dialog box which pops up after you have selected the file in the file browser.

4.2 Command Line Options

This section describes the command line options understood by amira. In general, on Unix systems
amira is started via the start script located in the subdirectory bin. Usually, this script will be
linked to /usr/local/bin/amira or something similar. Alternatively, the user may define an
alias amira pointing to bin/start.

On Windows systems amira is usually started via the start menu or via a desktop icon. Nev-
ertheless, the amira executable may also be invoked directly by calling bin/arch-Win32-
Optimize/amira.exe. In this case, the same command line options as on a Unix system are
understood.

The syntax of amira is as follows:

amira [options] [files ...]

Data files specified in the command line will be loaded automatically. In addition to data files, script
files can also be specified. These scripts will be executed when the program starts.

The following options are supported:

• -help
Prints a short summary of command line options.

• -version
Prints the version string of amira.

• -no stencils
Tells amira not to ask for a stencil buffer in its 3D graphics windows. This option can be set to
exploit hardware acceleration on some low-end PC graphics boards.

• -no overlays
Tells amira not to use overlay planes in its 3D graphics windows. Use this option if you expe-
rience problems when redirecting amira on a remote display.

106 Chapter 4: Technical Information

• -no gui
Starts up amira without opening any windows. This option is useful for executing a script in
batch mode.

• -logfile filename
Causes any messages printed in the console window also to be written into the specified log file.
Useful especially in conjunction with the -no gui option.

• -depth size number
This option is only supported on Linux systems. It specifies the preferred depth of the depth
buffer. The default on Linux systems is 16 bits.

• -style={windows | motif | cde} This option sets the display style of amira’s Qt
user interface.

• -debug This options applies to the developer version only. It causes local packages to be
executed in debug version. By default, optimized code will be used.

• -cmd command [-host hostname] [-port port]
Send Tcl command to a running amira application. Optionally the host name and the port
number can be specified. You must type app -listen in the console window of amira
before commands can be received.

4.3 Environment Variables

In order to execute amira no special environment settings are required. On Unix systems some en-
vironment variables like the shared library path or the amira root directory are set automatically by
the amira start script. Other environment variables may be set by the user in order to control certain
features. These variables are listed below. On Unix systems environment variables can be set using
the shell commands setenv (csh or tcsh) or export (sh, bash, or ksh). On Windows environment
variables can be defined in the file autoexec.bat (Windows 98/ME) or in the system properties
dialog (Windows 2000/XP).

• AMIRA DATADIR
A list of data directory names separated by semicolons [;] on Windows systems and colons
[:] on Unix systems. The first directory will be used as the default directory of the file dialog.
Other directories are quickly accessible via the file dialog’s path list.

• AMIRA TEXMEM
Specifies the amount of texture memory in megabytes. If this variable is not set some heuristics
are applied to determine the amount of texture memory available on a system. However, these
heuristics may not always yield a correct value. In such cases the performance of the Voltex
module might be improved using this variable.

• AMIRA MULTISAMPLE
On high-end graphics systems like SGI Onyx, a multi-sample visual is used by default. In
this way, efficient scene anti-aliasing is achieved. If you want to disable this feature, set the

Environment Variables 107

environment variable AMIRA MULTISAMPLE to 0. Note that on other systems, especially on
PCs, anti-aliasing cannot be controlled by the application but has to be activated directly in the
graphics driver.

• AMIRA NO OVERLAYS
If this variable is set, amira will not use overlay planes in its 3D graphics windows. The same
effect can be obtained by means of the -no overlays command line option. Turn off overlays
if you experience problems with redirecting amira on a remote display, or if your X server does
not support overlay visuals.

• AMIRA LOCAL
Specifies the location of the local amira directory containing user-defined modules. IO routines
or modules defined in this directory replace the ones defined in the main amira directory. This
environment variable overwrites the local amira directory set in the development wizard (see
amira programmer’s guide for details).

• AMIRA SMALLFONT
Unix systems only. If this variable is set a small font will be used in all ports being displayed
in the Working Area even if the screen resolution is 1280x1024 or bigger. By default, the small
font will be used only in case of smaller resolutions.

• AMIRA XSHM
Unix systems only. Set this variable to 0 if you want to suppress the use of the X shared memory
extension in amira’s image segmentation editor.

• AMIRA SPACEMOUSE
This variable has to be set in order to support a spaceball or spacemouse device (see
www.spacemouse.com). With the spacemouse you can navigate in the 3D viewer window. Two
modes are supported, a rotate mode and a fly mode. You can switch between the two modes by
pressing the spacemouse buttons 1 or 2.

• AMIRA STEREO ON DEFAULT
If this variable is set the 3D viewer will be opened in OpenGL raw stereo mode by default. In
this way some screen flicker can be avoided which otherwise occurs when switching from mono
to stereo mode. Currently the variable is supported on Unix systems only.

• TMPDIR
This variables specifies in which directory temporary data should be stored. If not set, such data
will be created under /tmp. Among others, this variable is interpreted by amira’s job queue.

4.4 User-defined start-up script

amira may be customized in certain ways by providing a user-defined start-up script. The default
start-up script, called Amira.init, is located in the subdirectoryshare/resources of the amira
installation directory. This script is read each time the program is started. Among other things, the
start-up script is responsible for registering file formats, modules, and editors and for loading the
default colormaps.

108 Chapter 4: Technical Information

If a file called Amira.init is found in the current working directory, this file is read instead of the
default start-up script. If no such file is found, on Unix systems it is checked if there exists a start-up
script called .Amira in the user’s home directory. Below an example of a user-defined start-up script
is shown:

Execute the default start-up script
source $AMIRA_ROOT/share/resources/Amira.init 0

Set up a uniform black background
viewer 0 setBackgroundMode 0
viewer 0 setBackgroundColor black

Choose non-default font size for the help browser
help setFontSize 12

Restore camera setting by hitting F2 key
proc onKeyF2 { } {

viewer setCameraOrientation 1 0 0 3.14159
viewer setCameraPosition 0 0 -2.50585
viewer setCameraFocalDistance 2.50585

}

In this example, first the system’s default start-up script is executed. This ensures that all amira objects
are registered properly. Then some special settings are made. Finally, a hot-key procedure is defined
for the function key F2. You can define such a procedure for any other function key as well. In addition,
procedures like onKeyShiftF2 or onKeyCtrlF2 can be defined. These procedures are executed
when a function key is pressed with the Shift or the Ctrl modifier key being pressed down.

4.5 Frequently Asked Questions

Questions

General

1. What is amira?

2. What is the latest version of amira?

3. How can I try amira? Are there demo or evaluation keys?

Installation, hardware and platform related questions

4. What are the supported platforms for amira?

5. Compatibility between Windows and Unix version ?

6. Can I display amira on a remote screen?

Frequently Asked Questions 109

7. Do I need to have root or administrator privileges in order to install the product?

8. What are the software and hardware requirements?

9. What is the minimum configuration required for my platform?

10. What is the recommended hardware for my purpose?

11. What is the resource consumption of amira, for memory, disk, cpu, graphics?

12. Does amira make use of multiple processors ?

13. Are there any limits to the size of textures that graphics boards can use?

14. Does amira support the VolumePro volume rendering hardware?

Resources, examples, documentation

15. Where should I start to learn how to use amira?

16. How long do I need to learn how to use amira?

17. Can I get training courses?

18. What is the relevant documentation available?

19. How do I see what command line options amira accepts?

20. How can I check the version of my amira package?

21. Are there any examples or demos?

22. Is there a specific newsgroups?

23. Is there a mailing list?

24. Is there a web site?

25. Where can I find (free) modules for amira? Is there a public repository for 3rd party contributions?

26. How can I learn Tcl?

Technology

27. What graphics libraries are used by amira?

28. What is Open Inventor?

29. What is OpenGL?

30. What is Tcl?

31. What is Qt?

32. Is amira data-flow oriented?

33. How do modules communicate?

34. What is the firing order of modules?

Data input/output, printing

35. What are the supported data formats (input and output)?

36. How can I use amira to import/export image formats other than the amira image format?

37. How can I define the pixel size for my 3D image volume ?

38. What are the data/mesh/UCD cell types supported by amira?

110 Chapter 4: Technical Information

39. How can I read my data (with some specific file format)?

40. How can I interface to my database?

41. How can I reuse my work with amira? Can I compose modules?

42. How can I print with amira? How can I take a snapshot of the viewer window?

43. What image formats are supported for snapshots?

44. How can I create printed reports including amira images?

45. How can I publish amira images or animations on the Web?

Visualization

46. Can I display axes?

47. Can I do image processing with amira?

48. Does the surface reconstruction support non-manifold topologies?

49. Is it possible to start amira up with NO display in order to do batch processing of data or to generate pictures and plots without displaying anything on the console?

50. How does amira behave with large data sets?

51. How can I change the background color of the viewer?

52. Can I display a colormap in the viewer window as legend?

53. How can I adjust color and transparency of individual parts of a surface?

54. How can I create an iso-surface with fewer polygons than the iso-surface module extracts?

55. How do I visualize data with holes in it?

56. How can I read a series of single image files such that I get a 3D stack?

57. How can I quickly switch between two different data sets?

58. How can I compare two data sets?

Specific features

59. Does amira support Stereo viewing?

60. Does amira support VR devices, such as 3D mouse, head-mounted displays or CAVE systems?

61. Can I use anti-aliasing?

Developing applications with amira
62. Is it possible to extend amira?

63. Is amira an application builder?

64. Can I define my own user interface for my specific application?

65. Can I record user interaction in ”macros”?

66. Can I automate operations with amira?

67. Is there an upgrade from End User edition to Developer Edition?

68. Can I write data input, processing and visualization modules with Tcl?

69. Is it possible to script any interaction with amira? Are all amira features available through Tcl scripts?

70. What programming languages can I use: C++, C, FORTRAN ...?

Frequently Asked Questions 111

71. Can I embed executable or shell scripts as modules?

72. How can I connect amira visualization to my computation code?

73. Can I develop with Open Inventor or 3D-MasterSuite with an amira End User or Developer License?

74. Can I get the source code for an amira module?

75. What is the compatibility with 3D-MasterSuite?

76. How can I (re)use 3D-MasterSuite or Open Inventor code with amira?

77. What is the difference between the developer and the end-user version?

78. Can I execute custom modules, created with amiraDev, with an ordinary amira version ?

79. What is the runtime policy for your own modules (technically)?

Answers

General

1. What is amira?

amira is a professional general-purpose visualization and 3D reconstruction software. Visual-
ization means that you can display various data sets, notably 3D image data, vector fields, and
finite element data. 3D reconstruction means that you can create polygonal surface models as
well as tetrahedral grids from 3D image data. amira is used for visualization and data analysis
in microscopy, biology, medicine, engineering, geo-sciences, material science, bio-chemistry
and many other fields.

2. What is the latest version of amira?

The latest version is amira 3.1.

3. How can I test amira? Are there demo keys available?

For evaluation purposes a fully functional version of amira can be downloaded from
www.amiravis.com after electronic registration. A temporary license key will be send to
you via e-mail. If you need a longer evaluation period, or want to purchase a permanent license,
please contact us http://www.amiravis.com/contact.html

Installation, hardware and platform related questions

4. What are the supported platforms for amira?

amira 3.1 runs on Microsoft Windows 98SE/ME/2000/XP, HP-UX 11.00, SGI Irix 6.5.x, Sun
Solaris 8, and on Linux (RedHat 8.0 or compatible). Details are described in the user’s guide in
section System Requirements.

5. Compatibility between Windows and Unix version ?

The Windows version and the Unix version provide de-facto the same functionality. Data files
can be exchanged between Windows and Unix without limitations. Minor differences between
the versions are due to differences of the underlying hardware. For example, direct volume
rendering via 3D textures requires a suitable graphics card. Support for the VolPro 500/1000
cards currently is only available for Windows.

112 Chapter 4: Technical Information

6. Can I display amira on a remote screen?

In general, it is not recommended that you use an X11 remote display for demanding interactive
3D graphics applications like amira.

However, in principle you can redirect the output of the Unix version to a remote display. For
IRIX, HP-UX, and SunOS, the remote X server needs to support the GLX extension. Call
xdpyinfo to find out whether your computer has that extension installed. Then simply set the
DISPLAY variable and start amira.

7. Do I need to have root or administrator privileges in order to install amira?

No. On Windows systems you can run the setup tool without having administrator privileges.
On Unix systems simply extract the provided tar file. In order to install amira for all users of
the system, Administrator privileges may be needed.

However, on Sun and HP-UX it is recommended that you set the default visual of the X server
to 24-bit true color. This may require root privileges. In addition, on some HP-UX systems it is
recommended that you increase certain kernel parameters like process data size or stack limit.
This requires root privileges as well.

8. What are the software and hardware requirements?

Software and hardware requirements are described in the user’s guide in section
System Requirements.

9. What is the minimum configuration required for my platform?

You need a graphics board with at least 24 bits of color per pixel (16 bits for Linux). At least 64
MB of main memory are required, 512 MB or more are recommended.

10. What is the recommended hardware for my purpose?

In principle, all features are available even on low-end machines as well. However, for most
applications it is highly recommended to have a sufficiently large amount of main memory (512
MB or more) and to have a graphics card which supports both texturing and geometry processing
(transformation and lighting) in hardware.

11. What is the resource consumption of amira, for memory, disk, CPU, graphics?

amira needs roughly about 60 MB of disk space. Memory, CPU and graphics performance (of
course) depend on the kind of data you are going to visualize. CPU speed is less critical than
graphics performance. Enough memory should be available in order to completely store the data
to be visualized.

12. Does amira make use of multiple processors ?

The bottleneck for most visualization modules in amira is the performance of the graphics
board, which is in general not increased by using multiple processors. Some computational
modules, like the amira deconvolution extension use multiple processors for acceleration. The
amiraVR edition uses multiple processors for rendering on multi-graphics-pipe systems. If
you use amiraDev for custom module development you can use parallelized code in your own
modules as well.

13. Are there any limits to the size of textures that graphics boards can use?

Frequently Asked Questions 113

Yes. The exact value depends on the graphics board. A typical limit will be 2048x2048 pixels
per texture. On some architectures there is also a limit to the total amount of texture memory
available. This is of special importance for texture-based volume rendering. Details are given in
the documentation for the Voltex module.

14. Does amira support the VolumePro volume rendering hardware?

Yes, amira supports the VolumePro 500 and the VolumePro 1000 on Windows 2000 and Win-
dows XP. If you need VolumePro support for other platforms, please contact us.

Resources, examples, documentation

15. Where should I start to learn how to use amira?

Probably, the best starting point are the tutorials in the user’s guide. They provide a step-by-step
learning-by-doing introduction.

16. How long does it take to learn how to use amira?

amira is easy to use. After going through one of the tutorials for 15 minutes you will have an
idea of the basic functionality. Usually, this is sufficient in order to be able to do first visualiza-
tions of your own data. Of course, becoming an amira wizard and becoming familiar with all
the features available in the system will take substantially more time.

17. Can I get training courses?

Yes, training courses and consulting services are available. For more information refer to the
web sites www.amiravis.com or www.tgs.com.

18. What is the relevant documentation? Where can I find help?

The primary source for documentation is the amira user’s guide. This guide, as well as ad-
ditional information, is provided on the amira web site www.amiravis.com and also on
www.tgs.com. If you have specific questions you will find contact information on these web
sites.

19. How do I see what command line options amira accepts?

Command line option are documented in the user’s guide in Section 4.2. In addition, starting
amira with -help gives you a short summary of options.

20. How can I check the version of my amira package?

To get the version of amira type app -version in amira’s console window. In order to see
when amira was compiled use app -built. Please indicate the version string or compilation
date whenever your report bugs or problems.

21. Are there any examples or demos?

Yes. The amira distribution contains tutorials and example with demo data. The tutorials are
contained in Chapter 2 of the user’s guide. Demos are listed in the reference section of the user’s
guide.

22. Is there a specific newsgroups?

There is no amira specific newsgroup yet.

23. Is there a mailing list?

114 Chapter 4: Technical Information

No.

24. Is there a web site?

For technical information refer to www.amiravis.com. For sales and marketing contact see
http://www.amiravis.com/contact.html or www.tgs.com.

25. Where can I find (free) modules for amira? Is there a public repository for 3rd party contribu-
tions?

In the future a public repository for 3rd party contributions will be set up at
www.amiravis.com.

26. What is Tcl and how can I learn Tcl?

Tcl is the scripting language used by amira. You do not need to know Tcl for normal use of
amira, however it enables you to extend the functionality by writing custom scripts. There are
many good Tcl books. For example, you can try Tcl and the Tk Toolkit by John K. Ousterhout,
the creator of Tcl. Like many others this book also covers the Tk GUI toolkit. Note that Tk
is not used in amira. There are many Tcl online tutorials in the Internet. Simply type “TCL
tutorial” into a search engine like www.google.com to find some.

Technology

27. What graphics libraries are used by amira?

amira is based on the Open Inventor graphics toolkit. Furthermore, amira contains a number
of custom Inventor nodes which implement special visualization techniques. These nodes apply
direct OpenGL rendering.

28. What is Open Inventor?

Open Inventor is a C++ library allowing you to describe and render 3D scenes. Open Inventor
is built on top of OpenGL. This guarantees portability and hardware-accelerated performance
across a wide range of platforms.

29. What is OpenGL?

OpenGL is a library for rendering 3D graphics. OpenGL is the industry standard for professional
3D graphics. It is supported by all professional graphics hardware and by an increasing number
of consumer graphics cards.

30. What is Tcl?

Tcl is a popular scripting language. Tcl has a simple syntax, so you can learn Tcl in one after-
noon. amira has a built-in Tcl interpreter. This way amira is script-able.

31. What is Qt?

Qt is a multi-platform GUI software toolkit developed by Troll Tech (www.troll.no). An
application written with Qt can be compiled on Unix/X11 as well as on Windows. While the
user interface of amira 2.0 was based on Motif, all releases of amira 2.1 and later (including
the Windows version) are based on Qt. For the end-user this guarantees that the set of features
and the user interface will be compatible across all platforms.

32. Is amira data-flow oriented?

Frequently Asked Questions 115

No, amira is not data-flow oriented. amira is object oriented. Data objects are persistent in
memory and represented in the user interface. Data are accessed by the modules using the C++
interfaces of the data classes.

33. How do modules communicate?

Modules are loaded into a common process space at runtime, by using shared libraries. This
way they can communicate like C++ objects in a normal C++ program. There is no overhead
for module communication.

34. What is the firing order of modules?

Most modules are fired in downstream order. If you create a new module from the popup menu
of an existing one the new module will be downstream. amira networks are typically much less
complex than in data-flow-oriented visualization systems. Therefore the firing order is usually
not of concern for the end-user.

Data input/output, printing

35. What are the supported data formats (input and output)?

A list of supported file formats is contained in the index section of the user’s guide.

36. How can I use amira to import/export image formats other than the amira image format?

amira supports several standard image formats such as TIFF, JPEG, SGI-RGB, ACR-NEMA,
or DICOM. When amira reads data it can usually determine the file format automatically. You
simply select the file in the file browser and click OK. When amira writes data, the file browser
presents an option menu containing all file formats which can be used to export that data. Use
this menu to select a non-default format.

37. How can I define the pixel size for my 3D image volume ?

There is a difference between the number of pixels in a 3D image volume (e.g., 512x512x200)
and its physical bounding box (e.g., 30cm x 30cm x 20cm). Often voxels are even not equally
sized in all directions. Many 2D image formats do not contain this extra information. When
reading images, you can supply this information in amira’s image input dialog. You can
also change this information later by selecting the data set (green icon) and choosing the
Image Crop Editor button.

38. What are the data/mesh/UCD cell types supported by amira?

The list of supported data types includes

• 2D and 3D grayscale images (8, 16, and 32 bits)

• 32 bit RGBA-color images

• segmentation results based on labeled voxels

• unstructured tetrahedral meshes

• unstructured hexahedral meshes

• scalar and vector fields defined on uniform, stacked, rectilinear, curvilinear, tetrahedral,
or hexahedral grids

• manifold and non-manifold surfaces

116 Chapter 4: Technical Information

• colormaps including transparency values

• Open Inventor scene graphs

39. How can I read my data (with some specific file format)?

amira supports a number of standard file formats. Therefore it is likely that you can find a
converter if your file format is not supported. For image data, amira provides a powerful Raw-
Data interface, which can handle most simple binary file formats with some additional manual
work.

In order to implement custom I/O methods, the extensible version of amira called amiraDev is
required.

40. How can I get access to my database?

Data I/O is handled via files. The developer version, of course, allows the user to add any
database interface he/she wants.

41. How can I reuse my work with amira? Can I compose modules?

You can save networks, and you can save data objects that have been created or modified. In
order to build new modules, you must use the developer version, or write script objects in Tcl.

42. How can I print with amira? How can I take a snapshot of the viewer window?

In the viewer, on the left hand side, there is an icon showing a photo camera. This allows you
to write snapshots of the 3D scene to a file or to a printer. If no printers show up in the list then
probably they are not properly installed. In the latter case you can still print to a PostScript file
on disk and print that file from a different computer.

You can also use the command line interface to make snapshots. This is useful for generating
animations via a Tcl script. The syntax is viewer <n> snapshot <filename>, where
<n> denotes the viewer window to be captured. The format of the output file is determined
automatically from the file name suffix.

43. What image formats are supported for snapshots?

Snapshots can be stored in TIFF, JPEG, SGI-RGB, PNM, BMP, PNG, or EPS format. The file
type is determined automatically from the file name suffix.

44. How can I create printed reports including amira images?

You may use any desktop publishing or word processing system of your choice. Probably all of
them allow you to import either TIFF or JPEG or EPS files.

45. How can I publish amira images or animations on the Web?

Make snapshots and save them as JPEG images, or create animation sequences as described
below.

Visualization

46. Can I display axes?

Yes. Use the menu entry Axis in the view menu. This will display global axes located at the
origin of the world coordinate system. You may also attach local axes to any data object by
selecting Display LocalAxis from the object’s popup menu.

Frequently Asked Questions 117

47. Can I do image processing with amira?

Basic image processing functionality is provided although amira is not a dedicated image-
processing program. For example, the Image Filters editor supports smoothing, sharpening,
as well as certain morphological operations.

48. Does the surface reconstruction support non-manifold topologies?

Yes. In contrast to many other products, non-manifold topologies are handled in a consistent
way by amira.

49. Is it possible to start amira up with NO display in order to do batch processing of data or to
generate pictures and plots without displaying anything on the console?

You can start amira with the -no gui command line option in order to execute scripts in batch
mode.

50. How does amira behave with large data sets?

amira is an interactive visualization system. Therefore, data sets must be loaded into main
memory in order to be processed. In some projects very large dynamic data sets (up to several
100 GB) have been visualized with amira. In this case special reader modules have been used
which only read subsets of the data at once.

51. How can I change the background color of the viewer?

There are three different background modes, namely uniform, gradient, and checkerboard.
These modes can be set for all viewers via the View Background menu of the main window or
via the command viewer <n> setBackgroundMode <mode> for a particular viewer.
The primary background color can be adjusted via the camera icon in the upper left corner of
the viewer window or via the commandviewer <n> setBackgroundColor <color>.
The secondary color used in gradient and checkerboard mode can be adjusted via the command
viewer <n> setBackgroundColor2 <color>.

You can also place an arbitrary raster image in the background using the command viewer
<n> setBackgroundImage <filename>. Any image file in TIFF, SGI-RGB, JPEG,
PNM, BMP, or PNG format can be read. However, note that the image is not shown if its size is
greater than that of the viewer window.

52. Can I display a colormap in the viewer window as legend?

First make the colormap icon visible in the Working Area. This can be done by selecting the
Show or Show All item of Edit in the menu bar of the Working Area. Then click on the green
colormap icon with the right mouse button and select Show Colormap.

53. How can I adjust color and transparency of individual parts of a surface?

A surface object may consist of multiple patches referring to different materials. The color
of each material can be adjusted using the Tcl command setColor described in Surface.
Likewise, for each material a specific transparency value may be set using the command set-
Transparency. In this way certain parts of a surface may be highlighted. Note that you
must choose draw style transparent in order to enable transparencies. Also note that color mode
mixed is most appropriate for transparent surfaces in terms of performance and meaning.

54. How can I create an iso-surface with fewer polygons than the iso-surface module extracts?

118 Chapter 4: Technical Information

First of all, the iso-surface module provides a special option called compactify which produces
about 40 percent fewer triangles than standard method. Moreover, very large data sets may be
downsampled on-the-fly during isosurface generation.

If you need more flexibility, you can create a separate surface object by selecting create surface
from the more options menu of the iso-surface module. You may then use the simplification
editor in order to remove as many triangles from the surface as you want. You can display the
resulting simplified surface using the SurfaceView module.

55. How do I visualize data with holes in it?

There are several choices. You can apply a slicing module such as OrthoSlice or ObliqueSlice.
Alternatively, you can clip away parts of a 3D geometry using an arbitrary slicing module.
Slicing modules are indicated by an orange icon. Such modules provide a little push button that
must be pressed in order to activate clipping. An empty clipping module can be created via the
Edit Create menu of the main window.

If you want to visualize surfaces or finite-element grids you can also use the selection box
feature of the corresponding viewing modules. Most of these modules such as SurfaceView or
GridVolume support a buffer concept which allows you to select which parts of the object should
be displayed. Even the Isosurface module has such a buffer. For this module it can be enabled
using the amira command Isosurface showBox.

56. How can I read a series of single image files such that I get a 3D stack?

Select all image files in the file browser at once. This can be done by clicking the first file and
then shift-clicking the last one. Individual files can be selected and deselected by ctrl-clicking.
After pressing the Ok button all images will be combined in a single 3D data stack. Note that
the images should be of the same size.

57. How can I quickly switch between two different data sets?

Click with the left mouse on the blue line connecting one of the data icons and the visualization
module icon in the Working Area and - holding the left mouse button down - move the line to
the icon of the other data object.

58. How can I compare two data sets?

One solution is to display each data set in a different viewer. You can activate up to four viewers
via the View Layout menu. If two viewers are visible attach a display module to each data set.
You can control in which of the viewers the output of a module is displayed by selecting the
module and setting or unsetting the orange viewer toggles. If you are using two OrthoSlice
modules, make sure that the same slice is displayed in both viewers.

In order to get the same camera settings in both viewers use the Tcl command viewer 0
setSlaveViewer 1. Whenever you navigate in viewer 0 the camera of viewer 1 will be
adjusted as well.

An alternative method to compare two different data sets is to compute and visualize the differ-
ence of both. To subtract two fields from each other use the Arithmetic module. Connect the
module to both data sets by activating the popup menu over the small rectangle of the module’s
icon. Then enter an expression like A-B in order to compute the difference. You can visualize

Frequently Asked Questions 119

the result of the Arithmetic module by any of the ordinary display modules.

Specific features

59. Does amira support Stereo viewing?

Yes. You will need special shutter glasses, e.g., Stereographics Crystal Eyes. Stereo viewing
is successfully being used on SGI and HP-UX systems. The Windows version is also be stereo
enabled. You can use red/blue stereo as well as shutter stereo, if your hardware supports stereo
for OpenGL applications.

60. Does amira support VR devices, such as a 3D mouse, head-mounted displays or CAVE systems?

Yes. Depending on your exact requirements you will need the amiraVR edition.

61. Can I use anti-aliasing?

Yes. On SGI Infinite Reality systems amira will automatically use a multi-sample visual. On
other systems you can switch on anti-aliasing in the graphics driver. If your system does not sup-
port hardware anti-aliasing, you may use the command viewer 0 antiAlias 3 to enable
3-pass jittered rendering. To reset, type viewer 0 antiAlias 1.

Developing applications with amira
62. Is it possible to extend amira?

Yes, a special version of amira called amiraDev allows you to write your own modules, data
classes, editors, and I/O methods.

63. Is amira an application builder?

No, it isn’t.

64. Can I define my own user interface for my specific application?

You cannot customize the user interface of existing modules. With the end user version you can
write scripts with a specific set of ports (amira GUI elements). With the developer version you
can write modules with any user interface you like. For non-standard components this might
require a Qt developer license which is not part of the amira developer version. If you want to
build an application with a completely customized look-and-feel, you will have to implement
your own user interface to wrap and hide the existing amira components.

65. Can I record user interaction in “macros” ?

No. But you can save the current network.

66. Can I automate operations with amira?

Yes, you can use Tcl scripts and script objects. Script objects allow you to specify parameters
for your scripts using pre-defined GUI elements such as buttons, option menus, or sliders.

67. Is there an upgrade from End User edition to Developer Edition?

Yes, the end-user license can be upgraded to amiraDev.

68. Can I write data input, processing and visualization modules with Tcl?

The Tcl interface is intended to access special features of modules, to automate routine tasks,
or to solve certain problems by combining existing modules and components. Writing new
visualization or data processing modules in Tcl is difficult and is not recommended. Writing

120 Chapter 4: Technical Information

data I/O methods in Tcl can make sense in some situations.

69. Is it possible to script any interaction with amira? Are all amira features available through Tcl
scripts ?

Any interaction with modules is fully scriptable. There are features in interactive editors which
are not scriptable. These are mainly interactions with the 3D viewer.

70. What programming languages can I use: C++, C, FORTRAN ...?

amira is written in C++. Implementing a new module with amiraDev version requires you to
derive from an existing C++ class. Inside this class, of course, you can call routines written in
other languages such as C or FORTRAN.

71. Can I embed executable or shell scripts as modules?

You can use Tcl scripts and script objects. From within these scripts you can call external
programs using the system command. Data exchange with these programs typically will be
via files.

72. How can I connect amira visualization to my computation code?

You can write simulation results (e.g., time steps) to files and than tell a running amira to read
them. To do that use the -cmd option of amira, i.e. call amira -cmd somecmd where
somecmd typically will be a Tcl procedure.

If you have the amiraDev version, you can either embed your simulation code in an amira
module (possibly as a separate thread), or you can write a module which communicates with
your simulation via sockets or shared memory.

73. Can I develop with Open Inventor or DataViz with an amira Developer License?

If you have the amiraDev version, you may use Open Inventor in your own amira modules, but
you can’t compile standalone Open Inventor applications. This would require a separate Open
Inventor SDK license.

74. Can I get the source code for an amira module?

The amiraDev version contains source code for demo modules which you may use as a template
for your own modules. In general, the source code of amira modules will not be released.

75. What is the compatibility with TGS DataViz ?

amira doesn’t use DataViz components. However, you can use such components in your own
modules without limitations.

76. Can I (re)use Open Inventor or DataViz code with amira?

Yes.

77. What is the difference between the amiraDev version and the end-user version?

In addition to the end-user version amiraDev contains all files (like header files of amira base
modules and a makefile environment) needed to compile specific extensions. It also contains a
“wizard” to create skeletons of new modules and readers.

78. Can I execute custom modules, created with amiraDev, with an ordinary amira version ? Yes,
you can. Details are given in the programmer’s guide.

Frequently Asked Questions 121

79. What is the runtime policy for my own modules (technically)?

You may distribute your own modules without limitations. In order to use them, other users will
have to purchase an amira end-user version.

4.6 System Requirements

amira 3.1 runs on Microsoft Windows 98/ME/NT4/2000/XP, HP-UX 11.00, SGI Irix 6.5.x, Sun So-
laris 8 and 9, Linux (RedHat 8.0), and Linux IA64 (RedHat AW 2.1).

amira relies on fast hardware-accelerated OpenGL 3D graphics. We strongly recommend hardware
texture mapping, since many visualization tools in amira rely on it. Hardware texture mapping is
available, on all decent PC 3D graphics boards. On Unix systems it is available for example, on SGI
O2, Octane and Onyx systems, on HP workstations with fx/4, fx/6 or fx/10 graphics, or on Sun Creator
3D, Elite, Expert 3D or newer graphics boards. For details on hardware acceleration, see below.

Apart from 3D graphics hardware probably, the most important system parameter is main memory.
You should have at least 128 MB, preferably 512 MB or more. amira can also be started with only
64 MB but working with large data sets definitely requires more main memory. Keep in mind that a
single 3D image data set can easily occupy 60 MB of memory (240 slices with 512 x 512 pixels of 1
byte).

The speed of the processor of course is also an important parameter. However it is less critical than the
graphics system and the main memory size. For the PC versions, we recommend at least a 500 MHz
PIII processor.

4.6.1 On System Stability

amira is a very demanding application that extensively uses high-end features. Experience shows that
such applications tend to reveal instabilities in system hardware, hardware drivers, and the operating
system. A common problem is insufficient main memory. We recommend you configure enough
swap memory in addition to physical memory. The total amount of virtual memory should be at least
512MB. 1GB would be even better.

Especially on PC platforms, OpenGL drivers today are often not as robust as desired. Also, system
crashes due to bad memory chips or unstable power-supply are not rare. If you experience problems
or instabilities with amira on your Windows platform, we recommend that you follow these steps:

1. Click on all the demo scripts in the Online User’s Guide. If the system crashes, turn off hardware
acceleration (choose the extended button from the Windows display settings dialog) and try
again. If this eliminates the problem, there is a bug in your OpenGL driver. Try to get a new
driver from the web site of the manufacturer of your graphics board.

2. Try using a different color depth in the Windows display settings dialog. Try 16, 24, or 32 bit.

3. Load the lobus.am data set and visualize it with a Voltex module. Turn on the spin rotation
(turn it with the mouse in the viewer and release the mouse button while moving the mouse, so

122 Chapter 4: Technical Information

that the object continues moving). Let it run over night (turn off the screen saver). If the system
has crashed or frozen the next morning, you probably have a hardware problem.

If this does not help, or if a reproducible error occurs on different computers, then it might be a bug in
the amira software itself. Please report such bugs so that they can be eliminated in the next release or
a patch can be prepared.

4.6.2 Microsoft Windows

amira runs on Intel or AMD-based systems with Microsoft Windows 98, ME, Windows NT (NT4,
Service Pack 4 or later), on Windows 2000, and on Windows XP. We recommend Windows 2000 or
Windows XP.

Graphics Hardware: You should use a graphics board with OpenGL support and texture mapping
capabilities. Both is the case for almost all newer 3D boards.

4.6.3 Silicon Graphics

Graphics Hardware: To get optimal graphics performance, the machine should support texture map-
ping in hardware. Currently this is the case for all O2 systems, and for Octane systems with High
Impact, Maximum Impact (not Solid Impact) and Odyssey graphics. amira provides a number of
modules which make use of texture mapping, e.g., slicing, pseudo-coloring, or volume rendering. On
machines without hardware texture mapping, these modules either run much slower or may not work
at all. The advantage of the Octane is a higher speed in polygon rendering. For a complex model with
an isosurface of 100,000 triangles, the frame rate is 10 per second for an Octane, compared to 3 per
second for an O2. The MXE and MXI Octanes have larger texture memory than the SSE and SSI.
Thus the MXE and MXI enable a direct volume rendering using 3D textures, which is not possible on
an SE, SI or O2.

Software: The current version of amira requires IRIX 6.5.x or higher. We recommend you install the
newest version of the operating system (see http://www.sgi.com/support).

4.6.4 HP-UX

amira performs pretty well on HP workstations equipped with Visualize fx/4, fx/6+, and fx/10 graphics
cards under HP-UX 11.00. Probably it will run on other machines as well provided the OpenGL
runtime environment has been installed. In any case we recommend to install the texture acceleration
option for your graphics system (hardware texture mapping), especially if you intend to work with
large 3D image data sets.

Important: By default some HP workstations are configured with a data size limit of 64 MB for each
process. In order to load reasonable data sets, you should increase this value to 1 GB and the stack size
to 128 MB. Do this by modifying the values in sam/Kernel Configuration maxdsiz=0x80000000,
ssiz=0x8000000, tssiz=0x8000000.

System Requirements 123

4.6.5 SunOS

amira runs on Sun workstations with Solaris 8 or Solaris 9.

amira is successfully being used on systems with Creator 3D, Elite 3D, Expert 3D, and Zulu graphics
boards. It runs on a simple Creator graphics boards as well. However, since no hardware texturing is
available, performance is limited.

4.6.6 Linux

The Linux version of amira 3.1 has been developed and tested on RedHat 8.0. On other Linux dis-
tributions this version might not run because certain required system libraries are missing or because
different versions of these libraries are installed. For such cases we provide a ”patch” containing the
original RedHat 8.0 libs. Usually with this patch amira runs of other Linux systems as well. For more
information please refer to resources section on http://www.amiravis.com.

There is also a version for Linux IA64 systems (Itanium 64-bit architecture). This version has been
compiled and tested on the RedHat Advanced Workstation 2.1 distribution.

amira 3.1 works with the current 3D graphics drivers from nVidia and ATI under XFree86 4. It has
also been successfully tested with other X-servers like the 3D Accelerated-X servers from XI graphics.

Note: After a standard installation of RedHat 8.0, hardware acceleration is not necessarily activated,
although X-Windows and amira may work fine. To enable OpenGL hardware acceleration specific
drivers may have to be installed, like the nVidia drivers from http://www.nvidia.com. This
can increase rendering performance by an order of magnitude. Sometimes it is necessary to disable
the stencil buffers (by starting amira with the option -no stencils) to get acceleration.

In any case amira requires an X server resolution of at least 1024x768 and at least 15 bit of color
depth. We recommend 1280x1024 with 24 bit color depth.

Please note that if software rendering is used, rendering performance may drop significantly, especially
for visualization techniques like volume rendering.

4.7 Acknowledgments and Copyrights

We thank the Department of Genetics at the University of W ürzburg, the Hermann F öttinger Institut of
the Technical University of Berlin and the Rudolf-Virchow Klinikum Berlin for providing demo data
sets.

The amira software project was started at the scientific visualization group at Konrad-Zuse-Zentrum
Berlin (ZIB). Since 1999 amira is being jointly developed further by ZIB and by Indeed - Visual
Concepts GmbH, a spin-off company from ZIB. amira is based on the latest release of the Open
Inventor toolkit from TGS Template Graphics Software, Inc. TGS is the worldwide distributor of
amira.

amira uses the following non-commercial libraries:

124 Chapter 4: Technical Information

• The Tcl library developed by John Ousterhout, subject to following license terms:
This software is copyrighted by the Regents of the University of California,
Sun Microsystems, Inc., and other parties. The following terms apply to all
files associated with the software unless explicitly disclaimed in individual
files.

The authors hereby grant permission to use, copy, modify, distribute, and li-
cense this software and its documentation for any purpose, provided that ex-
isting copyright notices are retained in all copies and that this notice is
included verbatim in any distributions. No written agreement, license, or roy-
alty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing
terms described here, provided that the new terms are clearly indicated on the
first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DI-
RECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN
IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN
"AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. gov-

ernment, the Government shall have only "Restricted Rights" in the software and

related documentation as defined in the Federal Acquisition Regulations (FARs)

in Clause 52.227.19 (c) (2). If you are acquiring the software on behalf of

the Department of Defense, the software shall be classified as "Commercial

Computer Software" and the Government shall have only "Restricted Rights" as

defined in Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the fore-

going, the authors grant the U.S. Government and others acting in its behalf

permission to use and distribute the software in accordance with the terms

specified in this license.

• The libtiff library developed by Sam Leffler, subject to the following license terms:
Copyright (c) 1988-1997 Sam Leffler Copyright (c) 1991-1997 Silicon Graphics,
Inc.

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that (i)
the above copyright notices and this permission notice appear in all copies of
the software and related documentation, and (ii) the names of Sam Leffler and
Silicon Graphics may not be used in any advertising or publicity relating to
the software without the specific, prior written permission of Sam Leffler and
Silicon Graphics.

THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IM-
PLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABIL-
ITY OR FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR ANY SPECIAL,

INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND, OR ANY DAMAGES WHAT-

Acknowledgments and Copyrights 125

SOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED OF

THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN

CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

• The zlib library developed by Jean-Loup Gailly and Mark Adler.

• The JPEG input and output routines are based in part on the work of the Independent JPEG
Group.

amira is a registered trademark of ZIB, Berlin. OpenGL, Open Inventor, Silicon Graphics, and IRIX
are registered trademarks of Silicon Graphics Inc. Sun and Solaris are registered trademarks of Sun
Microsystems, Inc.

4.8 Contact and Support

For purchasing an amira license and for hot-line support, contact:

TGS Inc.
5330 Carroll Canyon Road., Suite 201, San Diego, CA 92121-3758
Phone: +1-858-457-5359 Fax: +1-858-452-2547
Email: info@tgs.de Support: support@tgs.com

TGS Europe, P.A. Kennedy,
I-BP 227, Avenue Henri Becquerel, 33708 Merignac Cedex, France
Phone: +33-5-5613-37-77 Fax: +33-5-5613-02-10
Email: info@europe.tgs.de Support: support@europe.tgs.com

For special requests, such as development of special purpose modules, customization, consulting and
training, contact:

Indeed - Visual Concepts GmbH
Ihnestr. 23, 14195 Berlin, Germany
Phone: +49-30-84185-221 Fax: +49-30-82701-747
Email: indeed@zib.de URL: http://www.indeed3d.com

For general questions about amira and for research collaborations contact:

Konrad-Zuse-Zentrum (ZIB)
Dept. Scientific Visualization, Takustrasse 7, 14195 Berlin, Germany
Phone: +49-30-84185-171 Fax: +49-30-84185-107
Email: amira@zib.de URL: http://www.amiravis.com

When sending a bug report, try to specify the problem in detail. If possible, describe how the problem
can be reproduced. Please indicate which version of amira you are using. You can get this information
by typing app -version in the console window or by starting amira with the command line option
-version.

126 Chapter 4: Technical Information

Chapter 5

Scripting

5.1 Introduction

This chapter is intended for advanced amira users only. If you do not know what scripting is, it is very
likely that you will not need the features described in this chapter.

Beside the interactive control via the graphical user interface most of the amira functionality can also
be accessed using specific commands. This allows you to automate certain processes and to create
scripts for managing routine tasks or for presenting demos. amira’s scripting commands are based on
Tcl, the Tool Command Language. This means you can write command scripts using Tcl with amira
specific extensions.

amira commands can be typed into the amira console window, as described in Section 3.1.8. Com-
mands typed directly into the console window will be executed immediately. Alternatively, commands
can be written into a text file, which can then be executed as a whole.

This chapter is organized as follows:

Section 5.2 (Introduction to Tcl) gives a short introduction into the Tcl scripting language. This section
is not very amira specific.

Section 5.3 (amira Script Interface) explains amira specific commands and concepts related to script-
ing. This includes a reference of global commands.

Section 5.4 (amira Script Files) explains the different ways of writing and executing script files in-
cluding references to script object, resource files and function-key bound Tcl procedures.

Section 5.5 (Configuring Popup Menus) describes how the popup menu of an object can be configured
using script commands, and how new entries causing a script to be executed can be created.

Data Type: Script Object describes how to use Tcl scripts for defining custom modules that have their
own graphical user interface and can be used like the built-in amira objects.

5.2 Introduction to Tcl

This chapter gives a brief introduction to the Tcl scripting language. If you are familiar with Tcl you
can skip this section. However please notice that instead of the puts command use echo for output
to the amira console.

This chapter is not intended to cover all details of the language. For a complete documentation or
reference manual of the Tcl language refer to a text book like Tcl and the Tk Toolkit by John K.
Ousterhout, the creator of Tcl. Like many other books about Tcl this also covers the Tk GUI toolkit.
Note that Tk is not used in amira.

Alternatively you can easily find Tcl documentation and reference manuals on the internet e.g. at
www.scriptics.com or looking up keywords like Tcl tutorial or Tcl documentation
with a search engine like www.google.com.

When you type Tcl commands into the amira console they will be executed as soon as the return key
is pressed. Use the completion and history functions provided by the amira console, as described in
Section 3.1.8 (console window).

5.2.1 Tcl Lists, Commands, Comments

First, please note that Tcl is case sensitive: set and Set are not the same.

A Tcl command is a space-separated list of words. The first word represents the command name,
all further words are treated as arguments to that command. As an example try the amira-specific
command echo which will print all its arguments to the amira console. Try typing

echo Hello World

This will output the string Hello World. Note that Tcl commands can be separated by a semi-colon
(;) or a newline character. If you want to execute two successive echo commands, you can do it this
way:

echo Hello World ; echo Hello World2

or like this:

echo Hello World
echo Hello World2

Instead of a command, you can also place a comment in Tcl code. A comment starts with a hash
character (#) and is ended by the next line break:

this is a comment
echo Hello World

128 Chapter 5: Scripting

5.2.2 Tcl Variables

In Tcl variables can be used. A variable represents a certain state or value. Using Tcl code, the value
of the placeholder can be queried, defined, and modified. To define a variable use the command

set name value

e.g.

set i 1
set myVar foobar

Note that in Tcl internally all variables are of string type. Since the set command requires exactly one
argument as the variable value you have to quote values that contain spaces:

set Output "Hello World"

or

set Output {Hello World}

In order to substitute the value of a variable with name varname, a $ sign has to be put in front of
that name. The expression $varname will be replaced by the value of the variable. After the above
definitions,

echo $Output

would print

Hello World

in the console window, and

echo "$i.) $Output"

would yield the output 1.) Hello World. Note that variable substituion is performed for strings quoted
in ", while it is not done for strings enclosed in braces {}. Even newline-characters are allowed in a {
} enclosed string. Note however that it is not possible to type in multi-line commands into the amira
console.

Introduction to Tcl 129

5.2.3 Tcl Command Substitution

To do mathematical computations in Tcl you can use the command expr which will evaluate its
arguments and return the value of the expression. Examples are:

expr 5 / (7 + 3)
expr $i + 1

In order to use the result of a command like expr for further commands an important Tcl mechanism
has to be used: command substitution, denoted by brackets []. Any list enclosed in brackets [] will
be executed as a separate command first, and the [...] construct will be replaced with the result of
the command. This is similar to the ‘...‘ construct in Unix command shells. For example, in order to
increase the value of the variable i by one you can use:

set i [expr $i + 1]

Of course, command expressions can be arbitrarily nested. The order of execution is always from the
innermost bracket pair to the outermost one:

echo [expr 5 * [expr 7 + [expr 3+3]]]

5.2.4 Tcl Control Structures

Further important language elements are if-else constructs, for- and while- loops. These con-
structs typically are multi-line constructs and can therefore not conveniently be typed into the amira
console. If you want to try the examples shown below, write them into a file like C:\test.txt by
using a text editor of your choice, and execute the file by typing

source C:\test.txt

We start with the if-thenmechanism. It is used to execute some code conditionally, only if a certain
expression evaluates to “true (meaning a value different from 0):

set a 7
set b 8
if {$a < $b} {

echo "$a is smaller than $b"
} elseif {$a == $b} {

echo "$a equals $b"
} else {

echo "$a is greater than $b"
}

130 Chapter 5: Scripting

The elseif and else parts are optional. Multiple elseif parts can be used, but only a single if
and else part.

Another important construct is the conditional loop. Like the if command, it is based on checking a
conditional expression. In contrast to if, the conditional code is executed multiple times, as long as
the expression evaluates to true:

for {set i 1} {$i < 100} {set i [expr $i*2]} {
echo $i

}

In fact this code is identical to:

set i 1
while {$i < $100} {

echo $i
set $i [expr $i * 2]

}

both loops would produce the output 1, 2, 4, 8, 16, 32, 64.

If you want to execute a loop for all elements of a list, there is another very convenient command for
that:

foreach x {1 2 4 8 16 32 64} {
echo $x

}

This will generate the same output as the previous example. Note that the expression enclosed in
braces is a space-separated list of words.

User-Defined Tcl Procedures

A new function or procedure is defined in Tcl using the proc command. Proc takes two arguments: a
list of argument names, and the Tcl code to be executed. Once a procedure is defined, it can be used
just like any other Tcl command:

proc computeAverageA {a b} {
return [expr ($a+$b)/2.0]

}
proc computeAverageB {a b c} {

return [expr ($a+$b+$c)/3.0]
}

Introduction to Tcl 131

echo "average of 2 and 3: [computeAverageA 2 3]"
echo "average of 2,3,4: [computeAverageB 2 3 4]"

As you can see in the example, the argument list defines the names for local variables that can be
used in the body of the procedure (e.g. $a). The return command is used to define the result of the
procedure. This result is the value that is used in the command bracket substitution [].

If you want to define a procedure with a flexible number of arguments, you must use the special
argument name args. If the argument list contains just this word, the newly defined command will
accept an arbitrary number of arguments, and these arguments are passed as a list called args:

proc computeAverage args {
set result 0
foreach x $args {

set result [expr $result + $x]
}
return [expr $result / [llength $args]]

}

In this example, the llength command returns the number of elements contained in the args list.

Note that the variable result defined in the procedure has local scope, meaning that it will not be
known outside the body of the procedure. Also, the value of globally defined variables is not known
within a procedure, unless that global variable is declared using the keyword global:

set x 3
proc printX {} {

global x
echo "the value of x is $x"

}

There is much more to be said about procedures, e.g. concerning argument passing, evaluation of
commands in the context outside of the procedure, and so on. Please refer to a Tcl reference book for
these advanced topics.

List and String Manipulation

Finally, at the end of this brief Tcl introduction, we come back to the concept of lists. Basically
everything in Tcl is constructed using lists, so it is very important to know the most important list
manipulation commands as well as to understand some subtle details.

Here is an example of how to take an input list of numbers and construct an output list in which each
element is twice as big as the corresponding element in the input list:

132 Chapter 5: Scripting

set input [list 1 2 3 4 5]
set output [list]
foreach element $input {

lappend output [expr $element * 2]
}

You can think of lists as simple strings in which the list elements are separated by spaces. This means
that you can achieve the same result as in the previous example without using the list commands:

set input "1 2 3 4 5"
set output ""
foreach element $input {

append output "[expr $element * 2] "
}

The append command is similar to lappend, but it just adds a string at the end of an existing string. List
manipulation becomes much more involved when you start nesting lists. Nested lists are represented
using nested pairs of braces, e.g.

set input {1 2 {3 4 5 {6 7} 8 } 9}
foreach x $input {

echo $x
}

The result of this command will be

1
2
3 4 5 {6 7} 8
9

Please note that Tcl will automatically quote strings that are not single words when constructing a list.
Here is an example:

set i [list 1 2 3]
lappend i "4 5 6"
echo $i

will yield the output

1 2 3 {4 5 6}

Introduction to Tcl 133

You can use the lindex command to access a single element of a list. lindex takes two arguments: the
list and the index number of the desired element, starting with 0:

set i [list a b c d e]
echo [lindex $i 2]

will yield the result c.

5.3 amira Script Interface

Although the Tcl language is not intrinsically object oriented, the amira script interface is. There is
one command for each object in the amira object pool. In addition there are several global commands
associated with global objects in amira such as the viewer or the amira .

A command associated with an object in the object pool (e.g., an OrthoSlice module or an Isosurface
module) only exists while the object exists. These commands are identical to the name of the object as
displayed in the object pool. Typically the script interface of a specific object contains many different
functions. The general syntax for an amira object-related command is

<object-name> <command-word> <optional-arguments> ...

For example, if an object called GlobalAxis exists (choose View/Axis from the amira menu) then you
can use commands like

GlobalAxis deselect
GlobalAxis select
GlobalAxis setIconPosition 100 100

Remember to use the completion and history functions provided by the amira console, as described in
Section 3.1.8 (console window) to save typing.

If you have already used amira you have noticed that the parameters and the behavior of an amira
module are controlled via its ports. The ports provide a user interface to change their values when the
module is selected. All ports can also be controlled via the command interface. The general syntax for
that is

<object-name> <port-name> <port-command> <optional-arguments> ...

For example for the GlobalAxis you can type

GlobalAxis options setValue 1 1
GlobalAxis thickness setValue 1.5
GlobalAxis fire

134 Chapter 5: Scripting

When you type in these commands you will notice that the values in the user interface change immedi-
ately. However the module’s compute method is not called until explicitly firing the module using the
fire command. This allows you to first set values for multiple ports without a recomputation after
each command. However, note that some modules automatically reset some of their ports for example
when a new input object is connected. In such cases you may need to call fire after setting the value
of every single port.

Usually the name of a port is identical to the text label displayed in the graphical user interface, except
that white spaces are removed and command names start with a lower case letter. To find out the names
of all ports of a specific module use the command

<object-name> allPorts

Almost all ports provide a setValue and a getValue command. The number of parameters and
the syntax of course depend on the ports.

Commands of the type <object-name> <port-name> setValue ... make up more than
90% of a typical amira script. However, besides the port commands many amira objects provide
additional specific commands. The command interface for a particular module is described in the
User’s Reference Guide. You can quickly find the corresponding page by clicking the ?-button in the
work area when the module has been selected.

As a quick-help entering an object’s name without further options will display all commands available
for that object. Note that this will also show undocumented, unreleased, and experimental commands.
In order to get more information about a particular module or port command you can type it into
console window without any arguments and then press the F1 key. This opens the help browser with a
command description.

amira objects are part of a class hierarchy. Similar to the C++ programming interface, also script
commands are inherited by derived classes from its base classes. This means that a particular object
like the axis object will beside its own specific commands also provide all the commands available in
its base classes. Links to the base class commands are given in a modules documentation.

5.3.1 Predefined Variables

There exist some variables in amira Tcl, which are predefined and have a special meaning. These are

• AMIRA ROOT: amira installation directory.

• AMIRA LOCAL: Personal amira development directory (amiraDev only).

• SCRIPTFILE: Tcl script file currently executed.

• SCRIPTDIR: Directory in which currently executed script resides.

• hideNewModules: If set to 1, icons of newly created modules will initially be hidden.

amira Script Interface 135

5.3.2 Object commands

The basic command interface of amira modules and data objects is described in the data type chapter
of the reference part of the usersguide in the Object section. The basic syntax of object commands is

<object> <command> <arguments> ...

where <object> refers to the name of the object and <command> denotes the command to be
executed. Each module or data object may define its own set of commands in addition to the commands
defined by its base classes. The commands described in the Object section are provided by all modules
and data objects.

In the following section Global commands are described.

5.3.3 Global commands

This section lists amira specific global Tcl commands. Some of these commands are associated with
certain global objects in amira, such as the console window, the main window, or the viewer window.
Other commands are such as load or echo are not. These commands are described in one common
subsection. In summary, the following command sections are provided:

• viewer command options (viewer)

• main window command options (theMain)

• console command options (theMsg)

• common commands for top-level windows

• progress bar command options (theWorkArea)

• application command options (app)

• other global commands

5.3.3.1 Viewer command options

Commands to a viewer can be entered in the console window. The syntax is

viewer [<number>] command,

where <number> specifies the viewer being addressed. The value 0 refers to the main viewer and
may be omitted for convenience.

Commands

viewer [<number>] snapshot [-offscreen [<width> <height>]]
<filename>
This command takes a snapshot of the current scene and saves it under the specific filename.

136 Chapter 5: Scripting

The image format will be automatically determined by the extension of the file name. The list
of available formats includes: TIFF (.tif,.tiff), SGI-RGB (.rgb,.sgi,.bw), JPEG
(.jpg,.jpeg), PNM (.pgm,.ppm), BMP (.bmp), PNG (.png), and Encapsulated PostScript
(.eps). If the viewer number is not given, the snapshot is taken from all viewers, if you have
selected the 2 or 4 viewer layout from the View menu.

If the -offscreen option is specified, offscreen rendering with a maximum size of 2048x2048
is used. In this case the viewer number is required even if viewer 0 is addressed. If the width and
height is not specified explicitly, the size of the image is the current size of the viewer.

Caution: If you have more than one transparent object visible in the viewer and you want to use
offscreen rendering set the transparency mode to Blend Delayed and check to see if all objects are
rendered properly prior to taking a snapshot.

viewer [<number>] setPosition <x> <y>

Sets the position of the viewer window relative to the upper left corner of the screen. If more than
one viewer is shown in the same window the position of the toplevel window is set.

viewer [<number>] getPosition
Returns the position of the viewer window. If more than one viewer is shown in the same window
the position of the toplevel window is returned.

viewer [<number>] setSize <width> <height>
Sets the size of the viewer window. Width and height specifiy the size of the actual graphics area.
The window size might be a little bit larger because of the viewer decoration and the window frame.

viewer [<number>] getSize
Returns the size of the viewer window without decoration and window frame.

viewer [<number>] setCamera <camera-string>

Restores all camera settings. The camera string should be the output of a getCamera command.

viewer [<number>] getCamera

This command returns the current camera settings, i.e., position, orientation, focal distance, type,
and height angle (for perspective cameras) or height (for orthographic cameras). The values are
returned as amira commands, which can be executed in order to restore the camera settings. The
complete command string may also be passed to setCamera at once.

viewer [<number>] setCameraPosition <x> <y> <z>

Defines the position of the camera in world coordinates.

viewer [<number>] setCameraPosition <x> <y> <z>
Returns the position of the camera in world coordinates.

viewer [<number>] setCameraOrientation <x> <y> <z> <a>
Defines the orientation of the camera. By default, the camera looks in negative z-direction with the

amira Script Interface 137

y-axis pointing upwards. Any other orientation may be specified as a rotation relative to the default
direction. The rotation is specified by a rotation axis x y z followed by a rotation angle a (in radians).

viewer [<number>] getCameraOrientation

Returns the current orientation of the camera in the same format used by setCameraOrienta-
tion.

viewer [<number>] setCameraFocalDistance <value>

Defines the camera’s focal distance. The focal distance is used to compute the center around which
the scene is rotated in interactive viewing mode.

viewer [<number>] getCameraFocalDistance
Returns the current focal distance of the camera.

viewer [<number>] setCameraHeightAngle <degrees>

Sets the height angle of a perspective camera in degrees. The smaller the angle the bigger the field
of view. The command has no effect if the current camera is an orthographic one.

viewer [<number>] getCameraHeightAngle
Returns the height angle of a perspective camera.

viewer [<number>] setCameraHeight <height>

Sets the height of the view volume of an orthographic camera. The command has no effect if the
camera is an perspective one.

viewer [<number>] getCameraHeight

Returns the height of an orthographic camera.

viewer [<number>] setCameraType <perspective|orthographic>

Sets the camera type.

viewer [<number>] getCameraType
Returns the camera type.

viewer [<number>] setTransparencyType <type>

This command defines the strategy used for rendering transparent objects. The argument type may
be a number between 0 and 6, corresponding to the entries Screen Door, Add, Add Delay, Add
Sorted, Blend, Blend Delay, and Blend Sorted as described for the View menu.

Most accurate results are obtained using mode 6, which is the default. However, some objects may
not be recognized correctly as being transparent. In this case you may switch them off and on
again in order to force them to be rendered last. Also, if lines are to be rendered on a transparent
background problems may occur. In this case, you may use transparency mode 4 and ensure the
correct rendering order manually.

viewer [<number>] getTransparencyType

This command returns the current transparency type as a number in the range 0...6. The meaning of
this number is the same as in setTransparencyType.

138 Chapter 5: Scripting

viewer [<number>] setBackgroundColor <r> <g>

This command sets the color of the background to a specific value. The color may be specified
either as a triple of integer RGB values in the range 0...255, as a triple of rational RGB values in the
range 0.0...1.0, or simply as plain text, e.g., white, where the list of allowed color names is defined
in /usr/lib/X11/rgb.txt.

viewer [<number>] getBackgroundColor

Returns the primary background color as an RGB triple with values between 0 and 1.

viewer [<number>] setBackgroundColor2 <r> <g>

Sets the secondary background color which is used by non-uniform background modes.

viewer [<number>] getBackgroundColor2
Returns the secondary background color as an RGB triple with values between 0 and 1.

viewer setBackgroundMode <mode>
Allows you to specify different background patterns. If mode is set to 0 a uniform background will
be displayed. Mode 1 denotes a gradient background. Mode 2 causes a checkerboard pattern to be
displayed. This might help to understand the shape of transparent objects. Finally, mode 3 draws
an image previously defined with setBackgroundImage on the background.

viewer getBackgroundMode

Returns the current background mode.

viewer setBackgroundImage <imagefile> [<imagefile2>] [-stereo]

This command allows you to place an arbitrary raster image into the center of the viewer’s back-
ground. The image must not be larger than the viewer window itself. Otherwise it will be clipped.
The format of the image file will be detected automatically by looking at the file name extension.
All formats mention for the snapshot command are supported except of Encapsulated Postscript.
If a second image file is specified, this file will be used as the right eye image in case of active stereo
rendering. If the options -stereo is specified and only one image file is given, it it assumed that
this file contains a left eye view and a right eye view composited side by side. These views then
will be separated automatically.

viewer getBackgroundImage
This command returns the file name of the last background image file defined with setBack-
groundImage. If a pair of stereo images was specified, two file names are returned. If the option
-stereo was used in setBackgroundImage, this option will be returned too.

viewer [<number>] setAutoRedraw <state>
If state is 0, the auto redraw mode is switched off. In this case the image displayed in the viewer
window will not be updated, unless a redraw command is sent. If state is 1, the auto redraw mode
is switched on again. In a script it might be useful to disable the auto redraw mode temporarily.

viewer [<number>] isAutoRedraw
Returns true is auto redraw mode is on.

amira Script Interface 139

viewer [<number>] redraw

This command forces the current scene to be redrawn. An explicit redraw is only necessary if the
auto redraw mode has been disabled.

viewer [<number>] rotate <degrees> [x|y|z|m|u|v]
Rotates the camera around an axis. The axis to be taken is specified by the second argument. The
following choices are available:

x: the x-axis (1,0,0)
y: the y-axis (0,1,0) z: the z-axis (0,0,1) m: the most vertical axis of x, y, or z u: the viewer’s
up direction v: the view direction

The last option does the same as the rotate button of the user interface. In most cases the m option
is most adequate. For backward-compatibility the defualt is u.

viewer [<number>] setDecoration <state>
The decoration is an extended window frame that serves as a user-interface. It contains buttons
and thumb wheels for adjusting the view or switching between interaction and viewing mode. The
decoration command can be used to show or hide the decoration area. Hiding the decoration is
useful when multiple viewers are open and the size of a single viewing window is rather small.

viewer [<number>] saveScene <filename>

Saves all of the geometry displayed in a viewer in Open Inventor 3D graphics format. Warning:
Since many amira modules use custom Inventor nodes, the scene usually can not be displayed
correctly in external programs like ivview.

viewer [<number>] viewAll

Resets the camera so that the whole scene becomes visible. This method is called automatically for
the first object being displayed in a viewer.

viewer [<number>] show
This command opens the specified viewer and ensures that the viewer window is displayed on top
of all other windows on the screen.

viewer [<number>] hide

This command closes the specified viewer.

viewer [<number>] fogRange <min> <max>

Sets a range of attenuation for the fog affect that can be introduced into a viewer scene by the
View menu. The default range is [0, 1]. Values within this range correspond to distances of scene
points from the camera, such that points nearest to the camera have value zero and those farthest
away have value one. Restricting the range of attenuation means that attenuation will start at points
where the specified minimum is attained and reach its maximum at points where the specified max-
imum is attained. Maximum attenuation by fog is equivalent to invisibility, thus all points beyond
that maximum will appear as background.

140 Chapter 5: Scripting

viewer [<number>] setVideoFormat pal|ntsc

Sets the size of the viewer window according to PAL 601 or NTSC 601 resolution, i.e., 720x576
pixels or 720x486 pixels. The current setting of the decoration is taken into account.

viewer [<number>] setVideoFrame <state>
If state is 1, a frame is displayed in the overlay plane of the viewer. This frame depicts the area
where images recorded to video are safely shown on video players. Setting state to 0 switches the
frame off. Note: Objects displayed in the overlay planes are not saved to file with the snapshot
command (see above).

5.3.3.2 Main window command options

The command theMain allows you to access and control the amira main window. Besides the
specific command options listed below also all sub-commands listed in Section 5.3.3.4 (Common
commands for top-level windows) can be used.

Commands

theMain snapshot filename
Creates and saves a snapshot image of the main window. The format of the image file is determined
from the file name extension. Any standard image file format supported by amira can be used, e.g.,
.jpg, .tif, .png, or .bmp.

theMain setViewerTogglesOnIcons {0|1}
Enables or disables the display of the orange viewer toggles on object icons in the amira object
pool.

theMain ignoreShow [0|1]

Enables or disables the special purpose no show flag. If this flag is set, subsequent mainWindow
show commands are ignored. This can be useful to run standard amira scripts in a amiraVR
environment. Calling the command without an argument just returns the current value of the flag.

5.3.3.3 Console command options

The command theMsg allows you to access and control the amira console window. Besides the
specific command options listed below also all sub-commands listed in Section 5.3.3.4 (Common
commands for top-level windows) can be used.

Commands

theMsg error <message> [<btn0-text>] [<btn1-text>] [<btn2-
text>]
Pops up an error dialog with the specified message. The dialog can be configured with up to three

amira Script Interface 141

different buttons. The command blocks until the user presses a button. The id of the pressed button
is returned.

theMsg warning <message> [<btn0-text>] [<btn1-text>] [<btn2-
text>]
Pops up a warning dialog with the specified message. The dialog can be configured with up to three
different buttons. The command blocks until the user presses a button. The id of the pressed button
is returned.

theMsg question <message> [<btn0-text>] [<btn1-text>] [<btn2-
text>]

Pops up a question dialog with the specified message. The dialog can be configured with up to
three different buttons. The command blocks until the user presses a button. The id of the pressed
button is returned.

theMsg overwrite <filename>

Pops up a dialog asking the user if it is ok to overwrite the specified file. If the user clicks Ok, 1 is
returned, otherwise 0.

5.3.3.4 Common commands for top-level windows

These commands are available for all amira objects which open a separate top-level window. In
particular, these are the amira main window (theMain), the console window (theMsg), and the
viewer window (viewer 0). For example, you can set or get the position of these windows using the
corresponding global command followed by setPosition or getPosition.

Commands

getFrameGeometry

Returns the position and size of the window including the window frame. In total four numbers are
returned. The first two numbers indicate the position of the upper left corner of the window frame
relative to the upper left corner of the desktop. The last two numbers indicate the window size in
pixels.

getGeometry
Returns the position and size of the window without the window frame. In total four numbers are
returned. The first two numbers indicate the position of the upper left corner of the window relative
to the upper left corner of the desktop. The last two numbers indicate the window size in pixels.

getPosition

Returns the position of the upper left corner of the window including the window frame. This is the
same as the first two numbers returned by getFrameGeometry.

getRelativeGeometry
Returns the position and size of the window including the window frame in relative coordinates.

142 Chapter 5: Scripting

The size of the desktop is (1,1). The position and size of the window is specified by fractional
numbers between 0 and 1.

getSize

Returns the size of the window without the window frame. This is the same as the last two numbers
returned by getGeoemtry.

hide
Hides the window.

setCaption <text>
Sets the window title displayed in the window frame.

setFrameGeometry <x y width height>

Sets the position and size of the window including the window frame. Four numbers need to be
specified, the x- and y-positions, the window width and the window height.

setGeometry <x y width height>
Sets the position and size of the window without the window frame. Four numbers need to be
specified, the x- and y-positions, the window width and the window height.

setPosition <x y>

Sets the position of the upper left corner of the window frame.

setRelativeGeometry <x y width height>

Sets the position and size of the window including the window frame in relative coordinates. The
size of the desktop is (1,1). The position and size of the window is specified by fractional numbers
between 0 and 1.

setSize <width height>

Sets the size of the window without the window frame.

show

Makes the window visible in normal state. Also raises the window.

showMinimized
Makes the window visible in iconified state.

showMinimized
Makes the window visible in maximized state.

5.3.3.5 Progress bar command options

The command theWorkArea allows you to access the progress bar located in the lower part of the
amira main window. You can print messages or check if the stop button was pressed.

amira Script Interface 143

Commands

theWorkArea setProgressInfo <text>
Sets an info text to be displayed in the progress bar. The text can be used to describe the status
during some computation.

theWorkArea setProgressValue <value>

Sets the value of the progress bar. The argument must be a floating point number between 0 and 1.
For example, a value of 0.8 indicates that 80% of the current task has been done.

theWorkArea startWorking [<message>]

Activates the stop button. After calling this command the amira stop button becomes active. In
your script you can check if the stop button was hit by calling theWorkArea wasInter-
rupted. When the stop button is active you can’t interact with any other widget unless you call
theWorkArea stopWorking in your script. Therefore you must not enter this command di-
rectly in the console window, but you should only use it in a script file or in a Tcl procedure.

theWorkArea stopWorking

Deactivates the stop button. Call this command when the compute task started with theWorkArea
startWorking is done or if the user pressed the stop button. This command also restores the
progress info text which was shown before calling startWorking.

theWorkArea wasInterrupted
Checks if the user pressed the stop button. You should only use this command between the-
WorkArea startWorking and theWorkArea stopWorking. If there are multiple nested
compute tasks and the user presses the stop button, all subsequent calls to wasInterrupted
return true until the first level is reached.

5.3.3.6 Application command options

The app command provides several options not related to a particular object or component in amira,
but related to amira itself.

Commands

app version

Returns the current amira version.

app uname
Returns simplified name of operating system.

app arch

Returns amira architecture string, e.g., arch-Win32-Optimize, arch-IRIX64-Optimize.

app hostid
Returns host id needed to create an amira license key.

144 Chapter 5: Scripting

app listen [port]

Opens a socket to which Tcl commands can be sent. The TCP/IP port can be specified optionally.
WARNING: This can create security holes. Do not use this unless behind a firewall and if you know
what you are doing.

app close
Closes the amira Tcl port.

app port

Get port number of amira Tcl port. Returns -1 if socket has not been opened.

app send <command> [<host> [<port>]]

Sends a Tcl command to a listening amira. If no host or port are specified, the amira instance will
send the command to itself.

app opengl
Retrieve information about the used OpenGL driver including version number and supported exten-
sions. This is useful information to send to the hot-line if reporting rendering problems.

5.3.3.7 Other global commands

Commands

addTimeout msec procedure [arg]
Schedules a Tcl procedure for being called after msec milliseconds. If arg is specified it will be
passed to the procedure. The specified procedure will be called only once. If necessary, you can
schedule it again in the time-out procedure. Example: addTimeout 10000 echo {10 sec-
onds are over.}

all [-selected | -visible | -hidden] [type]
Returns a list of all amira objects currently in the object pool. If type is specified only object with
that C++ class type (or derived objects) are returned. Search can be limited to selected, visible, or
hidden objects, respectively. Example: all -hidden HxColormap.

aminfo [-a outfile|-b outfile] AmiraMesh-File
If used with only a file name as argument this command will open the file which has to be in
AmiraMesh format and print header information. If used with the -a or -b option,

clear
Clears console window.

create class name [instance name]
Creates an instance of an amira object like a module or data object. Returns the instance name.
Note that data objects are normally not created this way but by loading them from a file. Example:
create HxOrthoSlice MySlice.

amira Script Interface 145

dso options
Controls loading of dynamic libraries. The following options are provided:

• addPath path ... Adds a path to the list of directories to be searched when loading a
dynamic library.

• verbose {0|1} Switches on and off debug information related to dynamic shared object
loading.

• open <package> Trys to load the specified dynamic library. It is enough to specify the
package name, e.g., hxfield. This name will be automatically converted into the platform
dependent name, e.g., libhxfield.so on Linux or hxfield.dll on Windows.

echo args
Prints its arguments to the amira console. Use this rather than the native Tcl command putswhich
prints to stdout.

help arguments
Without arguments this opens the amira help browser.

httpd [port]

Start a built-in httpd server. The http server will deliver any document requested. If a requested
document ends with .hx amira will instead of delivering it execute the file as a Tcl script. This
can be used to control amira from a web browser. WARNING: This command can create security
holes. Do not use this unless behind a firewall and if you know what you are doing.

limit {datasize | stacksize | coredumpsize} size
Change process limits. Available on Unix platforms only. Use “unlimited” as size for no limit. The
size has to be specified in bytes. Alternatively you can use for example 1000k for 1000 kilobytes or
1m for one megabyte.

load [fileformat] files
Load data from one or more files. Optionally a file format can be specified to override amira’s
automatic file format recognition. The file format is specified by the same label which is displayed
in the file format combo box in the amira file dialog.

mem
Prints out some memory statistics.

quit

Immediately quits amira.

remove objectname
Removes the specified amira object.

removeTimeout procedure [arg]
Unschedules a Tcl procedure previously scheduled with addTimeout.

146 Chapter 5: Scripting

rename objectname newname
Changes instance name of an object. Identical to objectname setLabel newname. Returns the
new name, which is normally identical to newname, unless the name did already exist.

sleep sec
Wait for sec seconds. amira will not process events in that time.

source filename
Loads and executes Tcl commands from the specified file. If the script file contains the extension
.hx the load command may be used as well.

system command
Execute an external program. Do not use this unless you know what you are doing.

5.4 amira Script File

It is worth noticing that an amira network is simply a Tcl script that will regenerate the current amira
state. Therefore it is often an efficient way to interactively create an amira network, save it with “Save
Network”, and use this as a starting point for scripting.

The simplest way to execute Tcl commands in amira is to type them into the amira console window.
This however is not practical for multi-line constructs, like loops or procedures. In this case, it is rec-
ommended to write the Tcl code into a file and execute the file with the command source filename.
You can also use the source command inside a file in order to include the contents of a file into
another file.

Alternatively one can also use the command load filename or the Load menu entry from the File
menu and the file browser. Then however, in order to let amira recognize the file format, then either
the file name has to end with .hx, or the file contents must start with the header line

Amira-Script-File

There are some Tcl files that are loaded automatically when amira starts. At startup, the pro-
gram looks for a file called .Amira in the current directory or in the home directory (see Section
4.4 (Start-up script) for details). If no such user-defined start-up script is found the default initial-
ization script Amira.init is loaded from the directory AMIRA LOCAL/share/resources or
AMIRA ROOT/share/resources. This script then reads in all files ending with .rc from the
share/resources subdirectory. The .rc files are needed to register modules and data types.
Therefore one can customize the startup behavior of amira by simply adding a new .rc file to that
directory or by modifying the Amira.init file.

Another way of executing Tcl code is to define procedures that are associated with function keys. If
predefined procedures with the names onKeyF2, onKeyF3, ..., onKeyShiftF2, ...,

amira Script File 147

onKeyCtrlF2, ..., onKeyCtrlShiftF2, ... exist, these procedures will be automati-
cally called when the respective key is hit in the amira main window, console window, or viewer
window. Note that F1 is reserved for help. To define these procedures write them into a file and
source it or write them into Amira.init or in one of the .rc files. An example is

proc onKeyF2 { } {
echo "Key F2 was hit"
viewer 0 viewAll

}

Finally Tcl scripts can also be represented in the GUI and be combined with a user interface. In amira
this is called a script object. There is a separate documentation for that.

5.5 Configuring Popup Menus

In amira all modules which can be attached to a data object are listed in the object’s popup menu which
is activated by clicking on the object’s icon with the right mouse button. For some applications it makes
sense to customize new modules using Tcl commands after they have been created. Sometimes it also
makes sense to add new entries to an object’s popup menu, causing a particular script to be executed.
This sections describes how to achieve these goals by modifying amira resource files or creating new
ones.

amira resource files are located in the directory $AMIRA ROOT/share/resources, where
$AMIRA ROOT denotes the directory where amira has been installed. Resource files are just ordi-
nary script files, although they are identified by the suffix .rc. When amira is started all resource
files in the resources directory are read. In a resource file modules, editors, and IO routines are regis-
tered using special Tcl commands. Registering a module means to specify its name as is should appear
in the popup menu, the type of objects it can be attached to, the name of the shared library or DLL the
module is defined in, and so on. For example, the LabelVoxel module is registered by the following
command in the file hxlattice.rc:

module -name "LabelVoxel" \
-primary "HxUniformScalarField3 HxStackedScalarField3" \
-check { ![$PRIMARY hasInterface HxLabelLattice3] } \
-category "Labelling Compute" \
-class "HxLabelVoxel" \
-package "hxlattice"

The different options of this command have the following meaning:

• The option -name specifies the name or label of the module, as it will be printed in the popup
menu.

148 Chapter 5: Scripting

• The option -primary says that this module can be attached to data objects of type HxUni-
formScalarField3 or HxStackedScalarField3. This means that LabelVoxel will be
included in the popup menu of such objects only.

• With -check an additional Tcl expression is specified which is evaluated at run-time just before
the menu is popped up. If the expression fails the module is removed from the menu. In case
of the LabelVoxel module it is checked if the input object provides a HxLabelLattice3
interface, i.e., if the input itself is a label field. Although a label field can be regarded as a 3D
image, it makes no sense to perform a threshold segmentation on it. Therefore LabelVoxel is
only provided for raw 3D images, but not for label fields.

• The option -category says that LabelVoxel should appear in the submenus Compute and
Labelling of the main popup menu. If a module should appear not in a submenu but in the
popup menu itself, the category Main must be used.

• The option -class specifies the internal class name of the module. The internal class name of
an object can be retrieved using the command getTypeId. It is this class name which has to
be used for the -primary option described above, not the object’s label defined by -name.

• Finally, the option -package specifies in which package (shared library or DLL) the module
is defined in.

Besides these standard options additional Tcl commands to be executed after the module has been
created can be specified using the additional option -proc. For example, imagine you are working
in a medical project where you have to identify stereotactic markers in CT images of the head. Then
it might be a good idea to add a customized version of the LabelVoxel module to the popup menu,
which already defines appropriate material names and thresholds. This could be done by adding the
following command either in a new resource file in $AMIRA ROOT/share/resources or directly
in hxlattice.rc:

module -name "Stereotaxy" \
-primary "HxUniformScalarField3 HxStackedScalarField3" \
-check { ![$PRIMARY hasInterface HxLabelLattice3] } \
-category "Labelling" \
-class "HxLabelVoxel" \
-package "hxlattice" \
-proc { $this regions setValue "Exterior Bone Markers";

$this fire;
$this boundary01 setValue 150;
$this boundary12 setvalue 300 }

The variable $this used in the Tcl code above refers to the newly created module, i.e., to the La-
belVoxel module. Note, that the commands are executed before the module is connected to the source
object for which the popup menu was invoked. Some modules do some special initialization when
they are connected to a new input object. These initializations may overwrite values set using Tcl
commands defined by a custom -proc option. In such a case you can explicitly connect the module

Configuring Popup Menus 149

to the input object via the command sequence

$this data connect $PRIMARY;
$this fire;

Here the Tcl variable $PRIMARY refers to the input object. The same variable is also used in Tcl
expressions defined by a -check option, as described above.

Besides creating custom popup menu entries based on existing modules it is also possible to define
completely new entries which no nothing but executing Tcl commands. For example, we could add
a new submenu Edit to the popup menu of every amira object and put in the Hide, Remove, and
Duplicate commands here which are normally contained in the Edit menu of the amira main window.
This can be achieved in the following way:

module -name "Remove" \
-primary "HxObject" \
-proc { remove $source } \
-category "Edit"

module -name "Hide" \
-primary "HxObject" \
-proc { $source hideIcon } \
-category "Edit"

module -name "Duplicate" \
-primary "HxData" \
-proc { $source duplicate } \
-category "Edit"

Of course, it is also possible to execute an ordinary amira script or even an amira script object with a
-proc command.

150 Chapter 5: Scripting

Part II

amira Reference Manual

Chapter 6

Alphabetic Index of Modules

6.1 Access LargeDiskData

This kind of module is attached to a LargeDiskData object. provides an interface to select a subblock
of the large volumen which is stored on disk only.

You may select the volume either by typing in numbers to the ports or by using the blue dragger in the
viewer.

Additionally, it is possible to request a lower resolution of the data. Dependent on the file format other
resolutions are stored on disk and might be accessed rather fast or they are calculated on the fly which
might take some time.

After selecting a volume you might hit the (re)load button. An amira field object is created and filled
with the data from disk. You can now use all standard amira visualization techniques on this subblock.

Connections

Data [required]

Connection to the LargeDiskData object.

ROI [optional]

If a SelectRoi is connected it will define the subvolume to be loaded.

Ports

Info

Indicates the size of the block to be loaded.

BoxMin

The position of the lower corner of the block. Printed as a lattice index.

BoxSize

The size of the block to be loaded. The size is in lattice indices in the base resolution. The numbers
will not change if you select subsampling but the real size of the block to be loaded will change.
This is indicated in the Info port.

Options

Hides the dragger and/or enables subsampling.

Subsample

Type in the number of voxels to be averaged in each dimension.

DoIt

Load the block. If you snap the button you might change the selected volumen and an immediate
reload is started. This might be useful to easily explore a large volume.

6.2 AlignPrincipalAxes

This modules computes a rigid transformation for a triangulated surface, such that its principal axes are
aligned to a reference coordinate system. This can either be the standard basis in 3D or the principal
axes of a reference triangulated surface.

Connections

Model [required]

Model surface, that will be transformed.

Reference [optional]

Reference surface, whose principal axes will serve as a reference coordinate system.

154 Chapter 6: Alphabetic Index of Modules

Ports

Options

This port is only visible, when a reference surface is connected. For each possible solution (see
explanation below at Port Action), the root mean square distance is computed, when the option
’Optimize distance’ is chosen. The final transformation will be the one yielding the minimum
value.

Axis1

If no reference surface is connected, the principal axes with the largest moment of inertia will be
aligned to the axis specified at this port.

Axis2

If no reference surface is connected, the principal axes with the second largest moment of inertia
will be aligned to the axis specified at this port.

Action

The ’Go’ button starts the alignment. Since the principal axes are only computed up to their orien-
tation the model surface can subsequently be rotated 180 degree around each of its principal axes by
pressing one of the ’Rot’ buttons. The number corresponds the first, second or third largest moment
respectively.

Commands

getRefSystem

Prints the center of gravity, the axes of inertia, and the moments of inertia in the console.

6.3 AlignSlices

This module allows you to interactively align 2D slices of a 3D image stack. Alignment is performed
in a separate graphics window that is activated by pressing the Edit button of the module’s Action port.
In addition to this documentation, there is a separate tutorial about slice alignment contained in the
amira User’s Guide.

The align window displays by default two consecutive slices using different draw styles that can be
selected from the View menu. The two displayed slices can be chosen using the slice slider on the tool

AlignSlices 155

Figure 6.1: User interface of the align tool.

bar. Only one of these two slices is editable at a given time. The slice that can be edited is selectable
and it can be either the lower or the upper one. By dragging the editable slice using the left mouse
button, the slice will be translated. The slice can be rotated around its center by dragging it keeping the
middle mouse button pressed. At any time the numbers of the current slice pair as well as the quality
of the current alignment is displayed in the status bar at the bottom of the align window.

The documentation of the align tool is organized into the following sections (click on the links to open
a section):

• Tool bar - describes the buttons of the tool bar.

• Menu bar - describes all entries of the menu bar.

• Image viewer - describes how to align images interactively.

• Key bindings - provides a list of all hot keys.

6.3.1 Tool Bar

• Slice slider:
allows the user to change the slices that are displayed and can be edited. The displayed number

156 Chapter 6: Alphabetic Index of Modules

is the number of the editable slice. If this number is n and the editable slice is the upper one,
slices n and n-1 are shown. If the editable slice is the lower one, the displayed slices are slices n
and n+1.

• Zoom in button:
Increases the size of the image.

• Zoom out button:
Decreases the size of the image.

• Zoom label:
Shows the current zoom factor. E.g., a zoom of 2:1 means that 2 pixels on the screen correspond
to one pixel of the original data set (magnification), while 1:4 would mean, that four pixels of
the data set correspond to one pixel on the screen.

• Resize Button:
Opens the Resize Dialog which coordinates a resize of the output image-stack after the align-
ment procedure.

• Gravity centers button:
Sets the gravity centers alignment as the current alignment algorithm.

• Least squares button:
Sets the least squares alignment as the current alignment algorithm.

• Landmarks button:
Sets the landmarks alignment as the current alignment algorithm. When this is the active align

mode, the landmarks will be displayed for the current slices. If one of the other two algo-
rithms is selected, the landmarks are not shown. The selected algorithm is used when the
Align current slices or Align all slices button is pressed or the corresponding menu items are
chosen.

• Edge detection button:
Sets the edgedetection alignment as the current alignment algorithm.

• Edit slice mode:
Sets the active edit mode to be editing slices. This means that the editable slice can be trans-
lated/rotated.

• Edit landmarks mode:
Sets the active edit mode to be editing landmarks. When this is the active edit mode, the land-

marks that have been already defined can be moved/removed and new landmarks can be defined
(see Image Viewer section). This mode can be activated only only when Landmarks button is
ON (i.e. the active align mode is landmarks alignment).

• Lower slice:
This button forces the lower slice of the two displayed slices to become editable.

AlignSlices 157

• Upper slice:
This button forces the upper slice of the two displayed slices to be editable (default).
The editable slice can be translated and rotated and landmarks can be defined for it.

• Mirror button:
A mirroring transformation is applied to the editable slice.

• Align current slices:
The two currently displayed slices are automatically aligned using the selected algorithm.

• Align all slices:
All slices of the given 3D data are automatically aligned using the selected algorithm.

6.3.2 Resize options

The Resize options dialog allows the user to give the output images of the image stack a different size
than the input images. This is especially useful if the slices are rotated or moved during the alignment
procedure and some areas of single slices are outside the borders of the image stack. Beside this, a
background color for the new areas in the image can be determined. The following image shows the
dialog box.

The following parameters can be set using this dialog:

• Automatic size: If this feature is activated, a minimal image size is calculated which contains
all pixels of all slices. The dimensions and the position of the new bounding box are set that all
slices fit in this new bounding box.

• Imagewidth: Sets the width of the output image.

• Imageheight Sets the height of the output image.

• Show borders Shows the new image borders of the output image in the Slice Aligner.

• Background color The user can set the background color for the output image. The color can
be set as a gray value or as an RGB color, depending on the type of the input image. The current
background color is depicted in the right box.

6.3.3 Menu Bar

6.3.3.1 Options

• Undo: This menu provides an undo feature that undoes the last operation. Successive invocation
of Undo is possible, allowing to undo several operations. Each operation made manually or
automatically (translation, rotation, automatic alignment, landmarks editing) can be undone.
The maximum number of operations that can be undone is 100.

• Redo: This menu provides a redo feature that redoes the last undone operation. Successive
invocation of Redo is possible after several undo operations.

158 Chapter 6: Alphabetic Index of Modules

Figure 6.2: The Resize options window.

AlignSlices 159

• Reset all: Set the translations on X and Y and the rotation to 0 for all slices.

• Reset: Set the translations on X and Y and the rotation to 0 for the current slice (the slice that is
currently editable).

• Transform all: This is a toggle option. If the option is ON, the transformations made for the
editable slice are also made for all slices above when the editable slice is the upper one. That
means that the existing alignment of all other slices not imvolved in the current transformation
will be preserved.

• Fix reference: This option decides if a certain slice is used as a reference slice during the entire
alignment procedure. The reference slice is marked by a red tag in the Slice slider. The other
slices are to aligned according to this slice.

• Read transformation: Reads the AlignTransform and AlignPoints parameters from the input
data and sets the transformation values accordingly. This is useful to return to a previous saved
alignment. This can be seen as another kind of reset or undo.

• Save transformation: Save the actual translations, rotations and landmarks as parameters in
the input data.

• Close: Close the align tool.

6.3.3.2 View

• Zoom In: Increases the magnification factor of the image.

• Zoom Out: Decreases the magnification factor of the image.

• Red green: If this option is set, the two images are displayed in magenta and green, respectively.
If both images match perfectly a gray image is obtained. Color images are first converted to
grayscale and then transformed to magenta and green.

• Checkerboard: If this option is set, one image is displayed in the white parts of a checkerboard
pattern while the other image is displayed in the black parts. The size of the parts can be adjusted
in the Options dialog (see below).

• Average: If this option is set the, two images are averaged or blended in the viewer window.

• Invert: If this option is set, the lower image is inverted. The inverted image is then blended with
the upper image. If both images match perfectly a constant gray image is obtained. This option
is the default.

6.3.3.3 Align

This menu offers several alignment algorithms that can be selected in order to obtain the best align-
ment. The performance of each algorithm is dependent on the data that has to be aligned. There are
four alignment algorithms that can be chosen:

• Gravity centers - align gravity centers and principal axes

• Gray values - least squares algorithm based on gray values

160 Chapter 6: Alphabetic Index of Modules

Figure 6.3: The Least squares options window.

• Landmarks - align user-defined sets of landmarks

• Edge detection - align the outer bounds of the objects

The Options button opens a dialog window allowing you to define certain settings of the automatic
least squares algorithm and the edge detection algorithm. The button is only enabled when either the
gray values algorithm or the edge detection algorithm is selected.

The following parameters for the gray values algorithm can be set using this dialog:

• allow rotations - if this option is checked, rotations are considered during the alignment process.
By default this option is checked. Translations are always considered.

• max number of iterations - this is only intended to prevent an infinite loop.

• step size for translations - the step size used to search for better positions in X and Y. A small
step size, though in general may lead to more accurate results, also slows down alignment.

• step size for rotations - the step size used for rotations.

• Size of checkerboard - adjusts the size of the pattern if view mode is set to checkerboard.

• Scale factor - during the alignment procedure, the image can be downsampled for the first
iterationsteps so that a better result can be reached in a shorter time.

If the Edge detection algorithm is selected, the dialog window has the following appearance.

The parameters for the Edge detection algorithm can be set using this dialog:

AlignSlices 161

Figure 6.4: The Edgedetection options window.

• Matrix dimension This is the dimension of the matrix which scans the image and decides
whether a pixel belongs to the object or the background.

• Matrix percentage This percentage defines the amount of pixels in the surrounding of a pixel
which have to belong to the object to indicate that this pixel belongs likewise to the object. The
considered surrounding is defined by the matrix dimension.

• Matrix rastering This indicates if the surrounding should be rasterized. If so, the alignment is
done in a shorter time.

• Image rastering This decides if the image should be downsampled during the alignment pro-
cedure. This speeds up the alignment.

• Flipping This option indicates if a possible flipping of the images should be considered.

• Calculate a threshold This activates an automatic calculation of the threshold.

• Set threshold This allows the threshold to be set manually.

• Background property This must be set to describe the background of the image. According to
this setting, the threshold is interpreted as an upper or a lower boundary of gray values which
separate the object from the background.

• Angular stepsize This sets the size of the search algorithm’s angular steps (in degrees). A
higher value speeds up alignment at the cost of accuracy.

More information about the align methods and the appropriate settings for the methods can be found
in the alignment section.

162 Chapter 6: Alphabetic Index of Modules

6.3.4 Alignment Methods

The four different alignment methods are based on different concepts and thus the results may differ
significantly. However, not only the method decides on the result but the right settings for the method.
This page shall help to use the best alignment method and to use the right settings. Therefore, the
algorithms behind the methods are shortly described. This requires a little background knowledge
about mathematics.

• Gravity centers: This method calculates a center of gravity of the gray values and the orienta-
tion by means of the covariances of the image.

• Gray values: This method compares the single gray values of two images. The more pixels of
two compared slices have the same gray values, the better the alignment will be valued for this
method. That means that this method tries to move one slice and calculates the difference of the
gray values of both images. If the quality is getting higher after the movement, this method will
keep on changing the positions of to slices to each other until a maximum quality according to
the above mentioned feature will be reached.

• Landmarks: This method is the one that requires most user interaction. The user can define
some points, so called landmarks, which will be aligned to each other during the process. The
method is mostly one of the best because the user decides about on the alignment. The problem
of this method is that the user has to set all of these landmarks so that this method is very
time-intensive.

• Edge detection: This method is an outline-based method. It works in two steps. In the first
step the method tries to identify the object and clears the surrounding of any noise. If the object
is separated from the background, the outlines of the objects in two successive slices will be
compared and aligned with each other.

•

Two methods allow to define some settings. These settings often decide on the quality of an alignment
procedure. Sometimes, unintentional artifacts appear which result from wrong settings.

• Gray values: This is the first method that allows the user to set some parameters. As described
above, the alignment compares the gray values of two successive slices. The possible settings are
described in the Least-squares options window. The scale factor defines if an image is re-scaled
before the entire process. This means that the image will be resampled in a scale factor-times
coarser resolution. This speeds up the first steps of the process to find a first maximum. If this
factor is too large, the editable slice could flee out of the canvas. This is a normal behavior since
only points which overlap each other are considered for the calculation of the alignment quality,
i.e., if one image moves out of the canvas the quality will be calculated as one hundred percent.

• Edge detection: This method has several settings which determin quality and speed of the
alignment. As mentioned above, the alignment is divided into two phases. In the first phase,
the object must be separated from the background, and in the second phase the rotation of two
objects is calculated according to their outlines. The separation of image and background is

AlignSlices 163

achieved by using a matrix which decides according to a surrounding if one pixel belongs to
the object or the background. The size of the surrounding region is set by the first parameter.
The higher this value is, the slower the alignment procedure will be. If the background noise is
rather small, the matrix size can be set small in order to speed up the alignment procedure. If
an image has an high resolution, the image rastering can be set to value greater than one. This
speeds up the alignment procedure considerably. If the object has dis-symmetrical outlines, the
angle-step-size can be set on a higher value. This also speeds up the alignment procedure. If the
outlines are symmetrical, it is strongly recommended to set the step size to a small value.

6.3.4.1 Landmarks

The buttons of this menu are only active if Edit landmarks mode is selected. The buttons have the
following meaning:

• Add: set the shape of the mouse cursor to a black landmark and clicking on the slice a new
landmark is created.

• Remove: delete the selected landmark. This menu item is active only when a landmark is
selected and the number of landmarks is greater than 3.

6.3.4.2 Help

The help menu opens the help viewer with the documentation of the align tool.

6.3.5 Image Viewer

The Image Viewer represents the main part of the align tool. It allows to align the slices manually,
using the mouse and/or the keyboard. While two slices are displayed simultaneously, only one slice
can be edited at a time.

A slice can be translated over the other by keeping the left mouse button pressed and dragging the
slice. Also, the slice can be moved using the cursor keys (see Key Bindings section). The rotation can
be obtained by dragging the slice while keeping the middle mouse button pressed. All rotations are
made around the middle of the slice.

If the Transform all option is ON (Options menu), the actual alignment will be preserved for all pairs
of two consecutive slices (except the slices actually edited).

The Image Viewer alows to edit the landmarks. In order to edit the landmarks, the Edit landmarks
mode must be set.

A landmark can be selected by clicking inside the triangle that represents the landmark. Once selected,
a landmark can be moved, removed or deselected. The landmarks can be also selected consecutively,
by clicking anywhere on the slice (not on a landmark). After a so selected landmark has been moved,
the next landmark in the list can be selected in the same way.

164 Chapter 6: Alphabetic Index of Modules

In order to move a selected landmark, just click on the new position.

A selected landmark can be removed by choosing the Remove item of the Landmarks menu or pressing
the Del key. A landmark can be removed only if the number of landmarks defined for each slice is
greater than 2. The corresponding landmark will be removed from each slice so that the number of
landmarks is the same for each slice.

You can create a new landmark using the Landmark/Add menu or pressing the Ins key and clicking on
the desired position. A new landmark will be created for each slice.The creation of a new landmark
can be canceled by pressing Esc.

6.3.6 Key Bindings

• Changing the slice number
Space - Go to next slice
Backspace - Go to previous slice
Home - Go to first slice
End - Go to last slice

• Translating the editable slice
CursorUp - Translation one pixel up
CursorDown - Translation one pixel down
CursorLeft - Translation one pixel left
CursorRight - Translation one pixel right
Shift+CursorUp - Translation five pixels up
Shift+CursorDown - Translation five pixels down
Shift+CursorLeft - Translation five pixels left
Shift+CursorRight - Translation five pixels right

• Rotating the editable slice
Ctrl+CursorUp - 0.10 degree counter clockwise rotation
Ctrl+CursorDown - 0.10 degree clockwise rotation
Ctrl+Shift+CursorUp - 1.0 degree counter clockwise rotation
Ctrl+Shift+CursorDown - 1.0 degree clockwise rotation

• Changing the editable slice
1 - Set the editable slice to be the lower slice. While you hold the key down, only the lower
slice will be visible.
2 - Set the editable slice to be the upper slice. While you hold the key down, only the upper
slice will be visible.

• Changing the alignment algorithm
C - set the gravity centers alignment as current alignment algorithm.

AlignSlices 165

G - set the least squares alignment as current alignment algorithm.
L - set the landmarks alignment as current alignment algorithm.
E - set the edge detection alignment as current alignment algorithm.

• Editing landmarks
Insert Set the shape of the mouse cursor to a black landmark. Clicking on the slice a new
landmark is to be created.
Delete Delete the selected landmark. This takes effect only when the number of landmarks is
greater than 3.
Escape Pressing Escape if a landmark is selected causes this landmark to be deselected. Pressing
Escape after the Insert key was pressed, causes the insert operation to be aborted.

• Changing the edit mode
Escape - pressing Escape allows you to switch between editing slices mode and editing land-
marks mode. however this doesn’t happen if the current edit mode is editing landmarks and a
landmark is selected. In this case the landmark will be deselected. Pressing Escape once more
causes editing slices to become the new edit mode.

Connections

Data [required]

3D field for which the slices will be aligned. Currently, uniform Cartesian grids of type HxUniform-
ScalarField3, HxUniformStackedScalarField3, and HxUniformColorField3 are supported.

Reference [optional]

3D field from which the alignment informations can be read and transferred to the field that must
be aligned (port Data). The reference field must have the same number of slices and the same
dimensions as the data field.

Mask [optional]

An additional HxLabelLattice3 that can be connected in order to be used as mask during the align-
ment process.

Ports

Data window

This port allows the user to restrict the range of visible data values. Values below the lower bound
are mapped to black, while values above the upper bound are mapped to white. Only the values
between the two bounds are used by the gray value-based alignment algorithm. This port is only
active if a gray value image is used as input data.

166 Chapter 6: Alphabetic Index of Modules

Resample method

This port allows the user to decide which resample method will be used for the calculation of an
output image. The calculation takes place when the apply or the realign button from the Action port
is pressed. Two resample methods are possible:

• Preview: A very quick but not very precise method. It should only be used as solution
preview.

• High Quality: A much slower but very accurate interpolation method.

Action

Press the Edit button to open the align tool. Press the Resample button to create a new field according
to the transformations made in the align tool. The new field will have per default the dimensions of
the input image. The dimensions can be altered by the resize dialog. Press the Resample to Result
button to overwrite an attached result. If a labelfield is attached to the existing result, the labelfield
will also be transformed so that former labels will also fit after the align procedure.

Commands

performance

Computes the number of frames per second in the Image Viewer.

setSliceNumber n

Sets the current editable slice to be n.

setEditableSlice lower|upper

Of the two currently displayed slices, sets the editable slice to be the lower/upper one.

translate tx ty

Translates the currently editable slice by tx on the X axis, respectively by ty on the Y axis.

rotate phi

Rotates the currently editable slice by phi. Angle phi is considered to be in degrees and the rotation
is made counterclockwise.

setAlignMode 0|1|2|3
Changes the current alignment mode. The meaning of the parameter is 0 = principal axes alignment,
1 = least squares alignment, 2 = landmarks alignment and 3 = edge detection alignment.

setViewMode 0|1|2|3

Changes the display mode. The view modes are encoded as follows: 0 = magenta/green view, 1 =
checkerboard view, 2 = average view, 3 = invert view.

AlignSlices 167

align

Aligns the current slices pair.

alignAll

Aligns all slices.

setLandmark i k x y
Sets the landmark with index k of slice i to be the point (x,y).

edit

Shows the tool window (the same as the Edit button of the the Action port).

6.4 AlignSurfaces

This module computes a rigid transformation (6 degrees of freedom) to align two triangulated
surfaces. Several different alignment strategies are implemented:

• Minimization of the root mean square distance between the points of the model surface to cor-
responding points on the reference surface (often referred to as Procrustes method):
the corresponding points will be the closest points on the reference surface in the Euclidean
measure. The iteration of this process is called the iterative closest point algorithm (ICP). If
fixed correspondences have been pre-computed by some other method, these can be used alter-
natively.

• Alignment of the centers of mass: all nodes of the triangulations are assigned the same mass.

• Alignment of the principal axes of the inertia tensor: since the principal axes are defined modulo
orientation (see also AlignPrincipalAxes), the final solution is the one with the minimum root
mean square distance.

Connections

Data [required]

Surface to be transformed onto the reference.

Reference surface [required]

Reference surface to be aligned to.

Ports

Options

168 Chapter 6: Alphabetic Index of Modules

Offers the possibility to iterate the process of finding the closest points on the reference surface
(ICP) and to use pre-determined correspondences, if existent.

Stop

Stopping criteria for the ICP algorithm: either a given value for the root mean square distance
relative to its value in the first iteration, or a maximum number of iterations.

Align

Starts one of the three different alignment methods, as described above.

6.5 Animate

The Animate module can be connected to any other object to animate its visibility or to animate the
value of one of the following ports: PortFloatSlider, PortIntSlider, PortFloatTextN, or PortIntTextN.
The animate module provides a time port which can be used to set the value of one of these ports of
the other object. The time value is not used directly to set the other port’s value but is modified by a
user-defined expression. For example, if the time is running from 0 to 100 and you want to animate a
slice slider from 0 to 50, you have to use the expression t/2. More complicated expressions involving
functions such as sin or cos can be used as well. For a description of supported functions please refer
to the Arithmetic module.

Connections

Object [required]

Connection to the object containing the port to be animated.

Time [optional]

Optional connection to a time object. If the port is connected to a time object the time of that object
is used. In this way multiple modules with a time port can be synchronized.

Ports

Time

This slider allows you to set or animate the current time value. The time range and the increment
used for animation can be adjusted in the configure dialog which can be popped up using the right
mouse button.

Animate 169

Port

Option menu listing all ports of the connected object which can be animated. The selected port
actually will be animated. The special entry visible corresponds to the viewer mask rather than an
actual port.

Value

Use this text field to specify the expression used to compute the actual value of the port to be
animated. The expression can include two different variables, namely t denoting the current time
value, and u denoting the previous value of the port.

For the visible entry , the expression is interpreted as a boolean expression, where 0 means invisible,
while a number different from 0 means visible. You can use expressions like t>20 or ((t>5)
&& (t<15)) || (t>100).

Value2

If the port to be animated has multiple text fields one expression port will be shown for each text
field. If you don’t want to change the value of a particular text field, use the expression u, which is
the previous value of the port.

6.6 Annotation

This module displays a 2D text in the 3D viewer. Position and color of the text can be specified by the
user. This is useful for annotating snapshots. In order to create the module choose Annotation from
the main window’s Edit Create menu.

For color legends refer to the module Display Colormap.

Ports

Color

Text color. The color can be changed using the color editor, which is popped up when the color
button is clicked.

Options

170 Chapter 6: Alphabetic Index of Modules

If this toggle is off the annotation text is drawn inside a filled rectangle. The background color of
this rectangle can be set via the Tcl command setBackgroundColor.

Position type

Radio box defining whether the text position should be specified in absolute coordinates (screen
pixels) or in relative coordinates ranging from (0,0) in the lower left corner to (1,1) in the upper
right corner.

In both cases when the x coordinate is negative the right side of the text is placed relative to the right
side of the viewer. Likewise, if the y coordinate is negative the top side of the text is placed relative
to the top side of the viewer.

Absolute position

Text position in screen pixels.

Relative position

Text position in relative coordinates.

Text

The text to be displayed.

Commands

getFontSize

Returns the current font size.

setFontSize <points>

Changes the font size. The default font size is 14 points.

setBackgroundColor <color>

Sets the color of the background rectangle which is drawn when the transparent background toggle
is off.

6.7 AnonymizeImageStack

In the Parameters section of an image stack created from DICOM data the patient’s name may occur
at several locations:

AnonymizeImageStack 171

- in the parameter bundle DICOM-¿All, Parameter ’G0010-0010’
- in the parameter bundles DICOM-¿Slice..., Parameters ’Filename’ and ’Name’

Module AnonymizeImageStack creates a copy of the image stack and removes all occurences of the
patient’s name from its parameter section.

Connections

Data
This port should be connected to the image stack to be anonymized.

Ports

Action

The DoIt button initiates creation of the anonymized image stack.

6.8 Apply Transform

Every data object in amira can carry a transformation as described in Transformations. But only
the visualization of a field is changed not the representation in memory. That means if you scale a
field with the Transform Editor dimensions and voxelsize will be retained though the size seems to be
different on the screen. If you rotate a field the directions of the sampling planes will be still parallel
to the local axis but no longer parallel to the global axis. The module ApplyTransform tries to create a
new field in a way that it is displayed like the source field attached to the Data connection but without
transformation.

You can e.g., align one field to another and apply the transformation. Afterwards you can directly work
with the two fields without having to take into account any transformation.

There are two different ways to use the module:

• You can sample onto a given reference lattice.

• You can give a plane, e.g., an ObliqueSlice. The result is sampled in planes parallel to the given
plane.

Applying a transformation

Proceed as follows: Transform the field with the Transform Editor, the Registration module or any
other way that creates a transformation. If you’re satisfied with the transformation, attach an Apply-
Transform module to the field. Now you have to choose some options.

172 Chapter 6: Alphabetic Index of Modules

The Interpolation method:

• Nearest Neighbor chooses for every new voxel the value of the voxel in the source field nearest
to it.

• Standard linearily interpolates between the sourounding voxels.

• Lanczos is the slowest but most accurate method that tries to approximate a low pass filter that
is in accordance with the sampling theorem. If you have time and want to get the best result, use
this one.

The Mode:

• cropped: The new field has the same dimensions and size as the source field. It is adjusted to
contain as much as possible of the source field.

• extended: The new field’s size is adjusted to contain all of the original field. To do this, the
voxelsize or the dimensions have to be changed. If you select this mode the Preserve port gets
visible.

The Preserve port:

• Voxel Size: Adjust the result field’s dimensions in a way that it has the same voxelsize as the
source field. Warning: This may lead to huge dimensions.

• Dimensions: The result field will have the same dimensions as the source field.

After choosing the options hit DoIt and proceed.

Sampling onto a reference lattice

Connect the source field to Data. Connect the reference field to Reference. Choose an Interpolation
method. Hit DoIt and here we go.

Sampling parallel to a given plane

Connect the source field to Data. Connect a plane (e.g., ObliqueSlice) to Reference. Choose an
Interpolation method. Choose whether the result has the same dimensions (cropped) or the result is
extended to contain all of the source field. Hit DoIt and the result is created. The result will get a
transformation attached to in a way that the sampling planes are displayed parallel to the reference
plane. Use the Transform Editor if you want to get rid of the transformation.

Connections

Data [required]

The source field. The module operates on any regular 3D field with uniform coordinates and an
arbitrary number of data components per node.

Apply Transform 173

Reference [optional]

A regular field with uniform coordinates providing a reference lattice or a plane defining a sampling
direction.

Ports

Interpolation

The interpolation method that will be used.

Mode

The result can be cropped to have the same properties as the source or it will be extended to contain
all of the source field.

Preserve

If the result is extended should it keep Voxel Size or the Dimensions of the source.

Action

Proceed.

6.9 ArbitraryCut

This module defines a plane which can be positioned and oriented arbitrarily inside the bounding
box of a data object connected to port Data. Mostly, you will work with derived modules displaying
some kind of geometry inside the plane defined by this base class. Examples of derived modules are
ObliqueSlice or PlanarLIC.

However, this base class also serves as a background plane on which so-called overlay modules display
their geometry. Examples of overlay modules are the Isolines module, the Vectors module, or the
Intersect module. In fact, if you select an overlay module from a data object’s popup menu an instance
of ArbitaryCut called EmptyPlane will be created automatically.

You may also create an instance of ArbitaryCut by selecting Clipping Plane from the global Edit
Create menu. The module does not display useful geometric output by itself, but it can be used to
clip the output of any other module in amira. In order to perform clipping you first have to connect
port Data to the data object being investigated. Then you can simply click on the module’s clip button
located in the orange header block.

174 Chapter 6: Alphabetic Index of Modules

Connections

Data [required]

Connection to the data object from which the bounding box is taken.

Ports

Orientation

By clicking one of the three push buttons the plane’s orientation is reset to the xy-, xz-, or yz-plane,
respectively. The plane will be translated into the center of the bounding box.

Options

This port provides three toggle buttons. If toggle adjust view is active then the camera of the 3D
viewer will be reset whenever one of the orientation buttons is clicked.

If the rotate toggle is active then a virtual trackball is displayed. By picking and dragging the track-
ball you may change the orientation of the plane. Remember that the viewer must be in interaction
mode in order to do so. The ESC-key inside the viewer window toggles between navigation mode
and interaction mode. The trackball of the last active ArbitraryCut can also be turned on and off by
pressing the TAB-key inside the viewer window.

Finally, the immediate toggle determines whether derived modules and downstream modules receive
an update signal while the plane is being translated or rotated or not. This toggle might not always
be visible.

Translate

This port lets you translate the plane along its normal direction.

Commands

frame {0|1}
This command lets you turn on or off the orange frame indicating the intersection of the plane with
the bounding box of the data object connected to the data port.

setFrameColor <color>
Lets you change the color of the plane’s frame.

setFrameWidth <width>
Lets you change the width of the plane’s frame in pixels.

ArbitraryCut 175

getPlane

Returns 9 numbers specifying the current plane settings. The numbers comprise the x, y, and z-
coordinates of the plane’s origin, the u-vector, and the v-vector.

setPlane <origin uVec vVec>

Adjust position and orientation of the plane. The command expects 9 number in the same format as
returned by the getPlane command.

6.10 Arithmetic

The Arithmetic module performs calculations on up to three input data objects according to a user-
defined arithmetic expression. The result is stored in a new data object called Result. The calculations
are triggered by a DoIt button. The arithmetic expression is evaluated either on the grid of the first data
object (in case of regular, tetrahedral, or hexahedral grids) or on a regular 3D uniform grid for which
the number of points can be set by the Resolution port.

The module is able to process input fields with up to 4 different channels. Scalar input fields are
referenced by the variables A, B, and C. The values of multi-channel input fields are referenced for
example by Ax, Ay, Az (if input A is a vector field) or Br, Bg, Bb, Ba (if input B is an RGBA color
field).

In any case the expressions are evaluated per point, i.e., the result for a point (X,Y,Z) depends on input
values at the same point only. If the resulting object is based on a regular grid, grid indices I, J, or
K may also appear in the arithmetic expression. This means that for each grid point its associated
I, J, or K index value will be substituted in the arithmetic expression on evaluation. This is useful in
connection with comparison operators which produce a result of either zero or one. Computations may
be confined to a specific sub-grid this way.

An expression consists of variables and mathematical and logical operators. The syntax is basically
the same as for C expressions. The following variables are defined:

• A: The values of a scalar field at input A.

• B: The values of a scalar field at input B.

• C: The values of a scalar field at input C.

• Ar: The real part of a complex scalar field at input A.

• Ai: The imaginary part of a complex scalar field at input A.

• Ax: The x component of a vector field at input A.

• Ay: The y component of a vector field at input A.

• Az: The z component of a vector field at input A.

• Ar: The red component of a color field at input A.

• Ag: The green component of a color field at input A.

176 Chapter 6: Alphabetic Index of Modules

• Ab: The blue component of a color field at input A.

• Aa: The alpha component of a color field at input A.

• The same variables as above for fields at input B or C, but with A replaced by B or C.

• I: First index of a point (i,j,k) in a regular grid, or index of a point in an unstructured grid.

• J: Second index of a point (i,j,k) in a regular grid, undefined for unstructured grids.

• K: Third index of a point (i,j,k) in a regular grid, undefined for unstructured grids.

• X: The x-coordinate of the current point.

• Y: The y-coordinate of the current point.

• Z: The z-coordinate of the current point.

• R: The radius r =
√

X2 + Y 2 + Z2.

This is a list of available mathematical and logical operators:

• + - / * The basic mathematical operators.

• ! Unary negation.

• - Unary minus.

• % The modulo operator.

• > < <= >= != == The comparison operators greater, less, less or equal, greater or equal,
not equal, and equal. If the comparison is true the result is 1, otherwise it is 0.

• && || ˆ The logical operators and, or, and xor. An non-zero operand is interpreted as true,
while a zero operand is false. The result is either 1 (true) or 0 (false).

There are also some builtin functions:

• pow(x,a) Power function. Note that there is no power operator (the ˆoperator exists but
means logical xor).

• sin(x) cos(x) tan(x) Trigonometric functions.

• asin(x) acos(x) atan(x) Inverse trigonometric functions.

• sqrt(x) Square root.

• ln(x) exp(x) Logarithm and exponent.

• rand() Pseudo-random variable uniformly distributed between 0 and 1.

• gauss() Pseudo-random variable with Gaussian distribution (mean value 0, standard devia-
tion 1).

For better understanding some examples of how to use the Arithmetic module follow:

Expression: A
The result is a copy of input object A. If A is defined on a tetrahedral or hexahedral grid and the result

Arithmetic 177

type is set to regular together with an appropriate resolution, the expression leads to a conversion from
an unstructured grid to a structured regular grid. The same trick can also be used to resample a regular
field with stacked coordinates onto a uniform grid.

Expression: A-Bl
The result is the difference between input objects A and B. This expression is sometimes useful in
order to compare to different data sets.

Expression: 255*(A>127)
Simple thresholding: For every value of A the result is set to 255 if the value is greater than 127.
Otherwise the result is 0.

Expression: A*(B>0)
Simple masking operation: If B is zero, the result is also set to zero. Otherwise, the result is set to A.
For example, if A is a 3D image and B is a corresponding label field, the exterior parts of the object
(where B is zero) are masked out by this expression.

Connections

InputA [required]

The input may either be a 3D data field with an arbitrary number of channels or a tetrahedral or
hexahedral grid. The primitive data type of the result will be the same as this input, e.g., if input A
contains bytes the result will also contain bytes.

InputB [optional]

Second input, can be any 3D data field.

InputC [optional]

Third input, can be any 3D data field.

Ports

Result channels

This port determines the number of channels of the result. On default, the result has the same
number of channels as input A. Alternatively, you can specify that the result should have 2 channels
(complex scalar field), 3 channels (vector field), or 4 channels (RGBA color field).

Expr

This port specifies the mathematical expression used to compute the result. If the result has more
than one channel, more expression ports will be shown.

178 Chapter 6: Alphabetic Index of Modules

Result type

With this radio box the grid type of the result can be set either to either the same as input A or to a
regular grid with uniform coordinates.

Resolution

If port Result Type is set to regular the resolution of the regular field to be generated is set to the
values given here.

MinBox

Port to set the minimum x-, y-, z-coordinates of a bounding box around the output data object, if
one or more input data objects are connected the bounding box of the first input data object is also
taken as output bounding box.

MaxBox

Port to set maximum x-, y-, z-coordinates of the bounding box around the output data object.

Action

Pushing this button triggers the computation.

6.11 Axis

The Axis module displays a coordinate frame. If the module is attached to an input data object, the
coordinate frame is adapted to the bounding box of the input object. Otherwise, global axes centered
at the origin of the world coordinate system are displayed. For convenience the View menu of the main
window contains a toggle button labelled GlobalAxis. Activating this toggle automatically creates an
Axis module in the object pool.

Connections

Data [optional]

Data object the axes should be adapted to.

Axis 179

Ports

Axis

This port lets you select for which direction axes should be drawn.

Options

This port provides three toggles: If arrows is set arrows are drawn at the top of each axis. If text
is set labeled ticks are drawn indicating the coordinate values. If grid is set a coordinate raster is
drawn between every pair of visible axes.

Thickness

Lets you adjust the thickness of the axes.

Colors

Provides buttons for changing the colors of different parts of the geometry. On default, the x-, y-,
and z-axes are drawn in red, green, and blue, respectively.

Commands

getFontName

Returns the name of the text font. Default is Helvetica.

setFontName <name>

Lets you change the text font.

getFontSize
Returns the size of the text font. Default is 10 points.

setFontSize <size>
Lets you change the size of the text font.

getBoundingBox
Returns the bounding box of the volume enclosed by the axes.

setBoundingBox <xmin> <xmax> <ymin> <ymax> <zmin> <zmax>
Lets you change the bounding box of the axis module. Once the bounding box has been set au-
tomatically, the box will not be updated automatically anymore, unless the setBoundingBox
command is issued again with no arguments.

180 Chapter 6: Alphabetic Index of Modules

6.12 BoundaryConditions

The Boundary Conditions module visualizes boundary conditions defined in a tetrahedral grid for a
finite elements simulation.

Visible faces are stored in an internal buffer similar to the GridVolume module. Likewise, the selection
domain can be restricted interactively by adjusting a selection box. Ctrl-clicking on a face makes it
invisible.

In Amira there are predefined boundary condition ids with special meanings. The meaning of an id
depends on the type of simulation to be performed on the grid (E-field or temperature simulation).

• predefined boundary condition ids for E-field simulation

id 1: outer boundary (’open’ boundary conditions)

id 11-59: antenna triangles (metallic boundary conditions)

id 61-99: triangles of antenna junctions

• predefined boundary condition ids for temperature simulation

id 1: predefined temperature 37◦C (Dirichlet condition)

id 2: insulating surface (Neumann condition)

id 3: boundary to water bolus (Cauchy condition)

id 5: boundary to air (Cauchy condition)

Connections

Data [required]

The tetrahedral grid to be visualized.

Ports

Bound.cond.id

This port provides a menu where all boundary condition ids occuring in the input grid are listed.
Faces belonging to the selected id are displayed using a red (highlighted) wireframe in the viewer.
You may crop the faces by turning the viewer into interactive mode and move the green handles of
the selection box. Only the faces inside the bounding box can be added to the buffer.

Buffer

The Buffer buttons give you some control of the internal face buffer of the BoundaryConditions
module. Only the faces present in the buffer are displayed according to the current drawing style.
The Add button adds the highlighted faces to the buffer. The Remove button removes highlighted

BoundaryConditions 181

faces from the buffer. The Clear button removes all faces from the buffer. The Hide button deselects
all faces but does not change the buffer.

Draw Style

This option menu lets you select between different drawing styles:

• Outlined: The faces are shown together with their edges.

• Shaded: The faces are shown.

• Lines: The edges of the faces are rendered as a wireframe.

• Flat: The edges of the faces are rendered as a wireframe without lighting.

• Points: Only the vertices of the faces are rendered as points.

6.13 BoundingBox

The Bounding Box module can be connected to any spatial data object in order to visualize its bounding
box. The bounding box of a data object encloses its geometrical domain. More precisely, it is obtained
by determining the minimum and maximum coordinates in x-, y-, and z-direction.

Connections

Data [required]

Any spatial data object.

Ports

Text

Shows or hides the coordinates of the lower left front and upper right back corner of the box.

6.14 CastField

This is a computational module that allows you to change the primitive data type of a regular 3D scalar
field or of an RGBA color field. A new scalar field will be created having the same dimensions and the
same coordinates as the incoming one, but the data values will be shifted, scaled, and casted to a new
data type.

182 Chapter 6: Alphabetic Index of Modules

As an additional feature, CastField is also able to convert a uniform scalar field of bytes into a
label field, which is commonly used to store segmentation results in amira. For each value or la-
bel occuring in the incoming field a corresponding material will be created. Material colors may be
defined via an optional colormap.

Connections

Data [required]

The scalar field or color field to be converted.

Colormap [optional]

Optional colormap specifying material colors if a uniform scalar field of bytes is to be converted
into a label field. Only visible, if LabelField has been selected for output.

Ports

Info

Shows how the input data will be mapped during conversion. If no clipping occurs the input range
covers all values between the minimum and maximum data value of the incoming scalar field. This
range will be mapped as indicated. If clipping occurs, the minimum or maximum value of the output
range or both will be equal to the smallest respectively biggest value which can be represented by
the selected output data type. In this case the input range shows which values correspond to these
limits. Data values below the lower limit or above the upper limit will be clamped.

Output Datatype

Lets you select the primitive data type of the output field. The item LabelField is special. If this is
selected the incoming scalar field is converted into a label field.

Scaling

Defines a linear transformation which is applied before the data values are clamped and
casted to the output datatype. The transformation is performed as follows: output =
SCALE*(input+OFFSET)
If you want to convert data with a range inmin ... inmax into a range outmin ...
outmax, SCALE and OFFSET are determined like this: SCALE = (outmax - outmin) /
(inmax - inmin) and OFFSET = outmin / SCALE - inmin

Options

CastField 183

This port is only shown if you want to convert the incoming scalar field into a label field. If option
clean labels is set then the materials found in the input data set will be relabeled so that the first
material is 0, the second is 1, and so on. If clean labels is not set then the resulting label field will
contain exactly 256 materials and no check is performed if a material actually can be found.

Colormap

Port to select a colormap.

Color Channel

This option menu will only be shown if an RGBA color field is to be converted. It allows you to
specify which channel of the color field should be regarded. In addition to the four RGBA channels
also Gray and Alpha*Gray can be selected. The gray channel is computed on-the-fly from the RGB
values of the color field according to the NTSC formula, i.e. I=.3*R+.59*G+.11*B.

Action

Start data conversion.

6.15 ChannelWorks

This module allows to convert between scalar and vector fields. You can e.g., combine three scalar
fields into one vector field, or extract one of the six channels of a complex valued vector field to obtain
a scalar field.

Connections

Input1 [required]

Connect to some regular field (e.g., a uniform vector field, or a uniform scalar field or 3D image
volume).

Input2 [optional]

Optional second input, which accepts the same data types as the first input.

Input3 [optional]

Optional third input, which accepts the same data types as the first input.

184 Chapter 6: Alphabetic Index of Modules

Ports

Output

Select the desired output type: scalar field (1 channel), complex valued scalar field (2 channels),
vector field (3 channels), color field (4 channels) or complex vector field (6 channels).

Channel 1

Select which of the input channels is used as first output channel.

Channel 2

Select which of the input channels is used as second output channel. This port is only present if the
output has more than one channel.

Channel 3

Select which of the input channels is used as third output channel. This port is only present if the
output has more than two channels.

Channel 4

Select which of the input channels is used as fourth output channel. This port is only present if the
output has more than three channels.

Channel 5

Select which of the input channels is used as fifth output channel. This port is only present if the
output has six channels.

Channel 6

Select which of the input channels is used as sixth output channel. This port is only present if the
output has six channels.

Action

Start computation.

ChannelWorks 185

6.16 ClippingPlane

The clipping plane module is an instance of the Arbitrary Cut module (for a description see there). It
can be created by selecting Clipping Plane from the main window’s Edit Create menu.

6.17 ClusterDiff

This module displays displacement vectors between corresponding points in two different data objects
of type Cluster. The displacement vectors may be colored according to their lenghts or according
to any data variable defined in one of the input clusters. Like in the ClusterView module subsets of
points may be selected by drawing a contour in the viewer window or by specifying an arithmetic filter
expression.

Connections

Data
The first point cluster.

Data2
The second point cluster. Initially, this port will not be connected to any data set. In order to use the
module you have to estabilish a connection manually by activating the popup menu over the tiny
rectangle of the module’s icon.

Colormap
The colormap used for pseudo-coloring. The alpha channel of the colormap will be correctly taken
into account unless the option opaque has been selected. However, note that many default colormaps
are completly opaque. In this case, use the colormap editor to make them transparent.

Ports

Colormap

Color

An option menu containing all data variables which can be used for pseudo-coloring. The data
variables’ symbols are displayed in brackets behind the names.

186 Chapter 6: Alphabetic Index of Modules

Options

The following two options can be set:

Opaque influences the way how the displacement vectors are drawn. On default, anti-aliased semi-
transparent lines are rendered. If the opaque option is set transparencies will be ignored. Opaque
rendering is faster but gives less nice results. In addition, you can’t supress certain lines my making
them more transparent.

Filter causes a text field to be shown, which can be used to define an arithmetic expression for
selecting a subset of points.

Filter

This port allows you define an arithmetic filter expression. The filter expression is evaluated for
every pair of points. A displacement vector will only be drawn if for both points a non-zero result
is obtained. The filter expression may contain any arithemic and logical operator defined in the C
programming language. All symbols listed in the color menu may be used in the filter expression.
For example, in order select all vectors shorter than 0.2 and with an energy larger than -4 use
(L < 0.2) && (E > −4).

Action

The button labeled Export A creates a new point cluster containing all selected points of the first
input cluster together with the corresponding data variables. Similarly, the button labeled Export B
creates a new point cluster containing all selected points of the second input cluster.

After pressing the Select button you may draw a contour in the viewer window in order to deselect
certain points. On default, all points inside the contour are deselected. If you keep the Ctrl-key
pressed down when starting to draw the contour all points outside the contour are deselected. Using
the Alt-key allows you to define straight-line segments.

The Reset button causes all points matching the filter expression to be shown again.

The Undo button undoes the effect of the last interactive contour selection operation.

Commands

setLineWidth <width>
Specifies the width of the displacement vectors. On default, the vectors are one pixel wide.

ClusterDiff 187

setLineSmooth {0|1}
Enables or disables line smoothing. On default, smoothing is on unless the opaque option has been
selected.

6.18 ClusterGrep

This module identifies common points in two different data objects of type HxCluster and copies them
into new cluster objects. Using this module you may for example extract the same set of points from
multiple clusters representing different time steps in a dynamic simulation.

Connections

A
The first point cluster.

B
The second point cluster. Initially, this port will not be connected to any data set. In order to use the
module you have to estabilish a connection manually by activating the popup menu over the tiny
rectangle of the module’s icon.

Ports

Points

This port displays the number of points in the two input clusters. If both input ports are connected
also the number of common points is displayed.

Mode

This port provides two radiobox buttons allowing you to specify which points are copied into the
output clusters. If inclusion is selected only common points are copied. If exclusion is selected only
points not present in the other cluster are copied.

Action

188 Chapter 6: Alphabetic Index of Modules

Button Export A copies points from the first input cluster together with associated data values into
a new cluster. Button Export B copies points from the second input cluster together with associated
data values into a new cluster.

6.19 ClusterSample

This module converts a set of points with associated data values into a uniform scalar field. The
conversion is performed by determining for each node of the uniform grid the nearest point of the
point set. The data value of that point will be taken at the grid node. The input data object must be of
type Cluster.

Connections

Data
Point cluster to be processed.

Ports

Variable

Option menu determining which variable should be converted into an uniform scalar field.

Resolution

This port provides three text field specifying the resolution of the resulting scalar field in x-, y-, and
z-direction. The default resolution is chosen so that a sufficiently high sampling rate is obtained
provided the input points are distributed homogeneously.

Action

Starts the computation.

6.20 ClusterView

This module visualizes data objects of type Cluster. The vertices of the cluster may be rendered using
semi-transparent points, or using textured plates. Both, points and plates may be colored according
to any data variable defined in the cluster. Vertices of the cluster may be selected or deselected by
drawing a contour in the viewer window or by specifying an arithmetic filter expression. Finally, it

ClusterSample 189

is possible to display bonds between neighbouring points. This is useful for example if the points
represent atoms in a crystal lattice.

In plates mode (see below) individual points may be deselected by shift-clicking them. Clicking them
without the shift-key pressed causes their id to be printed in the console window.

Connections

Data
The point cluster to be visualized.

Colormap

The colormap used for pseudo-coloring. The alpha channel of the colormap will be correctly taken
into account unless the option opaque has been selected. However, note that many default colormaps
are completly opaque. In this case, use the colormap editor to make them transparent.

Ports

Color

An option menu containing all data variables which can be used for pseudo-coloring. The data
variables’ symbols are displayed in brackets behind the names.

Options

The following four options can be set:

Plates activates the textured plates mode. If this mode is active each selected vertex is represented
by a little sphere. For large numbers of points a conisderably amount of time may be required
each time new colors are set. On default, the plates mode is deactivated. Instead, simple points are
rendered. The point size is constant irresectively of the distance of a point from the camera.

Filter causes a text field to be shown, which can be used to define an arithmetic expression for
selecting a subset of points.

Opaque influences the way how point primitives are drawn. On default, anti-aliased semi-
transparent points are rendered. If the opaque option is set transparencies will be ignored. Opaque
rendering is faster but gives less nice results. In addition, you can’t supress certain points my making
them more transparent.

Bonds enables the display of bonds between neighbouring points. If necessary, connectivity infor-
mation is computed automatically. This may take some time, especially for big data sets.

190 Chapter 6: Alphabetic Index of Modules

Filter

This port allows you define an arithmetic filter expression. The filter expression is evaluated for
every point. Only points for which a non-zero result is obtained are drawn. The filter expression may
contain any arithemic and logical operator defined in the C programming language. All symbols
listed in the color menu may be used in the filter expression. In addition, the symbols x, y, and z are
defined. These symbol indicate the coordinates of a 3D point. For example, to select all points with
positive x-coordinates and with an energy

Point size

Specifies the point size in pixels. Only visible if point mode is activated, i.e., if no spheres are
shown.

Sphere scale

Allows you to adjust the size of spheres shown if option plates has been selected. The default sphere
radius is computed from the bounding box of the data set.

Action

The Export button creates a new point cluster containing all selected points of the input cluster
together with the corresponding data variables.

After pressing the Select button you may draw a contour in the viewer window in order to deselect
certain points. On default, all points inside the contour are deselected. If you keep the Ctrl-key
pressed down when starting to draw the contour all points outside the contour are deselected. Using
the Alt-key allows you to define straight-line segments. In order to be visible a point must pass the
filter test (see above) and the contour selection test. Both options are independent of each other, i.e.,
if you change the filter the current contour selection remains valid.

The Reset button resets contour selection mode. All points passing the filter test become visible.

The Undo button undoes the effect of the last interactive contour selection operation.

Commands
setBondColor <color>

Specifies the color used for drawing bonds between neighbouring points. The color may be specified
by either an RGB triple in range 0...1 or by a common X11 color name, e.g., red or blue.

setBondWidth <width>

This command allows you to change the width of the lines representing the bonds between neigh-
bouring points. On default, lines are drawn one pixel wide.

ClusterView 191

6.21 Color Combine

This module combines up to three source fields into an RGBA color field. The resulting field has the
same dimensions as the field connected to source1. Therefore it is imperative that there is a source1.
Color Combine connects to color fields, scalar fields and scalar fields with a colormap. The relative
scale of the input fields is determined by their bounding boxes. The module supports three different
ways of merging the input data. ”Average” is the simple geometrical average of the inputs. ”Add &
Clamp” adds the values, making sure they do not exceed 255. ”Alpha Weighted” weights the different
inputs according to their alpha values, i.e. inputs with a large alpha value become more prominent
in the resulting field. If all connected source fields are scalar byte fields of the same dimensions the
module offers two more options: ”colormaps”, which does exactly the same as the procedures above,
yet implemented in a much more efficient way, and ”RGB planes”, which interprets source1, source2
and source3 as the R, G and B values of the resultfield, respectively.

Connections

Source1 [required]

A scalar or color field. This one determines the size of the result field.

Source2 [optional]

Another scalar or color field.

Source3 [optional]

And yet another one.

Colormap1 [optional]

The colormap for source field 1.

Colormap2 [optional]

The colormap for source field 2.

Colormap3 [optional]

The colormap for source field 3.

Ports

Colormap1

Colormap input port for source field1.

Colormap2

Colormap input port for source field2.

192 Chapter 6: Alphabetic Index of Modules

Colormap3

Colormap input port for source field3.

Mode

This option menu lets you choose the combining algorithm. The choices are: geometrical average,
simple addition and a addition weighted in relation to the corresponding alpha values. This port is
only visible, if Colormode is set to ”colormaps”.

ColorMode

This port is only visible if all source fields are of equal dimensions and if they are all byte fields.
It means that faster algorithms are now in use and offers the special choice ”RGB planes”, which
makes source1, source2 and source3 the R, G, B compoment of the result, respectively.

Action

Pushing this button triggers the field computation.

6.22 Colorwash

The Colorwash module helps you to visualize two scalar fields in combination, e.g., medical CT data
and a dose distribution. The module is attached to an OrthoSlice module visualizing the first field, e.g.,
medical CT data. The image of the OrthoSlice is modulated so that it also encodes the second field,
e.g., a dose distribution. The standard modulation technique is to multiply color into an underlying
grey scale image. This explains the name of the module.

In order to use the module first select the scalar field to be colorwashed, e.g., a dose distribution.
Then choose Colorwash from the pop up menu of an existing OrthoSlice modules. The new Color-
wash module automatically connects to the selected scalar field. Alternatively, of course you can also
connect the Data port of the module by hand.

Connections

Data [required]

The 3D scalar field to be colorwashed.

Module [required]

Connection to the underlying OrthoSlice module.

Colorwash 193

Colormap [required]

Connection to a Colormap.

Ports

Fusion Method

Specifies how the underlying OrthoSlice image is modulated. In any case the scalar field connected
to the Data port is first mapped to a color image using the colormap connected to the Colormap
port. This color image is then combined with the OrthoSlice background. The following modes are
supported:

Multiply: The colors (scaled to the range 0...1) are multiplied. A colormap containing bright colors
or white should be used, such as amira’s temperature.icol. Click here for an example.

Add: The colors (scaled to the range 0...1) are added and clamped. Both the background image and
the colormap should not be too bright in order to avoid overflows.

WeightedSum: The background image and the color image are blended using a weight factor which
can be adjusted in a separate port (see below). If the weight factor is 0.5 the two images are just
averaged.

MagicLens: A checkerboard pattern is generated, displaying the two images in the different squares.
The square size can be adjusted in a separate port (see below).

Overlay: In this mode a data range can be specified. Inside this range the background image is
replaced by the color image.

AlphaBlending: The background image and the color image are blended depending on the alpha
values stored in the colormap. If the colormap contains no semi-transparent values at all, opacity is
computed from the luminance of the color values.

WeightFactor

Interpolation factor used in WeightedSum mode.

LenseWidth

Width of the checkerboard tiles in MagicLense mode.

OverlayRange

Range of data values where the overlay image replaces the background in Overlay mode.

194 Chapter 6: Alphabetic Index of Modules

Commands

setNearestNeighbor
Enables nearest neighbor interpolation for regular scalar fields. On default regular fields are inter-
polated trilinearly, except for label fields, which are evaluated using nearest neighbor interpolation
in any case.

6.23 CombineLandmarks

This module merges an arbitrary number of vertex set objects into a single landmark set.

Connections

Data [required]

Accepts a vertex set object. As soon as this port gets connected, an additional source port will be
created. This allows to merge a practically unlimited number of data objects.

Source2 [optional]

See above.

Ports

Unify sets

If this option is chosen, the resulting landmark set will contain only one set of landmarks, i.e., all
vertices will be added to the same set. Otherwise, the vertices of the different input objects will be
added to different sets. In order to ensure that all sets have the same number of markers the input
object with the maximum number of vertices is determined and all other sets are filled with (0,0,0)
if necessary.

Action

Starts computation.

6.24 CompareLatticeData

This module takes to regular fields with the same dimensions and the same number of data variables
per voxel as input and computes the average difference per voxel between both. In addition, a new
field with the point-wise difference of both inputs can be generated.

CombineLandmarks 195

Connections

InputA [required]

A 3D regular field. Any coordinate type, primitive data type, or number of data values per voxel are
accepted.

InputB [required]

A 3D regular field with the same dimensions and the same number of data values per voxel as input
A.

Ports

Average error per voxel

Displays the difference between the two input data sets.

Options

If this toggle is set a new field with the point-wise difference between both input data sets is created.

Action

Starts computation.

6.25 ComponentField

This class is a special data object which helps you to analyze uniform complex scalar fields. The
class itself is a uniform real scalar field. However, it can be attached to a complex scalar field like
an ordinary display module. The component field provides an option menu allowing you to select
which real quantity should be computed from the complex input values. These real quantities may be
visualized using standard modules like OrthoSlice, Isosurface, or Voltex.

Connections

ComplexField [required]

Complex scalar field for which a real quantity should be computed.

196 Chapter 6: Alphabetic Index of Modules

Ports

Component Field

Specifies the real quantity to be computed. Possible choices are Real Part, Imaginary Part, Magni-
tude, and Phase. The phase is defined in radians ranging from −π to π.

6.26 ComputeContours

This module compute contours for a 3D label set using 2D cutting planes orthogonal to the selected
axis (x,y or z). There is one cutting plane per each slice of the set; the plane has the same coordinate
as the slice. If the labeled set contains subvoxel accuracy informations (weights) the contours can be
computed using this information too (this is an option and by default is on). It is possible to compute
only the contours that separate one certain material; this can be done by selecting a material from a
menu. The default settings compute contours between all the materials.

Connections

Data [required]

The label set to extract contours from.

Ports
Orientation

Controls the direction used for contours computing. The cutting planes will be orthogonal to this
axis. For example, if z axis is selected, all the contours will be contained in xy planes.

Options

There is only one check button which controls the use of subvoxel accuracy information, if present.

Materials

Selects a material; only contours separating this material from others will be computed. By default,
all the materials and implicitly all the contours are considered.

Action

Triggers the computation.

ComputeContours 197

6.27 ConePlot

ConePlot is a display module that can be attached to a vector field. It visualizes scalar and complex
vector fields by colored objects (cones) pointing in the direction of the local flow. The cones can be
animated to generate a sequence of cones ”walking” through the vector field.

The module features SelectRoi, Colorfields, and arbitrary shapes to be displayed instead of cones.

The module can also generate a density based on the cone positions over time. This can be used with
for volume rendering.
ConePlot setGhostDims 30 30 30
ConePlot generateGhost
The module uses a Gaussian kernel with a variance of a tenth of the maximum bounding box size of
the volume. This options is computationally very expensive.

The module also exports the path of the cones as a LineSet. To generate the LineSet, call:
ConePlot saveAsLineSet
in the amira console window. The LineSet is computed with an data entry per LineSet point which
represent the magnitude of the vector at this position.

ConePlot uses the OpenInventor render caching. All animation steps are computed beforehand and
then played back by making the appropriate parts of the scene visible. This technique requires little
CPU computations but larger amounts of memory and a fast graphics card. Notice that the first pass
through the animation may be slow but subsequently render passes speed up.

Connections

Data [required]

The 3D vector field to be visualized. It can be either 3 or 6 floats per voxel. This module works
therefore with arbitrary grid topologies by sampling them uniformly.

Colormap [optional]

Port to connect a colormap object. The color is computed from the magnitude of the vectors.

Animate [optional]

Attach a Time object to control the Animate slider. Please make sure that the range of the time
slider is set to integers and that 0 is within that range.

ROI [optional]

Connect a region of interest to the module and the cones will only be generated inside this region.
This helps in exploring complicated vector fields.

Colorfield [optional]

Instead of the vector field applied, the module will use a second scalar field to color the cones.

198 Chapter 6: Alphabetic Index of Modules

Shape data [optional]

Supply a custom shape to be replicated instead of cones. Basically any geometry displayed in Amira
can be used. Be careful not to use very complex objects because the number of triangles used in
this case can be a limiting factor for the speed of the animation.

Ports

Resolution

Provides three text inputs defining the resolution of the regular array of cones in the local x- y- and
z-direction. The larger these values are, the more cones are displayed.

Colormap

Port to select a colormap. The color is computed from the magnitude of the vectors.

Complex phase angle

This port will only be visible if a complex-valued vector field is connected to the module. It provides
a phase slider controlling which part of the complex 3D vectors is visualized by the arrows.

y(t) = cos(phase)Re(x(t)) + sin(phase)Imag(x(t)) (6.1)

A value of 0 degree corresponds to the real part, while a value of 180 degrees corresponds to the
imaginary part. The display can be animated with respect to the phase by the cycle button. This
way polarization properties of the field can be revealed or wave phenomena become visible.

Threshold

Any cone is removed from display which would be placed on a position with a vector length smaller
than this threshold. Using this option you can ”thin-out” parts of the volume, e.g., regions which
would contain cones that never move.

Options

This port provides the following toggle options.

ConePlot 199

Animation: If this option is set, then two additional ports are displayed. The Time port allows you
to set a time frame (from −m > 0 to n frames). The Step size port allows you to set the time
between successive time steps. Currently we use an Euler integration. The smaller the step size, the
more accurate the flow field is sampled.

Show All: Shows all cones in the current animation. When switching on this mode, there is no need
for animations because the animation is done by switching cones on and off.

Customize Cones: You can change the height and the bottom radius of all cones.

BlendIn: If this option is set, the size of the cones is increased or decreased at the start or end point
of the animation. This behavior generates nicer graphics for continuous animations especially in
the case of ConesPerStream > 1.

Step Size

The current implementation uses Euler integration and this defines the step size calculated by

x(t + ∆t) = x(t) + ∆t · v(x(t), t),

where x(t) is the position and v(t) the velocity at time t. Please be careful to not work on stiff flow
fields using this method. In general, small values result in higher accuracy and smaller path length
of the cones.

If you set the value of ConesPerStream to > 1, more than one cone is displayed at a time. Together
with the loop mode of the time slider and the BlendIn option set, this creates continuous animations.

Animate

This time slider allows you to start and stop animations. If you right-click in the associated text
window you can switch to loop mode which generates an infinitly long animation.

The range of the slider must be set to integer numbers, For example: 0 . . . 50 is interpreted as 50
time steps for the forward integration, or −30 . . . 30 is interpreted as 30 steps in both forward and
backward directions. The modules makes sure that the increment is always 1.

Height

For cones this changes their height. If another shape is connected to the module, the port controls
the global scaling of the shape.

200 Chapter 6: Alphabetic Index of Modules

Bottom radius

For cones this changes the radius of their base circle.

DoIt

Recomputes the animation or the single plot.

6.28 ConnectedComponents

This module searches connected regions in a 3D image volume. The regions are detected based on
thresholding, i.e., a region is a set of adjacent voxels with intensity values lying inside a user-defined
range. The module is useful for counting cells on a dark background.

Connections

Data [required]

Image dataset to be analyzed. Only byte fields are supported.

Ports

Info

After hitting DoIt, this port will display the number of detected regions, the volume of the smallest
and the largest region, and the average volume.

Intensity

Voxels with values outside this intensity range are considered to be part of the background.

Floodfill Type

Defines the connectivity type. In case of 6 neighbors voxels with a common face are considered to
be connected. In case of 18 neighbors voxels with at least one common edge are considered to be
connected. Finally, in case of 26 neighbors voxels with at least one common vertex are considered
to be connected.

ConnectedComponents 201

Size

Minimal and maximal size in voxels of the regions. Regions smaller or larger than this range are
considered part of the background. If Max is zero no upper size limit will be implied.

Output

If Region field is checked, a scalar field of type byte will be created. Voxels which were considered
to belong to a region are set to some non-zero value, while background voxels are set to zero.
Different connected regions will be assigned different values, so that the regions can be visualized
using color coding. However, since the output type is byte the region labels are not unique if more
than 255 components are found. The regions can be visualized in 3D by using e.g., an Isosurface
module with threshold 0.5. Alternatively, the result can be casted to a label field using CastField
and then the SurfaceGen module can be applied.

If Spreadsheet is checked, a spreadsheet object will be created, containing a list with the size and
position of all detected regions.

Action

Start computation.

6.29 ContourView

This module displays contours of a surface. Contours are typically computed automatically and they
are defined to be the boundaries of patches. If a surface contains no contours, this module will not
display anything. You can automatically compute contours by using the recompute command of the
Surface.

This module is mostly useful for developers.

Connections

Data [required]

The underlying surface data.

Ports

Index)

Choose index of contour to display. If -1 is choosen, all contours will be shown.

202 Chapter 6: Alphabetic Index of Modules

6.30 ContrastControl

The ContrastControl module (Contrast in short) is an extension to the OrthoSlice and ObliqueSlice
modules. It is particularly useful for the grey or color value analysis of scalar fields like medical image
data, as well as a preliminary stage for image segmentation. It allows a fast and intuitive adjustment
of the transfer function, mapping scalar values stored with the image data to those values used for
visualization.

With the help of ContrastControl the linear mapping of the data values to a subset of scalar values
or indices to color values, defined by a Colormap, can be modified. The term windowing is often
used within this context. The window defines a possibly narrowed view to the data’s scalar values, for
enhancing the contrast of certain structures within the image data. The width of the window defines
the range of data values between a lower and an upper threshold which shall be mapped to a range of
values specified by the height of the window. In terms of gray value mapping a subset of thousands
of possible data values can be mapped to i.e. 256 gray values, linearly distributed on a ramp, varying
from black (0) to white (255). Black values are represented by the lower border of the window and
white values by the upper border. The center of the window might be located at any value of the image
data, thus the entire window can be shifted to various points for data evaluation.

The window’s center and width can be modified with the two sliders in the working area of the Contrast
module. These values can either be adjusted by shifting the sliders to the left or right, varying the
values by a certain percentage of the image data range, or they can be specified numerically via the
appropriate entry fields.

For an overview of the current mapping, a graphical representation of the mapping function can be
displayed within the viewer window. In order to do so the toggle button in the working area with the
Window Show label must be activated. The horizontal extent of the window graph specifies the image
data range from the lowest to the highest value. The linear ramp indicates the mapping function where
the area below or above the ramp represents the currently chosen mapping window .

Experienced users can directly use the mouse for a fast and simultaneous modification of the window’s
center and width. The contrast can be adjusted via the left mouse button while the shift button is
pressed. Moving the mouse to the left or right moves the center of the window accordingly. Up and
down movements increase or decrease the width of the window. A vertical line (that means lower and

ContrastControl 203

upper threshold are identical respectively the window width equals zero) indicates a binary mapping
of the image data values. All values below the window’s center will be mapped to black and all
other values will be mapped to white. Moving the mouse further down will invert the mapping, thus
exchanging black and white values.

Connections

Module [required]

Connection to an OrthoSlice or ObliqueSlice module.

Data [required]

Connection to the scalar field is automatically established via the OrthoSlice module.

Ports

Data Window

This port displays information on the image data range. In verbose mode the current data window
will be displayed, too.

Center

The window center can be positioned between the minimum and maximum value of the image data
range. The increment value for slider movement is 1 percent of the image data range. More accurate
values can be specified via the numeric input field.

Width

The window width can be adjusted between 0 and the total image data range. The increment value
for slider movement is 1 percent of the image data range. More accurate values can be specified via
the numeric input field.

Window

This port enables or disables the display of a graphical representation of the linear transfer function
within the viewer. If it is enabled an additional port appears, which allows the specification of the
graph’s position. The graph will be updated synchronously with the contrast adjustment.

Position

204 Chapter 6: Alphabetic Index of Modules

This port is only visible when Window Show is enabled. The input values are the X- and Y position
of the graph within the viewer. The lower left corner of the viewer has the coordinates (0, 0).
Negative coordinates are relative to the right respectively upper border of the viewer. Both values
can also be modified by moving the mouse pointer into the appropriate entry field, pressing the shift
key and moving the mouse.

Commands

verboseMode {0|1}
Setting verboseMode to a value not equal to zero leads to a permanent refresh of the current data
window settings via the mapping port. Due to the possibilities of changing the window settings
quickly this leads to flickering results and furthermore reduces the interactive adjustment speed. A
value of 0 is the default.

showWindowGraph

This is just a command line interface for the window port, bringing the window graph up front.

hideWindowGraph
This is the counterpart to showWindowGraph, removing the window graph.

info

Prints out a short info to the ContrastControl module.

setLineColor <r> <g>

Using setLineColor you can change the visual appearance of the window graph. This is useful when
the currently chosen background color interferes with the line color of the graph. The RGB triple
specifies how much a certain color component contributes to the resulting color. These values are
clipped to 0 and 1.

setMouseSensitivity [<value>]
Direct contrast adjustment with the mouse (Shift - Left Mouse Button) in interactive mode can be
amplified or damped using this command. The default value is 0.5 times 1 percent of the total image
data range. The value is clipped to 0.1 and 1

setPosition <x> <y>
The position of the window graph can be modified with setPosition. Negative values are relative to
the right and upper border of the viewer. If no window graph appears with showWindowGraph try
setPosition 0 0 which should set the display to the lower left corner.

setScaleFactor <factor>

The size of the window graph can be modified using setScaleFactor. This might be useful if the
window graph is disturbing the visual output of the viewer.

ContrastControl 205

6.31 ConvertToLargeDiskData

This modules allows to convert Raw Data or stacks of image data as described in the TIFF format to
LargeDiskData.

You can create a ConvertToLargeDiskData module with the Create menu. Use the submenu Data. You
have to select the input files with the Inputs port, select the output with the Output port. The Create-
DiskData button starts the conversion process. You are asked parameters as described in TIFF format
or Raw Data during the conversion process. After a successful conversion a LargeDiskData data object
appears in the object pool.

Ports

Inputs

The list of input files.

Output

One output file.

DoIt

Starts conversion.

6.32 CorrectZDrop

This module lets you fix artifacts in 3D microscopic images caused by light absorption in other slices.
If such artifacts are present, the average intensity in lower slices seems to be decreased. This so-called
z-drop or intensity attenuation can be corrected automatically by fitting an exponential curve to the
average intensities in each slices, or manually by providing a user-defined formula.

Connections

Data [required]

The image data exhibiting a z-drop artifact. Scalar field with uniform or stacked coordinates as well
as multi-channel fields are supported.

206 Chapter 6: Alphabetic Index of Modules

Ports

Mode

Lets you select between automatic mode and manual mode.

Expression

This port is only available if manual mode has been selected. It provides a text field where you
can enter a formula specifying a factor used to multiply the intensity values in each slice. Within
the formula the variable u specifies the slices. u will take the value 0 for the first slice and 1 for
the last slice. For the other slices it takes intermediate values depending on the actual slice loca-
tion (this makes support of stacked coordinates easy). In automatice mode the following formula
a*exp(b*u) will be used, where a and b are fitted automatically. If you first perform an auto-
matic z-drop correction and then switch to manual mode, the fitted expontial will be displayed in
the port’s text field.

Action

Starts z-drop correction.

6.33 CorrelationPlot

This module computes a 2D correlation histogram of two uniform scalar fields (e.g. image stacks).
It detects regions of correlated intensity in two images of the same object. The result of correlation
analysis can be applied for an image segmentation because regions of high correlation are likely to
represent a unique material or tissue type. The module can be connected to a MultiChannelField or to
two separate images of the same dimensions. The correlation histogram is computed as follows:

• The data values of each input image are subdivided into a user defined number of intervals.

• Element (i,j) of the 2D histogram contains the number of all voxels where the data values
fall into interval i for the first image and interval j for the second image.

Typically, CorrelationPlot is used for co-localization analysis in fluorescence microscopy, where the
spatial distribution of two fluorochromes has been recorded in two different channels. There, the
module finds the regions where the fluorescence signal is high in both images.

A further application of CorrelationPlot is the segmentation of multi-modal medical images such as
CT and MRT. In this case, the images must be registered, i.e., the object position must be identical
in both images. Use module Registration for achieving this alignment, followed by module Resample
for resampling the model dataset to the lattice of the reference dataset. For the correlation analysis

CorrelationPlot 207

of medical image data from different modalities, CorrelationPlot lets you define arbitrary intensity
ranges.

Besides the 2D histogram, the module computes basic statistics for the image pair such as the number
of co-localized voxel pairs, the Peak-Signal-to-Noise-Ratio, and the correlation coefficient.

A graphical representation of the correlation histogram is shown in an extra 2D plot window using a
user defined color map. The objective of a correlation analysis is to find and select regions of high
correlation, which occur as local maxima in the 2D plot. Such regions can be selected either by
manually drawing in the 2D plot window or by numerically entering subrange limits.

The selected regions can be used for a segmentation of the image datasets. For this, CorrelationPlot
optionally generates a LabelField. The number of labels is given by the number of selected regions in
the 2D plot. For each selected region, all voxels of the image datasets with corresponding data values
are assigned to the respective label.

Connections

Source1 [required]

First input, must be a scalar field with regular coordinates or a MultiChannelField field.

Source2 [optional]

Second input, must be a scalar field with regular coordinates or a MultiChannelField field.

The module takes the first two fields that it can find in the input objects connected to the two
source ports. If, for instance, a MultiChannelField field with three channels is connected to source1
and a scalar field to source2, the module takes the lattices from channel1 and channel2 of the
MultiChannelField as input lattices, ignoring the third channel and the scalar field connected to
source2.

Colormap [optional]

Optional colormap used to map the values of the correlation histogram. The range values of the
colormap are ignored by this module.

Ports

Input1

The first two text fields define the data range of Input1 used for computing the correlation histogram.
Typically, the number of background voxels (low intensity or 0) that co-localize in two images
overwhelms those of the structures of interest. Therefore, min and max can be set to exclude certain
intensity ranges from the analysis. The text field labeled num bins: adjusts the number of bins and
thus the coarseness of the histogram. In the case of input fields with byte or short as primitive data
type the number of bins is internally adjusted such that each bin has the same integer width.

208 Chapter 6: Alphabetic Index of Modules

Input2

Defines data range as well as the number of bins for the 2nd input. See description above for details.

Gamma correction

This port defines the value of an exponent gamma used to specify the mapping of the histogram
entries to color values. First, the histogram entries are normalized to their maximal value. Then,
before the color is looked up, an element x of the correlation histogram is replaced by xgamma.
Choosing a gamma value less than 1 emphasizes small values. This is useful for similar reasons as
described for port Input1.

Colormap

Before plotting them, the histogram entries are normalized to values between 0 and 1. The colormap
connected to this port is used for the histogram look-up. The range of the colormap will be ignored.
If no colormap is connected, a grey map is used.

Selection by

Two methods are supported for selecting regions of the histogram. In manual draw mode one can
use one of the draw tools from the tool bar at the upper border of the plot window. In the second
mode labeled subrange, one can define a range of values for each of the two input fields. This
selects a rectangular subregion of the histogram. In subrange mode, two additional numbers are
computed as described below.

Region action

Press this button to remove the last selected region. This port is only shown in manual drawing
mode.

Sub range1

This port is only available in subrange mode. Here the boundaries of the subrange for Input1 are
defined. To change the subrange with a visual feedback in the plot window, use the mouse wheel to
single step or hold down the shift key while moving the left pressed mouse for making bigger steps.

Sub range2

CorrelationPlot 209

Like the above port for Input2.

Action

The Compute Histogram button recomputes the correlation histogram and pops up the plot window.
The Create LabelField button computes a LabelField using the current selection.

Input 1

Prints relative (%) and absolute (n of n tot) numbers of voxels specified in the min and max fields
of port Input1.

Input 2

Prints relative (%) and absolute (n of n tot) numbers of voxels specified in the min and max fields
of port Input2.

Input

Prints the fraction (relative to total number of voxel pairs) and absolute number of voxel pairs within
specified interval. Only these pairs are considered for the histogram generation. The second value
is the Peak-Signal-to-Noise-Ratio [dB], which is calculated according to

PSNR = 10 ∗ log
10

(
1

MSE
), (6.2)

with MSE being the (normalized) mean square error.

Correlation

Prints the correlation coefficient of the voxel pairs considered for histogram generation.

Selection

Prints the relative (%, relative to Input) and absolute numbers of selected voxel pairs.

Sub range 1

This port is available only in subrange mode. It prints the number of voxel pairs inside the set

210 Chapter 6: Alphabetic Index of Modules

specified by the first subrange. The final selection is the intersection of the voxel pair sets defined
by the first and the second subrange.

Sub range 2

This port is available only in subrange mode. It prints the number of voxel pairs inside the set
specified by the second subrange.

6.34 Curl

The Curl module computes the curl of a vector field consisting of floats defined on a uniform grid. The
output is another uniform vector field.

curlV =

(

∂Vz

∂y
− ∂Vy

∂z
,
∂Vx

∂z
− ∂Vz

∂x
,
∂Vy

∂x
− ∂Vx

∂y

)

Connections

Data [required]

Vector field defined on a uniform grid (UniformVectorField3). The vector components must be
floats.

Ports

Compute

Pushing this button triggers the computation.

6.35 Cutting Plane

The Cutting Plane module can be connected to any display module derived from ViewBase. The
module provides a special cutting plane of finite size which can be rotated, translated, and scaled
interactively. The module then computes the intersections of all triangles shown by the ViewBase
module with the cutting plane. The resulting line segments are stored in a LineSet object. Optionally,
the module can be used without any input. In this case the intersection of any surface-like geometry
shown in the main viewer is computed.

Note: Surfaces and tetrahedral grids can be more easily intersected with a plane using the Intersect
module. This module also provides a Tcl command which can be used to export a LineSet object.

Curl 211

Connections

Data [optional]

A display module derived from ViewBase, e.g., Isosurface or SurfaceView. If no input is specified
the entire scene will be cutted with the plane.

Ports

Orientation

These three buttons reset the orientation of the cutting plane to the xy, xz, or yz plane, respectively.

Options

If resample is checked, the resulting lines are resampled so that line segments of equal length are
obtained. The length of the resampled line segments can be adjusted using a separate slider (see
below). If add to result is checked the resulting lines will be added to an existing result object.
Otherwise, for each cutting operation a new result will be created.

SampleDist

This port is only visible if the resample option is checked (see above). It specifies the preferred
length of the resampled line segments.

Action

The Cut button actually computes the intersecting lines. The Clear result button removes all line
segments from the current result.

6.36 CylinderSlice

This module displays the values of any scalar field on a cylinder. The cylinder surface is mapped on a
planar slice and shown in an extra viewer. The cylinder is specified by the dragger position. The height
is computed by the length of the diagonal of the bounding box of the scalar field. The module provides
the same ports as ObliqueSlice. Additionally, it allows to save the cylindrical slice to an image. The
image format is selected by the file name extension.

212 Chapter 6: Alphabetic Index of Modules

Connections

Data [required]

The scalar field.

Module [required]

The OrthoSlice or ObliqueSlice that specifies the dragger plane.

6.37 DataProbe

The three data probing modules PointProbe, LineProbe, SplineProbe are used to inspect scalar or vec-
tor data fields. They have many features in common so they are described in one section. The probes
are taken at a point (PointProbe) or along a line (LineProbe, SplineProbe) which may be arbitrarily
placed. The controlpoints of the data probing modules determine the locations where the samples are
to be taken. PointProbe has one controlpoint which is the samplepoint, LineProbe has two control-
points which are the endpoints of a line which is subdivided into a number of segments given by the
Samples port or by the Distance port, and SplineProbe has at least three controlpoints that define a
spline that goes through the endpoints and approximates the points in between. The spline curve is
subdivided into a number of segments given by the Samples port or by the Distance port by which the
sample points are obtained.

To place the controlpoints within the bounding box of the given geometry you can either type in the
coordinates in the port Points (see below) or you can shift the points interactively with the mouse.
The latter can be done by turning the 3D viewer into interactive mode and picking and moving the
crosshair dragger of the current point. The plot immediately changes if the immediate mode toggle is
set. Usually the sampled values are plotted against the length of the probe line or as a bar in case of
PointProbe in an extra plot window. If you use more than one data probing module of the same type
all plotted curves will be shown in one plot window.

PointProbe displays the value at the sample point and the material if material values are set. LineProbe
and SplineProbe display the length of the line resp. spline.

A module of type ProbeToLineSet can be connected to a LineProbe or a SplineProbe module in order
to save the probe line and the sampled values.

Connections

Data [required]

Can be connected to arbitrary 3D fields. The LineProbe module can also be attached to 3D input
objects other than fields such as surfaces or Open Inventor geometry. In this case the LineProbe
doesn’t sample any data but simply measures distances.

DataProbe 213

Ports

Orientation

This port which is used in LineProbe and SplineProbe provides three buttons to specify the probe
line orientation. Axial probe lines are perpendicular to the x-y-plane, frontal probe lines are perpen-
dicular to the x-z-plane, and sagittal probe lines are perpendicular to the y-z-plane. If one of these
buttons is pressed the start and end coordinates of the probe line are set to the minima resp. maxima
of the corresponding axis and to the center of the two axes perpendicular to the probe line.

Options

The immediate toggle determines whether the samples are taken while the controlpoints are being
moved or when the motion is finished. If the orthogonal toggle is on all points are moved in sync,
when the coordinates of one point are changed with the dragger. This port is not shown for module
PointProbe.

Evaluate

If the probe is connected to a vector field, these radiobuttons are shown. If the magnitude button
is set the magnitude of the vectors is shown in the plot window. With the normal+tangent Comp.
button set you get the normal and tangential components as two curves. Setting the all button shows
all components of the vector field as separate curves.

Points

Here you can see resp. type in the coordinates of all controlpoints the data probing module makes
use of. The options menu lets you toggle whether a dragger or a sphere is shown for the control-
points. You can also append, insert or remove controlpoints if this module is a SplineProbe module.

Control

With this radio buttons you can choose which of the following two ports are taken to compute the
sample points. This port is not shown for module PointProbe. If you have chosen the adaptive
button, the module tries to keep the number of samples which can be seen in the plot window as
close as possible to the number given with the appropriate slider. I.e. the more you zoom into the
plot window the more exact are the curves in the plot window.

Samples

214 Chapter 6: Alphabetic Index of Modules

This slider allows you to choose the numbers of samples along the probe line. This port is not
shown for module PointProbe.

Distance

This slider allows you to choose the distance between two consecutive sample points along the
probeline.

Options

The average option averages the probe values by taking samples on a disk perpendicular to the
sampling points and smoothes the sampled values along the sampling line(s). This button is anly
available for a LineProbe resp. SplineProbe module.

Radius

The radius of the sampling disk. This slider is only shown if the above average option is chosen.

Longitudinal Width

The width determines how many sampling values are used for smoothing. This slider is only shown
if the above average option is chosen.

Plot

If the Show button is pressed a plot window appears where the sampled values are plotted against
the length of the probe line. Note: There will be only one plot window regardless of how many
Line Probe modules there are in your setup. Every line probe is represented in that plot window by
a curve bearing the name of the corresponding module.

Commands

getInterpol

Returns the currently used interpolation method.

setInterpol {none|linear|spline}
Sets the interpolation method. none means no interpolation at all and the sample values are taken
at the controlpoints only.

getOrder
Returns the order of the spline probe.

DataProbe 215

setOrder <value>

Sets the order of the spline probe.

getPoint [<index>]

Returns the coordinate of the requested controlpoint. Index defaults to 0.

setPoint [<index>] <x> <y> <z>

Sets the coordinates of controlpoint index. Index defaults to 0.

getSamplePoints

Returns the coordinates of all points where samples are taken.

getSampledValues

Returns all sampled values.

setImmediate {0|1}
Switches the immediate mode on or off, i.e. data is shown while the probe line resp. point is being
moved.

setOrtho {0|1}
Switches the orthogonal mode on or off, i.e. all controlpoints of a probe line are moved in sync or
not.

getNumPoints

Returns the number of control points of a probe line. In case of a point probe 1 is returned.

getLength

Returns the length of the probe line. 0 in case of a point probe.

appendPoint <x> <y> <z>
Appends a controlpoint with the given coordinates.

insertPoint <index> <x> <y> <z>
Inserts a controlpoint with the given coordinates as the indexth point.

removePoint <index>
Removes the given controlpoint.

6.38 Delaunay2D

This module takes a set of 3D vertices and produces a Delaunay triangulated surface with 2D topology.
In order to do so the vertices are projected either into the xy-, xz-, or yz-plane or alternatively onto a
cylinder parallel to the x-, y-, or z-axis. The cylinder is automatically positioned so that it matches the
center of the vertices.

216 Chapter 6: Alphabetic Index of Modules

The incoming data object must be derived from a vertex set, cf. Section 3.2.5. Note, that the Delaunay
algorithm may take some time, especially for large data sets. If the input is not of planar topology, like
e.g., a sphere, the result will probably not be useful. If multiple 3D vertices project to the same 2D
vertex, the result is undefined. In the latter case, it might be help to issue a jitterPoints 0.001
0.001 0.001 command on the command line.

If the input data set is of type Cluster and if this cluster has data associated to it than these data values
are converted into one or more surface scalar fields.

Connections

Data [required]

The vertex set to be triangulated.

Ports

Projection

Lets you select whether the 3D points should be projected into a plane or onto a cylinder. If closed
cylinder is selected than a closed cylindrical surface will be created.

Plane

This port lets you select on which plane the 3D vertices should be projected on in case of a planar
projection.

Cylinder

This port lets you select the orientation of the cylinder in case of a cylindrical projection.

Parameters

The first number defines an optional internal scaling applied to the 3D vertices. The direction in
which the scaling is applied depends on the selected projection type. The option is useful if the
3D points are distributed non-isotropically, i.e., if the average feature size in different in the three
coordinates. Note, that an external scaling defined with the transformation editor is currently not
taken into account by this module.

The second number lets you specify a maximum edge length in 3D space. Delaunay triangles with
edges longer than this limit are discarded. When computing the 3D edge length the scaling factor
defined by the first parameter is taken into account. When a new input is connected and no other

Delaunay2D 217

input was connected before the max edge length field is initialized with half of the average edge
length of the bounding box of the data set. A maximum edge length of 0 indicates that no triangles
should be discarded.

Action

Starts computation.

6.39 DemoMaker

Using the DemoMaker module, you can create an animated sequence of operations, e.g. for automat-
ically running demonstrations or for advanced movie recording. Select Create / Animation/Demos /
DemoMaker from the menu to add a DemoMaker module to the object pool.

Defining and storing a demo sequence

The demo sequence is a set of actions over a time range as respresented by the module’s Time port.
A wide range of such actions can be defined, e.g. switching a toggle value on or off, varying the
numerical value of some other module’s port over time, and defining breaks to interrupt the automatic
demo sequence.

Actions are defined by first selecting an entry from the GUI elements port. This port lists all GUI
elements of all modules that currently exist in the object pool, except the ports of the active DemoMaker
module itself.

Once you have selected the right element (or a different action type like a pause, break, go-to, or an
arbitrary TCL command) from the GUI elements menu, additional ports will show up below the GUI
elements port, depending on the type of the selected element (e.g. numeric, toggle, button, ...). Using
these ports, you can define the time (or time range) of the action on the DemoMaker Time line as well
as the value to which the selected GUI element will be set at that time (see example below).

When action time and values have been defined, press the Add button in the Event List button line.
This adds the desired action to the DemoMaker’s list of events as represented by the Event List menu.
Multiple sequential, overlapping, or parallel actions may be contained in one demo sequence.

Once a part of the desired action sequence is defined, simply store it by choosing File / Save Network...
from the menu. DemoMaker in its current state will be saved along with the rest of the object pool.
When saving the network, make sure the Time slider is in the desired starting position.

Playing a demo sequence

For playing the demo sequence as defined, simply press the Time slider’s play button (triangle pointing
to the right) or press the corresponding function key F4. The sequence will run from the current time
step to the end of the demo, or to the next break as defined by the user (see Defining a break below).
The play button will change into a stop button, and pressing that button or pressing the F3 function

218 Chapter 6: Alphabetic Index of Modules

key immediately stops playing. If the demo stops at a user-defined break, continue by again clicking
the play button or pressing F4.

If the demo is stopped at the beginning or at some user-defined break, you can press the function key
F10 to jump to the point of the next break, or to the end of the demo. Similarly, pressing F9 jumps to
the previous break or to the very beginning of the action sequence. Once you have jumped to the right
step of the demo, simply press play or F4 again to play it from there.

If the action sequence is running too fast or too slow, you can adjust its speed using the Time port’s
Configure option (right-click onto the time port, see time port documentation). Note that the playback
speed can only be adjusted for the complete time range at once. If you want only to change the speed
of only part of the sequence, you must do so by adjusting the time range of the corresponding action
entries.

Usage Example

Here is a small example to demonstrate the way DemoMaker works. Load lobus.am from the
tutorials subdirectory of the amira installation directory. Connect an OrthoSlice module and an
Isosurface module. Create a DemoMaker by selecting it from the Create / Animation/Demo menu.

Now your network should look similar to this:

All available user interface ports of the modules in the object pool should now appear in the GUI
element port of the DemoMaker module. If not, press the Update button.

Now select OrthoSlice/Slice Number from the GUI elements menu. Fields for specifying start/end
values and start/end time appear. Enter 86 and 0 as start and end values and 0 and 0.4 as start/end
time:

Now press the Add button to add this action event to the event list. Press the time slider’s play button
to see the demo sequence just specified. You should see the OrthoSlice plane moving during the time
range from 0 to 0.4, but nothing happening in the time range from 0.4 to 1.0.

Now select a threshold of 70 in the Isosurface module and press DoIt to make the surface appear in the

DemoMaker 219

viewer. Now go back to DemoMaker, select OrthoSlice/Viewer mask/Viewer 0 from the GUI elements
menu, select on as the toggle value and 0.4 as the trigger time:

Now press Add again to add this action to the list. Jump back to 0 by clicking on the time slider. You
should see that when jumping back (from later than 0.4 to earlier than 0.4) the Isosurface is switched
off. Then play the demo from the beginning, and you see that the surface is switched on right after the
OrthoSlice is moved.

As another excercise you can create a camera path (select Create/CameraPath or Create/CameraRotate
from the menu and edit the camera path to your liking. Then press Update in DemoMaker and select
CameraPath/Time or CameraRotate/Time as GUI element. Now the start/end value refers to the value
of the camera time slider. Enter the minimum and maximum values of that time slider. Enter 0.0 and
0.6 as the start/end time:

Now you see that in parallel to the actions defined before, the camera path is applied to the scene. Note
that you can execute only parts of a camera path, or concatenate multiple paths this way. However,
multiple camera paths cannot be used in parallel.

Connections

Data [not used]

The data port is a default script object port, but is not used by DemoMaker.

Time [optional]

The Time port is a quick way for synchronizing other modules with DemoMaker’s Time port, e.g.
for using the MovieMaker module or camera path modules like CameraRotate or CameraPath.
Alternatively, you can use camera path objects with DemoMaker by selecting these objects’ time
sliders from the GUI elment port and making it part of the DemoMaker event list.

220 Chapter 6: Alphabetic Index of Modules

Ports

Time

The time slider defines the time range in which the demo sequence is played, and by clicking on the
slider, one can jump to an arbitrary point of the demo. Clicking one of the play buttons (triangles
pointing to the left/right for backwards/forwards) will start playing the demo. Right-clicking on the
port brings up a dialog box allowing you to change the range of the slider (min/max value) as well
as the increment determining the playback speed (smaller increment means slower playback). For
more information, see documentation of the time port.

Event List (Selection)

This menu contains the list of currently defined demo actions that make up the demo sequence. The
buttons below this menu always refer to the currently selected menu entry.

Event List (Buttons)

Manipulate the event list menu. Add adds the event defined in the lower part of the DemoMaker
module to the list of demo action events. When selecting one of the action entries from the Event
List menu, the Remove button deletes this entry from the list, and the Replace button replaces the
selected entry by the event as defined in the lower part of the DemoMaker module.

Functions

Activate/deactivate this DemoMaker instance, and show optional parts of the DemoMaker user in-
terface, such as some option ports and some ports for editing the time line.

• active: activate/deactivate this module. When deactivated, the module will not define any
function keys and not manipulate objects in the object pool. Deactivating is especially im-
portant when using multiple alternative DemoMaker objects.

• options: display option ports (see Options (1) - Options (3) below).

• time edit: display ports for editing the time line (see Move from - Time edit below).

Options (1)

This port is only shown when the options toggle of the Functions port is enabled.

• skip break: do not stop at user-defined breaks when playing the demo sequence.

DemoMaker 221

• skip pause: do not execute user-defined pause events (no waiting time).

Options (2)

This port is only shown when the options toggle of the Functions port is enabled.

• auto start: lets the demo start automatically when the network containing the DemoMaker
module is loaded.

• function keys: when toggled off, no function keys (F3/F4/F9/F10) will be defined when the
network containing the DemoMaker module is loaded. This is especially important when
combining multiple DemoMaker modules, since only one module can define the function
keys.

Options (3)

This port is only shown when the options toggle of the functions port is enabled.

• explicit redraw: when toggled on, for each time step the active viewers are explicitly called
to perform a redraw. If toggled off, amira’s auto redraw feature is used. If in some cases the
desired action sequence is not properly displayed in the viewer, try toggling explicit redraw
on.

• debug: when toggled on, the actual TCL commands that are executed during the demo se-
quence are output to the amira console. This will significantly slow down the graphical
display, but can be used for understanding what exactly happens in the demo sequence.

• wait screen: enable a waiting image to be displayed during jumps on the time line. This is
only useful if jumping takes considerable amount of time, e.g. for very long event sequences.
If enabled, the Waiting image port will appear below this option for specifying the waiting
screen image file.

Waiting image

If the wait screen option is enabled, this port is used to specify the file name of the waiting screen
image. The image will be displayed during jumps on the time slider.

Move from interval

This port is only shown when the time edit toggle of the Functions port is enabled. Specify the time
interval to be relocated on the time line (see Moving events on the time line below).

222 Chapter 6: Alphabetic Index of Modules

Move to interval

This port is only shown when the time edit toggle of the Functions port is enabled. Specify the
target time interval for relocation on the time line (see Moving events on the time line below).

Time edit

This port is only shown when the Time edit toggle of the Functions port is enabled. Move
events: move all events within the Move from interval to the Move to interval on the time line
(see Moving events on the time line below).

GUI element

The selection menu contains all GUI elements in the current object pool that can be manipulated
using DemoMaker. If the object pool is modified (e.g. by loading a new dataset or connecting a
new module), press Update to update the contents of the selection menu.

Additional Ports

Additional ports will appear in the DemoMaker module, depending on the type of GUI element the
user has chosen. These ports are listed in the following section, grouped by GUI element types.

Defining a break
Selecting *Break, continue on keypress from the GUI element menu lets you insert a break in the
demo sequence. When playing, the demo will stop at that point. See playing a demo sequence
above.

Trigger time

Defines the point in time (on the time slider) at which the break is inserted.

Defining a pause
Selecting *Pause, waiting time from the GUI element menu lets you insert a pause, where the demo
will stop and wait for a user-defined amount of time. Please note that such a pause will not be
executed if DemoMaker is driven by a MovieMaker object. In such a case, you must insert a pause
by adjusting the time slider range and adapting the time range of the action entries.

Trigger time

Defines the starting point of the pause on the time slider.

DemoMaker 223

Waiting duration

Defines the waiting time in seconds. Please note that this time is taken in addition to the time defined
by the time slider range.

Defining a go-to
Selecting *Go-to, jump to user-specified time step from the GUI element menu lets you jump from
the one point in the demo sequence to another point. For example, you can simply define an endless
loop by jumping back to some previous time step. You can end the loop by pressing the stop button
or F3 (see playing a demo sequence above).

Trigger time

This defines the point in time (on the time slider) at which the go-to is inserted.

Time to jump to

This defines the point in time which the go-to will jump to. For example, to create a loop between
time 0.2 and 0.4, insert a go-to with Trigger time 0.4 and Time to jump to 0.2.

Defining a toggle
Toggle actions can toggle certain GUI elements between the two states on and off. Examples for
toggle values are the different options in a ToggleList port¡/a¿, or the orange viewer mask toggle(s)
present in every data object or display module (to switch the display of the module in the viewer on
and off).

Trigger time

This defines the point in time (on the time slider) at which the value is toggled.

Toggle to value

This defines the value (on or off) to which the selected GUI element is set at the defined trigger
time, if the demo sequence is played forwards. When playing or jumping backwards, the inverse
value is used.

224 Chapter 6: Alphabetic Index of Modules

Defining a button press
Button actions emulate the pressing of a button or executing certain events with no parameters.
Examples for buttons elements are the ButtonList port, or inverting the orientation of a clipping
plane.

Trigger time

This defines the point in time (on the time slider) at which the button is pressed or other action is
taken.

Modifier keys

This defines whether DemoMaker should emulate that Shift, Ctrl, or Alt is held down at
the time when the button is pressed. The meaning of these modifier keys depends on the module
defining the button to be pressed.

Defining a select action
Select actions are used to set a port’s value to one of a set of choices as offered by a selection menu
or a radio box.

Change from/to value

This defines from which old value to which new value the port will be switched at the specified
trigger time. When playing or jumping backwards, the two values will used inversely.

Trigger time

This defines the point in time (on the time slider) at which the port is set to a new selection value.

Defining a numeric action
Numeric actions are used to vary a port’s numerical value from a start value to an end value over
time. Examples for numeric ports are numerical sliders or numerical text fields.

Start/end value

The two fields of this port define from which start value to which end value the value of the GUI
element will be varied. The values of this port are constrained to the range of the corresponding
GUI element.

DemoMaker 225

Start/end time

This defines the time range (on the time slider) during which the port value will be varied from the
start value to the end value specified above. When playing or jumping backwards, the value will be
varied from the end value to the start value.

Defining a TCL command
When selecting *Tcl command from the GUI element menu, you can insert arbitrary TCL com-
mands into the demo sequence. Furthermore, like for numeric events, the command can be pa-
rameterized by one or more numeric values that will be varied between user-defined start and end
values.

TCL command

Text field for typing the desired TCL command. Within the command, special placeholders %0%,
%1%, %2%, ... can be used that will be replaced by numeric values. The start and end values for
these placeholders are defined in the ports described below.

Start value(s)

If the numeric placeholder %0% is used in the Command field, specify the start value for this place-
holder. If multiple placeholders are used (e.g. %0% and %1%), specify space-separated start values
for all of the employed placeholders.

End value(s)

If the numeric placeholder %0% is used in the Command field, specify the end value for this place-
holder. If multiple placeholders are used (e.g. %0% and %1%), specify space-separated end values
for all of the employed placeholders.

Start/end time

This defines the time range (on the time slider) during which the specified TCL command will be
executed, with the placeholders replaced by values between the specified start and end values.

Moving events on the time line
After you have defined some events on the time line, you may want to move a part of this event
sequence to a different time, e.g. for inserting more events at a certain point, or for stretching or
compacting part of the demo sequence.

226 Chapter 6: Alphabetic Index of Modules

This can be easily done if you switch on the Time edit toggle of the Functions port:

Simply enter the time interval that you want to relocate in the Move from port, enter the destination
time interval in the Move to port, and press the Move events button. If the new time interval is
outside of the current min/max time, the time slider configuration will be updated accordingly.

Commands
The following commands are methods of the DemoMaker script object. They can be called exter-
nally by first specifying the name of the script object (e.g. DemoMaker), followed by a space and
the name of the method. Example: DemoMaker play starts playing the demo sequence.

play

start playing the time slider at its current time step. This function is called when pressing F4.

stop

stop playing the time slider. This function is called when pressing F3. Also calles the stop callback
(see below).

jumpNext

jump to the next user-defined break, or to the end of the demo. This function is called when pressing
F10.

jumpPrev
jump to the previous user-defined break, or to the start of the demo. This function is called when
pressing F9.

setEndCallback <cmd>

sets an internal callback function to the specified TCL code <cmd>. This code will be executed
only once when DemoMaker reaches the end of the time slider. Call with an empty string to disable
the callback.

DemoMaker tips and limitations
Although the DemoMaker module is quite powerful, some things should be noticed, and there are
some known limitations that are listed here for convenience. If you find further important limitations
or bugs, please report them to TGS as a bug or feature request.

• The *Load network action type for loading a different network file is currently not imple-
mented.

DemoMaker 227

• For button action, ”snapping” a button to automatic update mode is not supported yet.

• GUI elements that are part of a Generic port are not properly represented in the GUI elements
menu of the DemoMaker module.

• If a DemoMaker module is renamed (e.g. by selecting Edit / Rename... from the menu),
the function keys F3/F4/F9/F10 will no longer work. However, simply disabling and
re-enabling the function keys option in DemoMaker helps.

• If you rename or remove modules after defining events with DemoMaker, then events involv-
ing these modules will generate errors. Please properly arrange your network before using
DemoMaker.

Further links
script object documentation for script programming.

6.40 Digital Image Filters

Encloses the ImageEditor in a compute module.

6.41 Displace

This module takes a displacement vector field defined on a tetrahedral or hexahedral grid or on a
surface and creates a mesh with translated vertices. For example, if a surface vector field is used as
input a new surface with modified vertex coordinates is computed. The displacement vector field must
be defined on the vertices of the mesh. Other encodings are not supported. The new position of a vertex
is computed by adding the scaled displacement vector defined at that vertex to the original position.
The scaling factor can be adjusted globally for all vertices using the scale port.

Connections

Data [required]

The input vector field.

Ports

Number of vectors

Shows the number of displacement vectors of the input field.

Scale

228 Chapter 6: Alphabetic Index of Modules

Scaling factor applied to the displacement vectors ranging from 0 (no displacement) to 1 (full dis-
placement).

Compute

Triggers computation.

6.42 DisplayColormap

This module allows you to position a colormap-icon onto the 3D viewer. This is useful e.g., to pro-
duce snapshots, that shall contain an explanation of what specific colors mean. Note, that although
colormaps are ordinary data objects in amira, they often are hidden by default. Use the Edit/Show
menu of the main window to bring their icons up.

Connections

Data [required]

The colormap to be displayed.

Ports

Options

This port provides the following four toggles:

• custom text: Enable or disable custom text (see below).

• vertical: Vertical orientation instead of horizontal.

• relative size: Change size of colormap when viewer size changes.

• transparent background: If off render background rectangle.

DisplayColormap 229

Position

Position of colormap in viewer relative to lower left corner. If one of the numbers is negative, it is
interpreted relative to upper right corner.

Size

Length and width of the colormap in pixels. If the option relative size has been selected the length
and width are interpreted relative to a window size of 1000 times 800. If the actual viewer window
is smaller than the displayed colormap will be smaller too and vice versa.

Custom Text

This is only available if custom text option is selected. You may specify a space separeted list of
values, that shall be displayed. In addition you may specify a text, which is displayed instead of
the number, by using the ’/’ character. The example in the image above has been generated using
this text: -8/cold 50/hot, which displays ”cold” at value -8 and ”hot” at the value 50 (the
colormap in this case ranges from -8 to 50). If one of the labels should contain blanks you have to
enclose the text in double quotes, e.g., 100/"very hot".

Commands

getFontSize

Returns the current font size.

setFontSize <points>
Changes the font size. The default font size is 14 points.

setBGColor <color>

Sets the color of the background rectangle which is drawn when the transparent background toggle
is off.

setColor <color>

Sets the color of the text.

6.43 DisplayISL

This module visualizes a 3D vector field using so-called illuminated field lines. This technique was
first presented on the Visualization 96 conference. More details are described in M. Zöckler, D. Stalling,
H.-C. Hege, Interactive Visualization of 3D-Vector Fields using Illuminated Streamlines, Proc. IEEE
Visualization ‘96, Oct./Nov. 1996, San Francisco, pp. 107-113, 1996.

230 Chapter 6: Alphabetic Index of Modules

The module computes a large number of field lines, by integrating the vector field starting from random
seed points. The lines are displayed using a special illumination technique, which gives a much better
spatial understanding of the fields structure than ordinary constant-colored lines. In order to execute a
script demonstrating this module click here.

The functionality of DisplayISL can be extended by means of the SeedSurface module.

Connections

Data [required]

The vector field to be visualized. Since a procedural data interface is used all types of vector fields
are supported (e.g., fields on regular or curvilinear grids, as well as procedurally defined fields).

ColorField [optional]

An optional scalar field which, if present, will be used for pseudo-coloring. Often it is useful to
create a scalar field from the vector field using the Magnitude module.

AlphaField [optional]

An optional scalar field which can be used to control the lines’ opacity locally.

Distribution [optional]

An optional scalar field which can be used to control the distribution of seed points.

Colormap [optional]

The colormap used to encode the color field. Will only be visible if a color field is connected to this
module.

Ports

Colormap

Optional colormap.

Num Lines

Number of field lines to be displayed. The technique typically gives the best results with a rather
large number of lines (e.g., 100-500). Note however that on systems with slow 3D graphics without
texture hardware, a large number of lines can slow down rendering speed significantly.

Length

The length of the field lines, or more precisely, the number of atomic line segments, in forward

DisplayISL 231

respectively backward direction. The lines may stop earlier if a singularity (i.e. zero magnitude) is
encountered or if the field’s domain is left. On default lines are traced the same distance in forward
and backward direction. You may use the command setBalance to change this behavior.

Opacity

Base opacity factor of the lines. A value of 1 produces completely opaque lines, while 0 results in
fully transparent lines.

Fade Factor

This port controls how fast opacity decreases along field lines if fade mode is enabled. The first
atomic line segment will be assigned the base opacity set in port Opacity. The opacity of each
successive segment will be multiplied by the value of this port. This is useful in order to encode the
directional sign of a vector field. The vector field points in the direction of increasing transparency.

Alpha Window

This port will only be visible if fade mode is disabled and if an alpha field is connected to the
module. In this case the alpha field’s values are mapped to opacity according to the range specified
by this port. At locations where the alpha field is equal or smaller than min field lines will be
completely transparent. Likewise, at locations where the alpha field is equal or bigger than max
field lines will be completely opaque.

Options

Fade: Enables fading mode as described above.
Lighting: Controls illumination of lines. If off, constant colored lines are drawn (flat shading).
Animate: Activates particle-like animation. The animation speed may be controlled via the com-
mand setAnimationSpeed.

Seed Box

Clicking on XformBox or TabBox brings up a 3D dragger in the 3D Viewer. This allows you to
restrict the region of interest, i.e. the region in which seed points are placed, by interactively trans-
forming the dragger (Remember to switch the viewer into interaction mode by hitting ESC). After
changing the box you have to hit DoIt to trigger recalculation.

Distribute

232 Chapter 6: Alphabetic Index of Modules

On the one hand, this port provides a DoIt button which is used to initiate distribution of seeds and
recomputation of field lines. Once the incoming vector field has changed or you have modified the
number of field lines or the line’s length you have to press DoIt in order to update the display.

On the other hand, the port also provides an option menu specifying the way how seed points are
distributed inside the seed box. On default a homogeneous distribution will be used. Alternatively,
seed points may be distributed according to the vector field’s magnitude or according to the value
of the distribution field, if such a field is connected to the module. The equalize option provides a
mixture of homogeneous and proportional seed point distribution.

6.44 DisplayTime

This module displays the value of a time object in the 3D viewer using a textual or iconic representa-
tion. This is useful for for animations which shall contain an illustration of time. Four major styles are
available: plain text, a round clock, a horizontal time bar, or a vertical time bar.

This module should be connected to a Time object. In this case the current time is visualized. Besides
that it is possible to visualize an arbitrary value which can be set using the commands of the invisible
port value.

Connections

Time [optional]

The time object to be displayed.

Ports

Options

This port chooses between the four major draw styles.

Options2

This port adjusts additional settings influencing the drawing. The last three options are disabled for
the text only draw style.

• frame Draw a frame around the time icon.

• solid Fill the icon’s background.

• value text Show value together with time icon.

• filled value Fill space between zero and value.

• custom text Whether or not custom text should be displayed (see below).

DisplayTime 233

Position

Position of the time icon with respect to the lower left corner of the screen. If negative values are
entered the icon is positioned relative to the right and/or top of the screen.

Size

Specifies the length of the horizontal or vertical time bar (in pixels) and relative thickness of the
bars. If a clock is drawn length refers to the diagonal, while tickness is ignored. For text only
display both values are ignored.

Colors

The colors of the various parts of the icon can be set here.

Custom Text

This is only available if custom text option is selected. You may specify a space separated list of
values, that shall be displayed. Alternatively you may specify a text, which is displayed instead of
the number, by using the ’/’ character. The syntax is the same as for the Display Colormap module.

Format

The format for displaying the time value (printf syntax of the C programming language).

Value
This port is always hidden. It can be used to specify a time value when no time object is connected
(via the Tcl interface).

Commands

setFontSize <points>

Changes the font size. The default font size is 28 points for text only displays and 14 points other-
wise.

6.45 DistanceMap

This module computes a 3D distance field of a 3D object. Each voxel will be assigned a value depend-
ing on the distance to the nearest object boundary. The boundary voxels of the object get a value of
zero whereas the assigned value gets larger the more the distance increases.

234 Chapter 6: Alphabetic Index of Modules

To use this module it must be connected to a uniform label field where each voxel with a nonzero value
is assumed to belong to the object.

Connections

Data [required]

Labelfield wherefrom the distance map is computed.

Ports

Type

You may either choose a true euclidian distance metric or an approximation based on a 3x3x3
chamfer metric. The latter is much faster to compute an accurate enough for most applications.
Single Seeded computes a distance map which expresses the distance from a single seed point
rather than from the boundary.

Chamfer Weights

This port is only available in chamfer mode. Different chamfer metrics are available. The 1-2-3 met-
ric is equivalent to only consider a 6-neighborhood when propagating the distance value, whereas
the 3-4-5 considers a 26-neighborhood and is a better approximation of the euclidian distance met-
ric. Float also corresponds to a 26-neighborhood but the resulting field will have float data type
instead of short int.

Region

This port is not available in Single Seeded mode. Choose in which region the distance field will be
computed:

• Inside: Inside the object (outside will be set to zero).

• Outside: Outside the object (inside will be set to zero).

• Both (unsigned): Inside and outside the object. The positive distance is computed regardless
to the position being inside or outside the object.

• Both (signed): The distance value will be negative at a position inside the object and positive
outside the object.

Point

DistanceMap 235

This port is only available in Single Seeded mode. Specifies the seed point for the distance map in
world coordinates. You can use a dragger to adjust.

Action

Triggers the computation.

6.46 Divergence

The Divergence module computes the divergence of a vector field consisting of floats defined on a
uniform grid. The output is a uniform scalar field.

divV =
∂Vx

∂x
+

∂Vy

∂y
+

∂Vz

∂z

Connections

Data [required]

Vector field defined on a uniform grid (UniformVectorField3). The vector components must be
floats.

Ports

Compute

Pushing this button triggers the computation.

6.47 DoseVolume (Tetrahedra)

The Dose Volume module creates a value-volume-histogram for a scalar field defined on a
tetrahedral grid, e.g. a temperature-volume-histogram for a scalar field that represents a temperature
distribution. For this purpose it has to be attached to a GridVolume module and a selection of
tetrahedra specifying parts of the grid or the complete grid must be made there. A histogram is
constructed for the selected tetrahedra only. This is done in the following way:

The range of scalar values is divided into subranges given by the number of sample points. With
respect to each subrange one or more sub-volumes of the tetrahedral grid are determined where the

236 Chapter 6: Alphabetic Index of Modules

scalar field values fall into that range. Then the volumetric sizes of the sub-volumes are computed and
these are depicted as differential histogram function values over the total range of scalar field values
or used to calculate cumulative histogram values.

If the selected tetrahedra are members of different regions, histograms are calculated separately for
each region, as well as for all selected tetrahedra (called ’total Volume’).

The histograms can be shown in several ways:

• differential: shows a differential form of the histogram.

• absolute and relative: show an integral form of the histogram, i.e., for each value the partial
volume is shown where at least that value is assumed. For the integral form either the absolute
volume [ccm] or the relative volume, i.e., the percentage of the total volume of the correspond-
ing region, can be shown. With the latter type of representation you can easily find out which
value is at least assumed in 90 percent of a selected region.

Connections

Data [required]

A scalar field defined on a tetrahedral grid.

PortGridVol [required]

A GridVolume module that selects the tetrahedra for which the histogram is calculated.

Ports

Histograms

If you select one of these toggles, a plot window appears showing the corresponding histogram
for all tetrahedra selected by the GridVolume module. If no tetrahedra have been selected, the plot
window will not be shown. For the three different modes of representation see above.

Samples

This slider lets you select the number of samples for the histogram.

6.48 DuplicateNodes

This module takes a labeled tetrahedral grid as input and produces a new grid with all nodes on interior
boundaries being duplicated. Interior boundaries can be visualized using module GridBoundary. They

DuplicateNodes 237

consist of all triangles incident on two tetrahedra with different labels. Duplicated nodes are useful to
represent discontinuities within a vector field, e.g., an electric field on a tetrahedral patient model. On
an interior boundary such a field may have multiple values - one for each incident material subvolume.

Connections

Data [required]

A tetrahedral grid without duplicated nodes.

Ports

Action

Button duplicate nodes causes a new output grid with duplicated nodes to be computed.

6.49 FieldCut

The Field Cut module is a tool for visualizing cross sections of a 3-dimensional scalar field defined on
a tetrahedral grid. In general such grid volumes are made up of several materials. A (2-dimensional)
cutting plane has to be defined for this purpose and may be shifted through the (3-dimensional) tetra-
hedral grid in orthogonal direction, an Orientation port is provided for setting the orientation of the
cutting plane perpendicular to one of the main axes and a Translate port for specifying an orthogonal
translation. FieldCut renders a slice with the values of the scalar field mapped to colors of a connected
colormap. This is called pseudo coloring. The cutting plane is usually clipped to a rectangle. With
the 3D viewer turned into interactive mode you can pick one of its edges and shift it through the grid
volume. To define arbitrary cutting planes you have to set the rotate toggle which makes a rotation
handle appear in the center of the cutting plane. Having turned the viewer into interactive mode you
can pick the handle with the left mouse button and rotate the plane as you please.

Connections

Data [required]

The field of type TetrahedralGrid.

Colormap [optional]

An optional colormap used for pseudocoloring the values of the scalar field on the cutting plane.

Ports

Orientation

238 Chapter 6: Alphabetic Index of Modules

This port provides three buttons to reset the slice orientation. Axial slices are perpendicular to the z-
axis, frontal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the x-axis.
See also PortButtonList.

Options

If the adjust view toggle is set, the camera of the main viewer is reset each time a new slice orien-
tation is selected. With the rotate toggle you can switch the rotate handle for the cutting plane on
and off. If the immediate toggle is set the slice is updated every time you drag it with the mouse in
the 3D viewer. Otherwise only the bounding box of the cutting plane is moved and the update takes
place when you release the mouse button.

Translate

This slider allows you to select different slices. The slices may also be picked and dragged directly
in the 3D viewer.

Colormap

See also PortColormap.

Interpolation

In pseudo-color mode you can switch between two rendering methods by the radio buttons Gouraud
and Texture. See also PortRadioBox.

• Gouraud shaded faces have their colors assigned at their vertices. The colors in between
are linearly interpolated. Therefore misleading colors occasionly may occur or colors may
appear to be washed out along the edges of the faces.

• Texture mapping means an exact mapping of values to colors in this special case, but with
the drawback of increased computing time if you have no hardware supported for texture
mapping on your machine.

Selection

This port maintains a list of materials assigned for cutting. With the selection menu one can select
a single material. The Add button adds a previously selected material to the list and the Remove
button removes the current selected material.

FieldCut 239

6.50 GetCurvature

This module computes curvature information for a discrete triangular surface of type Surface. Either
the maximum principal curvature value, the reciprocal curvature value, or the direction of maximum
principal curvature can be computed. The algorithm works by approximating the surface locally by
a quadric form. The eigenvalues and eigenvectors of the quadric form correspond to the principal
curvature values and to the directions of principal curvature. Note, that the algorithm does not produce
meaningful results near locations where the input surface is not topologically flat, i.e., where it has
non-manifold structure.

Connections

Data [required]

The surface for which curvature information should be computed.

Ports

Method

Radio box allowing the user to select between two different computational algorithms. Choice on
triangles produces a surface field with curvature values or curvature vectors being defined on the
surface’s triangles. Alternatively, by selecting on vertices a surface field with data being defined on
the vertices can be generated.

Parameters

The first input, denoted nLayers, determines which triangles are considered to be neighbors of a
given triangle and which points are considered to be neighbors of a given point. If the value of this
input is 1, then only triangles sharing a common edge with a given triangle are considered to be
neighbors of this triangle and only points directly connected to a given point are considered to be
neighbors of this point. For larger values of nLayers successively larger neighborhoods are taken
into account.

The second input, denoted nAverage, determines how many times the initial curvature values com-
puted for a triangle or for a point are being averaged with the curvature values of direct (first-order)
neighbor triangles or points. The larger the value of nAverage the smoother the curvature data being
obtained. Note, that averaging only applies to the scalar curvature values, not to the directional
curvature vectors which are computed when port output is set to max direction.

Output

240 Chapter 6: Alphabetic Index of Modules

This menu controls the output of the curvature module. If curvature is selected then a surface
scalar field is generated containing the maximal principal curvature of a triangle or of a point. If
1/curvature is selected then the curvature values are inverted. In this case the output values have
the dimension of a length, indicating the radius of a sphere locally fitting the surface.

The mean curvature and 1/mean curvature are similar to the first two options. Here, however, the
mean value of the two principal curvature values is computed. This quantity will be negative in
strictly concave regions and positive in strictly convex regions. It can be zero in regions where a
positive and negative principal curvature cancel each other.

The Gauss curvature is the product of the two principal curvatures. It is negative in surface areas
with hyperbolic geometry (convex-concave, like near saddle points) and positive in areas with
elliptic geometry (strictly convex or strictly concave).

If max direction is selected then a surface vector field is computed indicating the direction of max-
imum principal curvature. The length of a directional vector is equal to the corrsponding curvature
value.

Action

Press this button to start computation.

6.51 Gradient

The Gradient module computes the gradient of a scalar field consisting of floats defined on a uniform
grid. The output is a uniform vector field. The direction of the gradient vector depends on the setting
of port Output. If Force is selected the negative gradient vector is computed.

gradF = ±
(

∂F

∂x
,
∂F

∂y
,
∂F

∂z

)

Connections
Data [required]

Scalar field defined on a uniform grid (UniformScalarField3). The scalar values must be floats.

Ports
Output

Gradient 241

If Force is selected the negative gradient vector is computed.

6.52 GridBoundary

The Grid Boundary module is a tool for visualizing individual faces of a tetrahedral grid. The faces
may be colored according to an arbitrary scalar field. As the name implies, the module extracts bound-
aries between tetrahedra of different material type. The particular materials to be shown can be selected
manually. In some cases two materials may have no common faces and nothing will be seen. How-
ever, selecting All as the first material parameter and any other material as the second will show the
surface of the second material. Visible faces are stored in an internal buffer similar to the GridVolume
module. Likewise, the selection domain can be restricted interactively by adjusting a selection box.
Ctrl-clicking on a face makes it invisible.

If the ColorField port is connected to a scalar field, an additional colormap port becomes visible and the
faces are drawn in pseudo-color mode. By default the colormap port is not connected to any colormap.
Therefore the grid appears in a constant color. You can click with the right mouse button over the
colormap to get a popup menu of all available colormaps. When a colormap has been connected to the
module, the data values at the vertices of the selected triangles are mapped to their associated colors.

Connections

Data [required]

The tetrahedral grid to be visualized.

ColorField [optional]

Scalar field used for pseudo-coloring the selected triangles. Pseudo-coloring also requires that a
colormap has been connected to the module.

Colormap [optional]

A colormap is used to map the data values of the optional scalar field.

ROI [optional]

Optional connection to an object providing a region-of-interset, e.g., SelectRoi. Only triangles
inside this region will be visualized.

Ports

Draw Style

This port is inherited from the ViewBase class and therefore the description will be found there.
In contrast to other modules derived from the ViewBase class this module does not provide the
possibility to consider vertex and direct normals. The triangles will always be drawn flat.

242 Chapter 6: Alphabetic Index of Modules

Colormap

This port becomes visible only if a scalar field has been connected to the ColorField port. For
further details see section Colormap.

Buffer

The Buffer buttons give you some control of the internal face buffer of the GridBoundary module.
Only the faces present in the buffer are displayed according to the current drawing style. The Add
button adds the highlighted faces to the buffer. The Remove button removes highlighted faces from
the buffer. The Clear button removes all faces from the buffer. The Hide button deselects all faces
but does not change the buffer. See also PortButtonList.

Materials

This port provides two menus where all different materials of the input grid are listed. Faces which
belong to the boundary between the selected materials are displayed using a red (highlighted) wire-
frame in the viewer. You may crop the faces by turning the viewer into interactive mode and move
the green handles of the selection box. Only the faces inside the bounding box can be added to the
buffer, also see PortButtonList.

Color Mode

Here you may choose among several color modes. For details see the module SurfaceView.

6.53 GridCut

The GridCut module is a tool for visualizing a cross section of a tetrahedral grid consisting of different
materials. Within the cross section the different materials are indicated by their respective colors.
The module is derived from ArbitraryCut and thus provides the same methods for manipulating the
position and orientation of the cross section as this base class. An similar module SurfaceCut exists
for displaying filled cross-sections through a surface separating different regions in space.

Connections

Data [required]

The tetrahedral grid to be visualized.

GridCut 243

Ports

Orientation

This port provides three buttons to specify the slice orientation. Axial slices are perpendicular to
the z-axis, coronal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the
x-axis.

Options

If the adjust view toggle is set, the camera of the main viewer is reset each time a new slice orienta-
tion is selected. With the rotate toggle you can switch on the rotate handle for the cutting plane and
off again. If the immediate toggle is set the slice is updated every time you drag it with the mouse
in the 3D viewer. Otherwise only the bounding box of the cutting plane is moved and the update
takes place when you release the mouse button.

Translate

This slider allows you to select different slices. The slices may also be picked and dragged directly
in the 3D viewer.

Selection

This port maintains a list of materials to be displayed within the cross section. With the selection
menu one can select a single material. The Add button adds the currently selected material to the
list so the that is becomes visible and the Remove button removes the material so that is becomes
invisible.

Commands
Inherits all commands of ArbitraryCut.

selectMaterial <id1> [<id2> ...]

Selects the materials with the specified ids so that intersections of these materials with the cutting
plane will be shown. You need to call fire before changes take effect.

unselectMaterial <id1> [<id2> ...]

Unselects the materials with the specified ids so that intersections of these materials with the cutting
plane will not be shown. You need to call fire before changes take effect.

244 Chapter 6: Alphabetic Index of Modules

6.54 GridView

This module allows you to visualize the grid structure of a regular 3D scalar or vector field with
stacked, rectilinear, or curvilinear coordinates. The nodes of the underlying grid can be addressed
using an index triple (i,j,k). The GridView module extracts slices of constant i, j, or k index out of the
grid and displays them as a wireframe model. In principle, the module may also be connected to a field
with uniform coordinates. However, it will not be listed in the popup menu of such fields.

Connections

Data [required]

The regular field to be investigated.

Ports

Orientation

Specifies whether slices in the ij, ik, or jk plane should be displayed. For stacked as well as rectilin-
ear coordinates the indices i, j, and k refer to the x, y, and z direction, respectively.

Geometry

This port is only visible if the module is connected to a real-valued 3D vector field. In this case the
grid may be built using the data values instead of the node’s coordinates. This is a useful option if
the vector field contains displacement vectors.

Slice

Allows you to select the constant node index, e.g., the k index if orientation is set to ij.

6.55 GridVolume

The GridVolume module is a powerful tool for visualizing labeled tetrahedral volume grids, e.g., tetra-
hedral patient models. Views on various sub-grids can be specified, e.g., a view on a sub-grid cor-
responding to one of the tissue compartments of a patient model. The module maintains an internal
buffer which contains all currently visible tetrahedra. Tetrahedra belonging to a particular compart-
ment can be selected and added to the buffer. Selected tetrahedra are displayed using a red wireframe.
Having been added to the buffer they are displayed in their associated colors. The selection can be
restricted by means of an adjustable selection box. In addition, individual tetrahedra can be removed

GridView 245

from the buffer by Ctrl-clicking on one of their faces, but notice that the viewer has to be turned into
interactive mode for this. Similarly, a simple click on a face adds the tetrahedra in front of it to the
buffer.

Connections

Data [required]

The labelled tetrahedral grid to be visualized.

ColorField [optional]

Arbitrary scalar field which is mapped onto the grid volume using pseudo-coloring.

Colormap [optional]

The colormap is used for pseudo-coloring the grid volume.

ROI [optional]

Optional connection to an object providing a region-of-interset, e.g., SelectRoi. Only triangles
inside this region will be visualized.

Ports

Draw Style

This port is inherited from the ViewBase class and therefore the description will be found there.
In contrast to other modules derived from the ViewBase class this module does not provide the
possibility to consider vertex and direct normals. The triangles will always be drawn flat.

Colormap

This port becomes visible only if a scalar field has been connected to the ColorField port. For
further details see section Colormap.

Buffer

This port lets you add and remove highlighted triangles (being displayed in red wireframe) to an
internal buffer. For a further description and for the functionality of each of the port buttons see
ViewBase.

Materials

246 Chapter 6: Alphabetic Index of Modules

This port provides a menu where all materials of the input grid are listed. If you choose a material,
all tetrahedra of that material are selected and displayed using a red wireframe model. You may crop
the selection domain by turning the viewer into interactive mode and moving the green handles of
the bounding box to a position of your choice. Only the tetrahedra inside the bounding box can be
added to the buffer.

Color mode

Here you may choose among several color modes. For details see the module SurfaceView.

Commands

getSelectedTetra

Displays a run-length encoded list of all currently selected tetrahedra. The list consists of pairs of
integer numbers. The first number is the index of a selected tetrahedron. The second value denotes
the number of subsequent selected tetrahedra.

setSelectedTetra <list>

Adds some tetrahedra to the internal buffer so that they become visible. The argument is a run-
length encoded list like the one displayed by getSelectedTetra.

6.56 Grouping

This module allows you to define arbitrary groups or surface triangles and/or elements of tetrahedral or
hexahedral grids. The groups can be used to easily display parts of more complex objects. The group-
ing module can be connected to one or more ordinary display modules like SurfaceView, GridVolume,
or HexaView (in fact any module derived from ViewBase will work). In order to define a group first
select the parts of the object you are interested in using the selection mechanisms provided by the
input modules. For example, in case of a SurfaceView module different parts can be selected via the
materials menu, via the selection box (buffer show/hide), via 2D lasso selection (buffer draw), or by
selecting or deselecting individual triangles with the mouse. Once the parts of the object you want
to be in a group are visible, select the New group button. Later, this particular display state can be
restored by choosing the group from the Groups combo box again.

Internally groups are defined in a bitfield (one bit for each selectable element). The bitfields are stored
in the parameter section of the corresponding data objects. If the objects are saved in the AmiraMesh
or HxSurface file format after the groups have been defined the group definitions are saved too. In
addition, the group definitions will also be included in network files. Note, that group definitions may
become invalid if the data objects are modified, e.g., if the number of triangles of a surface is reduced
using the simplification editor.

Grouping 247

Connections

Data [required]

Connection to a display module like SurfaceView, GridVolume, or HexaView.

Module2 [optional]

Connection to an additional display module connected to some other data object than the first one.
If multiple inputs are connected to the grouping module elements of all input objects can be grouped
together.

Ports

Groups

This combo box lists all groups currently being defined. Selecting a group from the box causes the
elements contained in that group to be shown, to be added to the view, or to be removed from the
view, depending on the value of the Action port (see below).

Action

This radio box defines what happens when a new group is chosen in the Groups menu. If show is
selected, the elements of the new group become visible and all other elements become invisible.
If add is selected the elements of the new group are added to the view. If remove is selected the
elements of the new group are removed from the view. If nop is selected nothing happens. This last
option allows you to change the Groups port without changing the view.

Rename

This text port allows to rename the current group. On default new groups are called Group1,
Group2, etc.

Edit

This port provides three button for creating a new group containing all elements currently being
visible (selected, not highlighted), for deleting the current group without changing the selection,
and for replacing the contents of a group by the elements currently being visible.

6.57 HeightField

The HeightField module offers another method for the visualization of scalar data fields defined on
regular grids, such as stacks of tomographic images. The data are visualized by extracting an arbitrary

248 Chapter 6: Alphabetic Index of Modules

axial, frontal or sagittal slice out of the volume. This slice is represented as a surface for which the
heights of the vertices are mapped to the data, using a tunable scale parameter.

Connections

Data [required]

The scalar or color field to be visualized. If an RGBA color field is connected the vertices of the
height field are colored as in the color field. The displacement is computed from the fields grayvalue
intensity which is computed using the formula 0.3*R+0.59*G+0.11*B.

Colormap [optional]

The colormap used to map data values to colors.

Ports

DrawStyle

This port is inherited from ViewBase. For a description see there.

Orientation

This port provides three buttons for resetting the slice orientation. Axial slices are perpendicular to
the z-axis, coronal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the
x-axis.

Slice Number

This slider allows you to select different slices.

Scale

This slider allows you to select the desired scale for the data-heights mapping. This should be in
the range [-1,1].

6.58 HexToTet

The HexToTet module converts a hexahedral grid to a equivalent tetrahedral grid. The new tetrahedral
grid has the same points as the hexahedral grid to be converted. Each hexahedron is converted to six
tetrahedra which have the same material ID as the ’parent’ hexahedron.

The module also converts the data objects connected to the hexahedral grid.

HexToTet 249

Connections

Data [required]

Unstructured hexahedral grid to be converted.

Ports

Options

Toggles wether the data objects connected to the hexahedral grid are also converted or not.

Action

Press the DoIt button to start the conversion.

6.59 HexaView

The HexaView module displays an unstructured hexahedral grid, or parts of the grid. Optionally an
independent scalar field can be mapped onto the grid as pseudo-colors. The module behaves almost
identical to the GridVolume module for tetrahedral grids.

Connections

Data [required]

Unstructured hexahedral grid to be visualized.

ColorField [optional]

An arbitrary scalar field used for pseudo-coloring.

Colormap [optional]

The colormap used for pseudo-coloring, only used when a color field is connected.

Ports

Draw Style

Please refer to the GridVolume documentation.

250 Chapter 6: Alphabetic Index of Modules

Colormap

Please refer to the GridVolume documentation.

Buffer

Please refer to the GridVolume documentation.

Materials

Please refer to the GridVolume documentation.

Color mode

Please refer to the GridVolume documentation.

6.60 Histogram

This module computes the histogram of the data values of a scalar field and plots it in a separate plot
window. In addition, the mean value and the standard deviation are printed.

Connections

Data [required]

The scalar field to be investigated. Regular fields, fields defined on tetrahedral or hexahedral grids,
and fields defined on surfaces are supported.

Labels [optional]

A uniform label field which can be used to restrict the histogram to a certain material.

Ports

Info

Prints the mean value and the standard deviation of all input data values once the histogram has
been computed. Both info ports are only shown when the DoIt button has been pushed, i.e. the
histogram has been computed.

Histogram 251

Range

Defines the data range over which the histogram is to be computed. The Reset button adjusts the
data range so that it completely covers the values of the input object.

NumBins

Defines the number of bins (intervals) the data range is devided into. The histogram counts the
number of data values falling in each bin. In case of integer input values, i.e., bytes, shorts, or
ints, the number of bins is internally adjusted so that all bins have the same integer width. This is
required in order to avoid aliasing effects.

Options

If the normalize toggle is set the histogram is scaled so that its area equals one. Otherwise the total
number of counts is shown.

Threshold

Defines a threshold value and displays the percentage of all data values which lie above the given
threshold. The percentage corresponds to the given range. The threshold value is shown as a yellow
vertical markerline in the plot window. This markerline can be moved within the plot window by
pressing the left mouse button over the markerline and move it to the new position. The new position
is then taken as the new threshold value. The computation and display of the threshold value can be
toggled on or off. This port is only shown, when the histogram has been computed.

Tindex

The tindex value defines a reversed threshold value, i.e., a tindex of 90 returns the value where 90%
of the data values lie above that value. It is denoted by the reddish markerline in the plot window.
The computation and display of the tindex value can be toggled on or off. This port is only shown,
when the histogram has been computed.

Material

If a label field is connected to the port Labels and the input data field is a regular scalar field this port
provides the opportunity to compute the histogram for one material only. Otherwise it is hidden.

252 Chapter 6: Alphabetic Index of Modules

Action

The DoIt button actually computes the histogram and pops up the plot window containing it.

6.61 IlluminatedLines

This module displays line segments of a line set object taking into account ambient, diffuse, and spec-
ular illumination. The illumination effect is implemented internally using the same texture mapping
technique which is also applied in module DisplayISL.

Connections

Data [required]

The line set to be visualized.

Colormap [optional]

The colormap used to encode the addional data of the line set. If no colormap is connected to this
port it is used to set the default diffuse color of the illuminated lines.

Ports

ColorMode

If the line set object contains additional data values per vertex this menu allows you to select one
such variable which will be used to lookup vertex colors. If No Color has been selected the lines
will be displayed in uniform default color. This color may be changed using the default (Constant)
color setting of the colormap above.

Colormap

Optional colormap.

Options

Lighting: Controls illumination of lines. If off, constant colored lines are drawn (flat shading).
Animate: Activates particle-like animation. The animation speed may be controlled via the com-
mand setAnimationSpeed.

IlluminatedLines 253

Fade Factor

Values smaller than 1 have the effect that line segments become more and more transparent in
backward direction.

Transparency

Base transparency of the line segments.

6.62 InterpolLabels

The computational module InterpolLabels interpolates between the slices of a labelfield parallel to the
z-axis. The input must be a uniform label field.

Connections

Data [required]

Input data object of type Uniform label field.

Ports

Material

Choose if you want to interpolate all the labels or just a particular one. Note that ’Exterior’ cannot
be selected.

Intermediate slices

Choose how many intermediate slices should be interpolated. The default is computed such that a
voxel is as homogeneous as possible.

Algorithm

Two methods are implemented: The computation of an implicit function that minimizes a thin-
plate-spline functional is used to interpolate between slices (Bookstein).
The other method computes the 2D distance field of each slice and interpolates between them.
The Bookstein method takes much longer than the distance field method. It is recommended to run
this computation as a batch job (see below).

254 Chapter 6: Alphabetic Index of Modules

Speed

The slow options tries to interpolate every material by the Bookstein method. If this fails, the
distance field method is used. The medium option tries to use the Bookstein method only if the
dimension of the problem is small enough. The fast option uses only the distance field method.

Action

Pushing these buttons triggers the computation. You can chose between an online computation or a
batched computation. The last is advisable for the computation of the Bookstein method. You can
also just compute the contours for debugging.

6.63 Interpolate

This module takes two or more data objects as input, e.g. two surfaces or two tetrahedral grids, and
computes an output object by linearily interpolating the vertex positions. This can be used to create a
smooth transition between the two objects. In addition, it is possible to interpolate data fields attached
to the surfaces or grids as well.

Note, that in any case the two input data sets must have the same number of points in order to produce
meaningful results. For example, the second input could actually be a copy of the first one with an
applied transformation.

Usually, the transition is specified by a parameter u varying between 0 and n-1, where n is the number
of input objects. However, it is also possible to associate a physical time with each input. For this,
each input must define an entry Time in its parameter list which specifies the actual physical time of
this input. The time value of any input must be bigger than the time value of the preceeding input. If
these conditions are met the toggle physical time described below becomes active. A Time parameter
can be defined interactively using the parameter editor.

Connections

Data [required]

First input object to be interpolated. Must either be a surface, a tetrahedral grid, a hexahedral grid,
a field defined on one of these objects, or a lattice object like a 3D image.

Input2 [required]

Second input object to be interpolated. This object must be of the same type as the first one.

Input3 [optional]

Optional third input object. Once a third input object is connected automatically additional input
ports will be created. In this way it is possible to connect an arbitrary number of inputs.

Interpolate 255

Ports

Info

This info port reports the number of input objects, and - if available - the current physical time or
the current fractional time step depending on whether the physical time toggle is activated or not.

Options

If the input is a surface, a tetrahedral grid or a hexahedral grid and if there are additional fields
connected to these objects the first toggle allows you to interpolate the data fields as well. If the
input itself is such a data field the first toggle allows you to interpolate the mesh too. In this case
the toggle’s label will be changed appropriately.

The second toggle allows you to activate physical time mode, provided the input objects have a
Time entry in their parameter list. In this case the time slider (see below) denotes physical time,
whereas otherwise it denotes a fractional time step.

Time

Interpolation parameter. For t=0 the output will be identical to the first input. For t=1 output will
be second input. If physical time mode is active, this port spcifies the physical time for which an
output object should be computed.

6.64 InterpolateLabels

This module adds intermediate slices to a label field, thereby interpolating the labels. This is useful
e.g., to avoid stair-case effects in data sets with a large slice distance compared to the slice resolution.

Connections

Data [required]

Connects to a label field.

Ports

Materials

You can interpolate for all or for one material only. Multiple selected materials can be successively
added to the result.

256 Chapter 6: Alphabetic Index of Modules

Intermediate slices

For a uniform label field, this port specifies the number of intermediate slices. e.g., if your input
data set had 5 slices and you would specify 2 here, your result would have 13 slices.

Attempted slice distance

For a stacked label field, this port specifies the attempted slice distance for the interpolated field.
Depending on the actual slice distance in the stacked field, an appropriate number of intermediate
slices is inserted.

Interpolation

Cubic interpolation will in general generate smoother shapes.

Action

Click this button to trigger computation.

6.65 Intersect

The Intersect module shows the intersection of a surface or of the boundaries of a tetrahedral grid and
a cutting plane. For each triangle intersecting the plane a line segment is drawn. The plane description
is taken from a slicing module such as OrthoSlice or ObliqueSlice connected to port Module (any
other orange amira module can be used as well). Intersect can be chosen from the popup menu of
an existing slicing module. It can also be chosen directly from the popup menu of a surface or of a
tetrahedral grid. In this case an empty slicing module is created and Intersect is automatically attached
to it.

The line segments drawn by this module can be exported into a line set data object via the Tcl-
command createLineSet (see below).

Connections

Data [required]

Surface or tetrahedral grid to be intersected.

Module [required]

Slicing module defining the cutting plane.

Intersect 257

Ports

Line Width

Defines the width of the intersection lines in pixels.

Line Color

This port defines the color of the intersection lines.

Selection

This port allows you to restrict the number of triangles being intersected with the cutting plane. On
default all triangles of a surface or all boundary triangles of a tetrahedral grid are considered. With
the Clear button the list of possible triangles can be resetted. Afterwards triangles adjacent to a
particular material can be added again by choosing that material from the port’s option menu.

Lines

This port is only available if the module is connected to a tetrahedral grid. It specifies whether only
intersections with boundary triangles will be shown or intersections with all triangles of the grid.

Commands

setColor <r> <g>
Sets the color of the intersection lines.

createLineSet

This command exports the set of currently visible line segments into a LineSet data object. The
LineSet object will be added to the object pool. It then can be written into a file or can be processed
further in some other way. Individual line segments will be sorted in such a way that polylines
consisting of as many vertices as possible are obtained.

6.66 Isolines

This module computes isolines for an arbitary 3D scalar field on a 2D cutting plane. The plane itself
is defined by another module which must be connected to port Module. Isolines are computed using
two different algorithms depending on the type of the incoming scalar field. If the scalar field is
defined on a tetrahedral grid then all tetrahedra intersecting the plane are determined first. The straight
isoline segments are generated for these tetrahedra according to the requested threshold values. If the

258 Chapter 6: Alphabetic Index of Modules

incoming scalar field is not a tetrahedral one then the field is sampled on a regular 2D raster first. Each
rectangular cell of the raster is then checked for isolines. Note, that this approach may lead to artifacts
if the sampling density is too low.

To execute a demo script illustrating the isoline module click here.

Connections

Data [required]

Scalar field for which isolines are to be computed.

Module [optional]

Module defining cutting plane used for isoline computation.

Colormap [optional]

Colormap used for pseudo-coloring. If no colormap is connected all isolines have equal color.

Ports

Spacing

Control how isoline thresholds are being defined. In uniform a certain number of isovalues are
distributed equidistantly within a user-defined interval. In explicit mode the threshold for each
isoline has to be set manually.

Values

In uniform mode this port contains three text fields allowing the user to define the lower and upper
bound of the isoline interval as well as the number of isolines being computed in this interval.

Values

In explicit mode an arbitrary number of blank-separated threshold values can be defined in this text
field. For each threshold a corresponding isoline is displayed.

Parameters

The resolution value determines the resolution of the sampling raster used for computing isolines.
This parameter is ignored if the incoming scalar field is defined on a tetrahedral grid and the resam-
ple option is off. The second input of this port determines the width of the isolines in pixels.

Isolines 259

Options

Two toggle buttons are provided. If update min-max is set then the isoline thresholds are automat-
ically reset to some default values whenever the data range of the incoming scalar field changes.
The toggle called resample allows you to compute isolines using the resampling approach even if
the incoming scalar field is defined on a tetrahedral grid.

Colormap

Port to select a colormap.

6.67 Isolines (Surface)

This Isolines module computes isolines for a scalar field defined on a surface made of triangles. Inside
the triangles the scalar field is linearly interpolated if the scalar field contains values for every node.
If the field contains values for every surface triangle only, the isolines will follow the triangle edges if
the values of the neighboring triangles are appropriate.

Connections

Data [required]

A scalar field defined on a Surface can be connected to this port.

Colormap [optional]

A colormap is used to map the values represented by the isolines to a corresponding color. If no
colormap is connected, a constant color is used. See also Colormap.

Ports

Spacing

Controls how isoline thresholds are being defined. In uniform mode a certain number of isovalues
are distributed equidistantly within a user-defined interval. In explicit mode the threshold for each
isoline can be set manually.

Values

In uniform mode this port contains three text fields allowing the user to define the lower and upper
bound of the isoline interval as well as the number of isolines being computed in this interval.

260 Chapter 6: Alphabetic Index of Modules

Values

In explicit mode an arbitrary number of blank-separated threshold values can be defined in this text
field. For each threshold a corresponding isoline is displayed.

Parameters

The input of this port determines the width of the isolines in pixels.

Options

If update min-max is set then the isoline thresholds are automatically reset to some default values
whenever the data range of the incoming scalar field changes.

Colormap

Port to select a colormap.

6.68 Isosurface (Hexahedra)

This module computes an isosurface within a three-dimensional scalar field defined on an unstructured
hexahedral grid.

A second independent scalar field may be connected to the module. This field determines how the
isosurface is colored. If no color field is connected to the module the isosurface has constant color.

Connections

Data [required]

The scalar field defined on an unstructured hexahedral grid. The enconding must be PER-VERTEX.

ColorField [optional]

Arbitrary scalar field which is mapped onto the isosurface using pseudo-coloring.

Colormap [optional]

The colormap is used for pseudo-coloring the isosurface.

Isosurface (Hexahedra) 261

Ports

Draw Style

The draw style port is inherited from class ViewBase. For a description of this port see there.

Colormap

In case a colormap is connected to the isosurface module, this colormap will be shown here. If no
colormap is connected to the module the port’s default color is used. To change this color, click into
the color bar with the left mouse button. This will bring up the color selection dialog. To connect
the port to a colormap, use the popup menu under the right mouse button. See also Colormap.

Buffer

This port must be enabled explicitly with the command Isosurface showBuffer. For a de-
tailed description see the ViewBase documentation.

Threshold

Determines the value used for isosurface computation. The slider is automatically adjusted to cover
the whole range of data values.

Action

Press the DoIt button of this port to start the computation of the isosurface.

6.69 Isosurface (Regular)

This module computes an isosurface within a three-dimensional scalar field with regular cartesian
coordinates.

Very high-resolution datasets can be downsampled to reduce the number of polygons being produced.
In addition, an internal polygon reduction method is provided that merges certain triangles of the orig-
inal triangulation. This way, the number of triangles can be reduced up to 50%. A second independent
scalar field may be connected to the module. This field determines how the isosurface is colored. If no
color field is connected to the module the isosurface has constant color.

262 Chapter 6: Alphabetic Index of Modules

Connections

Data [required]

The scalar field defined on a regular 3-dimensional grid.

ColorField [optional]

Arbitrary scalar field which is mapped onto the isosurface using pseudo-coloring.

Colormap [optional]

The colormap is used for pseudo-coloring the isosurface.

PointProbe [optional]

If this port is connected to a PointProbe module as isovalue the value at a certain point within the
scalar field will be chosen. For details see PointProbe.

Ports

Draw Style

The draw style port is inherited from class ViewBase. For a description of this port see there.

Colormap

In case a colormap is connected to the isosurface module, this colormap will be shown here. If no
colormap is connected to the module the port’s default color is used. To change this color, click into
the color bar with the left mouse button. This will bring up the color selection dialog. To connect
the port to a colormap, use the popup menu under the right mouse button. See also Colormap.

Buffer

This port must be enabled explicitly with the command Isosurface showBuffer. For a de-
tailed description see the ViewBase documentation.

Threshold

Determines the value used for isosurface computation. The slider is automatically adjusted to cover
the whole range of data values. For CT data, use a value of -200 to extract the skin surface or a
value of about 150 to extract the bone structures.

Options

Isosurface (Regular) 263

If the compactify toggle is set, up to 50% less triangles will be produced, but it results in a slightly
shifted surface. This port further allows you to enable downsampling (see below).

Sample Factor

This port only appears if downsampling is enabled. It allows you to specify a sample factor for each
of the three main axes. The factors determine how many of the original grid points in each direction
will be merged into one.

Action

Press the DoIt button of this port to start the computation of the isosurface.

6.70 Isosurface (Tetrahedra)

This module computes an isosurface for a scalar field defined on a three-dimensional tetrahedral grid.
The triangulation inside a tetrahedron exactly matches a linearly interpolated field.

Connections

Data [required]

The scalar field defined on a tetrahedral grid.

ColorField [optional]

See port ColorField in section Isosurface (Hexahedra).

Colormap [optional]

See port Colormap in section Isosurface (Hexahedra).

Ports

Draw Style

The draw style port is inherited from class ViewBase. For a description of this port see there.

Colormap

See port Colormap in section Isosurface (Hexahedra).

264 Chapter 6: Alphabetic Index of Modules

Threshold

Determines the value used for isosurface computation. The slider is automatically adjusted to cover
the whole range of data values. If the threshold value is changed the computation of the new
isosurface is immediately invoked.

Buffer

This port must be enabled explicitly with the command Isosurface showBuffer. For a de-
tailed description see the ViewBase documentation.

6.71 IvDisplay

The IvDisplay module renders an object containing Inventor geometry data.

Connections
Data [required]

Connect a data object of type IvData to this port.

Ports
Draw Style

This port provides a menu to select on of three draw styles to render the Inventor geometry.

6.72 IvToSurface

The IvToSurface computational module parses the connected Inventor Scene Graph (Inventor geometry
data) and converts it into the surface format. This is done when you push the DoIt button. A green
icon named GeometrySurface representing the generated surface should appear.

If no data object is connected, all geometry currently displayed in the first viewer is converted.

Duplicated points are removed during the conversion. Duplicated points are points with a distance less
than the diameter of the bounding box times the given Relative Tolerance factor.

Connections
Data [required]

Connect a data object of type IvData to this port.

IvDisplay 265

Ports

Relative Tolerance

Factor to determine duplicated points.

Options

If this toggle is set the triangle connectivity of the Surface data format is filled.

Action

The surface is generated if the DoIt button is pressed.

6.73 LabelVoxel

The LabelVoxel module provides a simple threshold segmentation algorithm applicable to CT or MR
image data. The method is also suitable for binary segmentation of other grey level images. Up to
five different regions separated by four different thresholds can be extracted. For CT images the four
regions Exterior, Fat, Muscle, and Bone are predefined. However, the name of these regions as well as
the corresponding thresholds may be reset by the user.

In order to find suitable thresholds an image histogram showing the (absolute) number of occurrences
of voxel values and the current partitioning of the grey value range into the segments is provided. In
this histogram several peaks can be identified more or less clearly, e.g., the ones for fat and muscle. The
corresponding threshold or segment boundary should be set at the minima between successive peaks.
The histogram window pops up by clicking on the Histo action button, adjustments made by moving
the value sliders are shown (almost) immediately. You may change the histogram layout (scales, plots
of lines and curves, colors) using the Object Editor which pops up when you select Edit Objects in the
Edit menu of the histogram window. For more details please refer to the Plot Tool description.

Segmentation starts when you click on the DoIt action button. Before doing so several options may be
set. These options are described in detail below. The segmentation results are stored as a LabelField
data object. You may use the Image Segmentation Editor to further process this object.

Connections

Data [required]

Image data to be segmented.

266 Chapter 6: Alphabetic Index of Modules

Ports

Regions

This port lets you specify the names of the different regions to be segmented. Between two and five
regions may be specified. The individual region names must be separated by blanks.

Exterior-Fat

Lets you set the threshold separating the first and second region.

Fat-Muscle

Lets you set the threshold separating the second and third region.

Muscle-Bone

Lets you set the threshold separating the third and fourth region.

Options

Toggle subvoxel accuracy causes certain weights to be computed, indicating the degree of confi-
dence of the assignment of a voxel to a particular region. This information is used by the surface
reconstruction algorithm to create smooth boundary surfaces, c.f. the SurfaceGen module. If no
weights are present quite blocky surfaces occur. Note, that weights can also be defined using the
smoothing filter of the Image Editor.

The second option remove couch may be used for medical CT images if parts of the couch the
patient is lying on are falsely classified as muscle or bone. In particular, the biggest connected
component of voxels not assigned to the first region, i.e. Exterior, will be detected. Then all voxels
not contained in this component will be assigned to Exterior.

Finally, if option bubbles is set an algorithm similar to remove couch is applied in order to detect
bubbles or lung tissue inside the patient. Because of their low intensity values otherwise these
regions would be assigned to Exterior.

Action

The DoIt button triggers the segmentation process. The Histo button makes a window pop up
showing a histogram for the input image data.

LabelVoxel 267

6.74 LandmarkSurfaceWarp

This module deforms a vertex set object using a number of pairs of corresponding points, which are
represented by a LandmarkSet. The warping methods and the meaning of the ports are the same as in
the LandmarkWarp module. Please refer to its documentation for details.

6.75 LandmarkView

This module displays a landmark set as small spheres, or in case of medical markers shows a specific
geometry.

Connections

Data [required]

The landmark set to be displayed.

Ports

Point Set

You may select whether only the first, only the second, or all point sets are shown.

Lines

Display lines connecting corresponding points in the first and second set. This option is only present
if the input contains two or more point sets.

DrawStyle

Landmarks can be displayed as spheres/geometry or as points. If the input contains a large number
of points (several hundred, or thousands), point style can significantly improve display performance.

Size

Size of displayed spheres or points.

Complexity

The larger this value is, the nicer the spheres look, but the lower the rendering speed is.

268 Chapter 6: Alphabetic Index of Modules

6.76 LandmarkWarp

This module deforms a 3D uniform scalar field (e.g., image data) using a number of pairs of corre-
sponding points, which are represented by a LandmarkSet.

Three different transformation modes are offered: Rigid transforms the input image by applying a
global translation and rotation. Bookstein uses so called thin plate splines proposed by Bookstein.
Flow uses scattered data interpolation. Bookstein mode guarantees that all landmarks will be trans-
formed exactly to their corresponding points. This is not the case for the two others. In all three modes
nearest neighbor interpolation is used for resampling.

Connections

Data [required]

The LandmarkSet, which defines corresponding points. It must contain at least 2 sets of landmarks.

ImageData [optional]

The data set (3D uniform scalar field), which is to be transformed.

Master [optional]

If this port is connected to a uniform scalar field, the output field will have the same bounding box
and resolution as the master.

Ports

Direction

Select whether points in the first set are to be moved towards their corresponding points in the
second set, or the other way round.

Method

See description above.

Premultiply Rigid

Perform a Rigid transformation followed by the nonrigid Flow transformation.

Beta

Only available in Flow mode: The larger this value is chosen, the more local and the less smooth

LandmarkWarp 269

the resulting transformation becomes. On the other hand for beta=0, the transformation is constant.
In detail the basis function used in the flow method is
f(p1,p2) = exp(- d(p1,p2) * beta).

Norm

The norm to measure the distance in the flow algorithm. Either the L1 norm d(p1, p2) = |x1−x2|+
|y1−y2|+ |y1−y2| is used or the L2 norm d(p1, p2) = sqrt(|x1−x2|2 + |y1−y2|2+ |y1−y2|2).

Action

Triggers the computation.

6.77 LegoSurfaceGen

This module reconstructs a surface from a label field like SurfaceGen, but the surface exactly matches
the voxel boundaries. Useful for special purpose applications and for development.

Connections

Data [required]

Connection to input label field.

Ports

Options

Same behavior as the corresponding option in the SurfaceGen module.

Action

Trigger computation.

6.78 LineProbe

See Section Data Probing for details.

270 Chapter 6: Alphabetic Index of Modules

6.79 LineSetProbe

This module samples an arbitrary 3D field at the vertices of a LineSet. Since line sets can consist of
many lines every line of a line set is represented as at least one curve in the plot window according to
the dimension of the inspected field resp. to the state of the Evaluate port (see below).

The sampled values can also be saved into a copy of the input line set.

Connections

Data [required]

Can be connected to arbitrary 3D fields.

LineSet [required]

The connected line set contains the probe line(s) where the samples are taken.

Ports

Evaluate

If the probe is connected to a vector field, these radiobuttons are shown. If the magnitude button
is set the magnitude of the vectors is shown in the plot window. With the normal+tangent Comp.
button set you get the normal and tangential components as two curves. Setting the all button shows
all components of the vector field as separate curves.

Options

The average option averages the probe values by taking samples on a disk perpendicular to the
sampling points and smoothes the sampled values along the sampling line(s).

Radius

The radius of the sampling disk. This slider is only shown if the above average option is chosen.

Longitudinal Width

The width determines how many sampling values are used for smoothing. This slider is only shown
if the above average option is chosen.

Samples

LineSetProbe 271

If the Show button is pressed a plot window appears where the sampled values are plotted against
the length of the probe line(s). Note: There will be only one plot window regardless of how many
LineSet Probe modules there are in your setup. Every lineset probe is represented in that plot
window by at least one curve bearing the name of the corresponding module.

Pressing the Store button stores the sampled data in a copy of the input lineset.

6.80 LineSetView

This module visualizes data objects of type LineSet. Individual lines may be displayed in wireframe
mode. Alternatively, simple shapes like triangles or squares may be extruded along the lines. In this
way true three-dimensional tubes are obtained. Additional features of LineSetView are pseudo-coloring
and the display of little spheres at each line vertex.

Connections

Data [required]

The line set to be displayed.

ROI [optional]

Optional connection to an object providing a region-of-interset. Only line segments inside this
region will be visualized.

Colormap [optional]

Colormap used for pseudo-coloring.

Ports

Shape

Determines how the lines will be displayed. If Lines is selected a simple wireframe model will be
created. The other menu entries denote 2D objects which will be extruded along the lines in order
to obtain three-dimensional tubes.

ScaleMode

If the line set object contains additional data values per vertex this menu allows you to select one
such variable which will be used to scale the diameter of the three-dimensional tubes. If no addi-
tional data values are present only Constant scaling will be available.

ScaleFactor

272 Chapter 6: Alphabetic Index of Modules

Additional factor used to adjust the diameter of three-dimensional tubes. This factor has no effect
if shape has been set to Lines.

ColorMode

If the line set object contains additional data values per vertex this menu allows you to select one
such variable which will be used to lookup vertex colors. If No Color has been selected the lines
or tubes will be displayed in uniform default color. This color may be changed using the command
setLineColor.

Spheres

On default No Spheres is selected. Changing this selection causes a sphere to be displayed at each
line vertex. If the line set object contains additional data values per vertex there will be one entry
for each data variable. Selecting such an entry causes the sphere radii to be scaled according to the
selected variable.

SphereScale

Additional factor used to adjust the size of the spheres. This factor has no effect if No Spheres is
selected.

SphereColor

Like port Color Mode, but affects the sphere colors instead of the line colors.

Colormap

Optional colormap.

Commands

setLineColor <color>
Lets you adjust the default line color which is used if color mode is set to No Color. The color may
be specified as an RGB color triple or as a X11 color name.

setSphereColor <color>

Lets you adjust the default sphere color which is used if sphere color mode is set to No Color. The
color may be specified as an RGB color triple or as a X11 color name.

LineSetView 273

6.81 LineStreaks

This module takes a surface and randomly distributes a number of short line segments on it. The
line segments are computed as field lines of a 3D vector field projected onto the surface or as field
lines of a vector field directly defined on that surface. The latter can for example be produced by the
GetCurvature module in Max Direction mode. Instead of being visualized directly the resulting line
streaks will be stored in a LineSet data object.

Connections

Data [required]

The surface where the streaks will be put on.

VectorField [required]

The vector field from which the streaks will be computed. May be either a surface vector field or a
3D vector field.

Ports

StreakLength

Relative length of the field line segments. The length is scaled by the length of the diagonal of the
surface’s bounding box.

NumStreaks

Number of line streaks to be computed. The number of streaks per surface area will be approxi-
mately constant.

Action

Starts computation.

Commands

setResolution <res>
Allows you to adjust the resolution of the line segments. The higher the value the smaller the point
spacing. The default value is 256, resulting in a point distance of 1/256 of the length of the surface’s
bounding box.

274 Chapter 6: Alphabetic Index of Modules

6.82 MagAndPhase

The MagAndPhase module connects to a UniformComplexScalarField. For each point in space it
computes the phase and the squared magnitude and creates a UniformColorField from this information.
The squared magnitude is used to determine the alpha value (i.e. the opacity) of a voxel. The phase
determines the color using an arbitrary colormap. This module can be used to visualize quantum
mechanical wave functions.

Connections

Data [required]

Complex scalar field defined on a regular grid.

Colormap [optional]

A colormap that is used to visualize the phase. In order to avoid that phase values are being clipped
the range of the colormap should extend from −π to +π.

Ports

Colormap

Phase colormap input port.

Action

Pushing this button triggers the computation.

6.83 Magnitude

The Magnitude module computes the magnitude of the vectors of a vector field, i.e.,

|V | =
√

V 2
x + V 2

y + V 2
z

These vectors might be located on regular or on irregular grids. Regular or complex vector fields
are typically defined by uniform, stacked, rectilinear, or curvilinear coordinates. Vectors located on
vertices of triangular surface meshes or tetrahedral grids are defined by irregular coordinates.

The result of Magnitude is a field of scalars, located at positions according to the underlying grid of
the input data.

MagAndPhase 275

Connections

Data [required]

Field or complex vector field defined on a regular grid (Lattice3).

Vector field on an irregular grid, either specified by nodes of a surface, a tetrahedral or a hexahedral
grid (SurfaceField, TetraData, HexaData).

Ports

Number of Vectors

Shows number of input vectors and the vector dimension for computing the magnitude field.

Mode

Choose whether to compute the magnitude of the vector, its normal or tangential component relative
to the primary surface normals. This port is only shown if a surface vectorfield has been connected.

Compute

Pushing this button triggers the computation.

6.84 Measuring

This module gives access to some three dimensional measuring tools. The idea is to click directly into
the rendered scene and draw. The tools only work on the displayed objects.

You can access the tools via the menu View - Measuring or via the measuring tool button on the left
side of the viewer - Click on it and draw a line into the scene (click and drag). If you click onto the
button and keep the button pressed a popup menu will appear that let you change the tool (line, angle,
annotation). If you want to change the position of a tool click onto a relevant point and drag it to a new
location.

Every tool has some attributes (color, width, locked, visible, render in front, text) that are accessible
by the Tools port of the Measuring object which was created in the object pool.

Ports

Add

You can add a line, an angle or an annotation.

276 Chapter 6: Alphabetic Index of Modules

Tools

All the tools are displayed as lines in the toolbox. The columns have the following meaning (from
left to right):

• locked: If you click in the first column a key appears. The tool is locked and can’t be modified
in the viewer. Click again to unlock the tool. Click and drag over more rows to lock/unlock
more than one tool.

• visible: If you click in the second column the eye disappears and the tool gets invisible in the
viewer. Click again to toggle the visibility.

• render in front: Click in the third column. An icon appears which indicates that the tool is
always rendered in front of the scene and no longer hidden by objects that are nearer to the
camera. It also is always pickable.

• type: The fourth column indicates the type of the tool.

• text: The fifth column is an annotation to distinguish the tools. Double click to change the
text. Annotation tools display the text in the viewer.

If you select a tool it gets highlighted by drawing red squares at the relevant points in the viewer.
You can select more than one tool at the same time. With the color button and the width dropdown
menu you can change the selected tools.

6.85 Merge

This module works on any 3-dimensional field on rectilinear coordinates and merges the input data by
interpolation.

Merging

Proceed as follows: Attach a Merge module to an input field. For additional inputs, right-click on the
small rectangle on the Merge module, select an input item and drag a connection to a data icon. Input
fields can have an arbitrary transformation in which case the result field will have an axis aligned that
spans the bounding boxes of the input fields. The voxel size of the result field is determined by the
first input. At locations within the resulting volume where none of the input fields are defined voxels
are initialized with zeros.

Merge 277

For image data, you have the choice among various interpolation methods:

• Nearest Neighbor chooses for every new voxel the average value of the input voxels nearest to
it.

• Standard linearily interpolates between the surrounding voxels.

• Lanczos is the slowest but most accurate method and approximates a low pass filter. If you have
time and want to get the best result, use this one.

For label fields, this port is hidden and always Nearest Neighbor is used.

Choose an additional option and press DoIt.

Merging in progress

While merging, the progress bar at the bottom of the work area indicates the percentage of merging
that is done. You may cancel the merging any time by pressing the stop button on the right of the
progress bar.

Connections

Data [required]

The first data field to be merged.

Lattice* [optional]

Additional input data.

Ports

Interpolation

The interpolation method that will be used.

Options

Option blend controlls the merging process. If this toggle is disabled, a voxel value of the
first data field is used if such exists at a given location. Otherwise, a result value will be calcu-
lated from the additional input data. If this toggle is enabled, result values are always interpolated.

Use the second option use existing result to overwrite an existing result. If use existing result is not
set, a new result object is generated.

278 Chapter 6: Alphabetic Index of Modules

DoIt

Proceed.

6.86 MovieMaker

This module can be used to create an MPEG 1 movie or an animation consisting of a series of 2D
images in TIFF, JPEG, or PNG format. The module requires a time object as input. When creating
the movie the module iteratively sets the time value, fires the network so that other objects can adjust
themselves, and takes a snapshot of the viewer window. The snapshots are appended on-the-fly to
the specified MPEG file. In order to create an initial time object that a movie maker module can be
attached to, choose Time from the main window’s Create menu.

Connections

Data [required]

Connection to a time object. It is not required that the connected time is defined in seconds or in
any particular unit. Instead the number of frames and the frame rate are specified (see below). For
example, if 100 frames are to be recorded, the connected time is moved from its minimum values
to its maximum values in 100 steps.

Ports

Filename

The name of the resulting movie or image file(s). In order to write a series of TIFF, JPEG, or PNG
files, specify a filename with the suffix .tif, .jpg, or .png. To create an MPEG movie specify a file
with the extension .mpg . On Microsoft Windows it is also possible to specify .avi for creating AVI
movies. The filename should contain a series of hash marks ####. The hash marks will be replaced
by the actual frame number. You can also choose the output format via the file dialog which pops
up when the Browse button is pressed. If no filename is specified, no movie can be created.

Frames

The number of frames to be recorded. This value has nothing to do with the range of the connected
time object. If the input time is already defined in seconds and if you don’t want any scaling, then
the number of frames should be set to the number of seconds of the time object times the desired
frame rate.

MovieMaker 279

Frame rate

Specifies the desired frame rate. It depends on the particular movie player if the specified frame rate
is actually achieved when playing the Movie.

Frame rate

Some movie file formats are only capable of storing movies in specific frame rates. In that case this
port is shown with all possible rates of the requested format.

Compression quality

This port is shown if a lossy output file format was chosen. It allows you the adjustment of the degree
of compression. Small values indicate high compression and low quality, high values indicate low
compression and high quality.

Type

The moviemaker is able to create monoscopic and stereoscopic movies. Setup the movie type here.

Format

This port specifies the pixel format of the screenshots. If RGBA is chosen, the screenschots are
generated with an 8 bit alpha channel blending out the scene background. Using the alpha feature
has the advantage of smaller image files on complex scene backgrounds (cradient). The second
advantage of movies containing an alpha channel is that one can choose another scene background
during movie playback. Note that not all image or movie file formats are capable of storing a fourth
channel. To create alpha image files choose the suffix .tif since TIFF is capable of storing alpha
channels. The disadvantages of alpha movies are slower playback speed on some architectures and
larger data files on non-complex backgrounds (uniform).

Tiles

In order to create movies with a higher resolution than the screen, specify the number of tiles to
render in each direction. Since the anti-aliasing feature of the former Movie Maker is gone, you can
create high resolution single image files and downsample them in a batch to get smooth edges.

Size

280 Chapter 6: Alphabetic Index of Modules

Radio box allowing you to adjust the size of the recorded images. If current is specified, the current
viewer size adjusted to multiples of 16 pixels will be used. VHS/PAL means 720 by 576 pixels.
VHS/NTSC means 640 by 480 pixels. Finally, if Input XxY is specified, the size can be specified
explicitly.

Resolution

This port will only be shown if Input XxY is chosen for the Size port. It allows you to set the image
size of the resulting movie.

Action

Starts to create the movie. Since the movie is generated from snapshots, the viewer window must
not be hidden by other windows while the movie is beeing created. Furthermore the Movie data
with the module connected to its master connection port is altered with the settings of the newly
created movie. If there is not such a Movie data object connected to the module, a new one is
created.

6.87 MoviePlayer

This module allows you to play back a sequence of single images, a movie. These images can be
stored as separate files in a 2D image format supported by Amira (for example JPEG, TIFF, PNG, or
PPM) or they may packed together in one or more movie data files (moviename.amovstream). To
create movies using Amira, use the MovieMaker.

6.87.1 The Amira Movie Format

This module is capable of playing back a sequence of images. This sequence is loaded from one or
more so called streams. Each stream consists of an image sequence. During playback this module
retrieves images from all streams and meshes them together for the final image sequence which gets
then rendered to the screen. Imagine there are N streams. The first image comes from the first stream,
image 2 from stream 2, image N from stream N, image N+1 again from stream 1, image N+2 from
stream 2 and so on. (Expert note: this behavior can be changed by editing the Amira movie info
file). After specifying the streams, the module needs to know what type of movie this image sequence
forms, e.g., mono, stereo, stereo interlaced and so on. The structure of an Amira movie, i.e. the number
and specification of streams, the type and the preferred compression type, is stored in a Amira movie
info file (moviename.amov), which is a human readable and editable text file. In Amira, movies are
specified in separate data objects connectable to this module. See Movie for details.

MoviePlayer 281

6.87.2 Optimized Amira Movies

This module is capable of converting a movie to an optimized format, i.e. a format that comes up with
faster playback speed and sometimes smaller but mostly bigger but fewer data files. To perform this
conversion, connect a Movie to the input connection. That’s the source movie. Then connect a Movie
to the Result connection port. That will be the destination movie. In the stream specification for that
destination movie only Amira movie data files are allowed. The movie conversion is not able to write
into single image files (which would not make sense anyway). After this, select convert (overwrite) for
overwrite mode or convert (append) for append mode. To perform the conversion press one of the play
buttons. Seeking does not affect the destination movie, so it is possible to seek to the part of interest
in the source movie and start the conversion from there.

6.87.3 Which movie or image format should I use ?

To maximize the playback speed:

• Store many images into one or a few big Amira movie data files by performing the conversion
process. This avoids the file searching overhead especially if there are thousands of single image
files in a single directory.

• If the target system has limited CPU bandwidth, avoid using CPU-intensive operations like the
post compression feature or a CPU-intensive image reader. To find out which image reader is
the fastest you have to experiment, since it depends on the individual hardware and software
configuration. If the systems OpenGL implements the extension GL ARB texture compression,
you can compress the images using OpenGL texture compression. This has the advantage, that
the image size is reduced by factor 4 to 6 without the need for decompression by the CPU during
playback, since the decompression is performed by the GPU.

• If the target sytem has limited harddisk bandwidth, compress the data by using high compressing
single image formats like JPEG or the post compression feature in combination with the OpenGL
texture compression feature if available. If the bandwith of a single harddisk limits the playback
speed, but there are more harddisks available (like on many PCs), store the movie in multiple
streams (described above), each of them stored on a different harddisk. On systems with RAID
the movie should be stored in a single stream, since the RAID should distribute the movie data
file over many disks, which should already increase the retrieval bandwidth. Using more than
one stream jams the RAID strategy used for fast retrival of large disc files, which results in a
slowly and bumpy playback.

To maximize the playback image quality:

• Choose a loss-free image format during movie creation outside of this module and also during
movie conversion with this module. RGB(A) and gzip postcompression are loss-free. OpenGL
texture compression is lossy.

Known Issues

282 Chapter 6: Alphabetic Index of Modules

• When playing single images with readers that are not thread safe, Amira may crash. In this case
one can set the the value in the movies MaxThreads-port to 1 which sets the maximum number
of reader-threads to one, what makes the playback speed slow but allows a conversion to the
optimized format. On most platforms the JPG-reader should be thread-save. The BMP-reader
is known to be not thread-save.

Connections

Data

Connect the Movie the module is going to play or convert.

Ports

Action

Press this button to create a new Movie data object connected to this player via the movie’s Master
port. Filename and type of this newly created movie are inititialized according to the properties of
the input movie. The default number of streams is one. Alter the settings within the input movie
object to match your needs before converting data into that movie.

Mode

Set this to specify the action the module should perform. If set to play, the module will play
the movie connected to the data connection port. If set to play result, the module will play the
Movie connected with its Master port. If set to convert (overwrite), the module performs the movie
conversion from the source Movie to the destination Movie. The old contents of the destination
Movie are deleted first. If set to convert (append), the module appends the contents of the source
Movie to the destination Movie.

Position

This slider displays the current position in the movie during playback. By pulling the slider it’s
possible to seek in the movie. With the two upper adjustable sub-range buttons one can limit the
movie presentation to a smaller scene of interest. With the two outside buttons one can step through
the movie, image by image, making it possible to use this module to present a series of single
high resolution slides. By specifying an integer value in the text field one can jump directly to the
specified frame. Note that the frame count begins with zero.

Playback

MoviePlayer 283

Push these buttons to seek to the beginning of the scene of interest, to its end, to play the movie
forward or backward, and to pause or unpause playback.

Pixel format

This setting gets evaluated during the movie conversion process. If set to RGB(A) the images are
stored loss-free to the amira movie data files, 24 bits per pixel if RGB and 32 bits if RGBA. Note the
alpha blending feature of this module which is enabled if the input image contains an alpha channel
(amira is capable of creating screenshots with an alpha channel). If GL-compress is enabled and
the systems OpenGL is capable of compressing textures, this module compresses the images using
OpenGL. Note that this kind of compression is lossy. If it is not available on the current system, this
option is disabled.

Post compression

This setting is evaluated during the movie conversion process. Specify this for the destination
movie. If enabled, the MoviePlayer module compresses the image, independent of the selected
pixel format, with GZIP. The result is smaller movie data files that need more CPU power during
playback. Note that only parts of the movie stream file are going to be compressed, so it is not
possible to compress the whole file with an external zip encoder application.

Chunk size

This setting is evaluated during the movie conversion process. Sometimes the resulting amira
movie data file gets too large. With this option one can request the module to split this file into
pieces during creation. The fragments are named filename.amovstream, filename.00000001, file-
name.00000002, ..., filename.0000000N. A value of 0 disables the split feature. A value greater 0
specifies the maximum fragment size in megabytes (each 1,048,576 bytes). One can split an amira
movie stream file with external tools into fragments with arbitrary sizes. If the naming scheme
matches the one mentioned above, the module will play it correctly. Note that there is an amira
movie index file maintained by this module, which holds file numbers and byte offsets for every
image on this stream. After manual splits or to force a recreation of this index file, simply remove
it. At the next attempt to play or seek this stream, this module will scan the amira movie stream file
and recreate the index file.

6.88 ObliqueSlice

The ObliqueSlice module lets you display arbitrarily oriented slices through a 3D scalar field of any
type, as well as through an RGBA color field or a 3D multi-channel field. In the medical context such
slices are known as multi-planar reconstructions (MPR).

284 Chapter 6: Alphabetic Index of Modules

The module is derived from ArbitraryCut. See the documentation of the base class for details about
how to adjust position and orientation of a slice. Like in the OrthoSlice module three different methods
are supported to map scalar values to screen colors, namely linear mapping, monochrome mapping
based on adaptive histogram equalization, and pseudo-coloring.

Connections

Data [required]

The 3D field to be visualized. 3D scalar fields, RGBA color fields, or 3D multi-channel fields are
supported. The coordinate type of the input data doesn’t matter. The data will be evaluated using
the field’s native interpolation method (usually trilinear interpolation).

Colormap [optional]

The colormap used to map data values to colors. This port is ignored when linear or histogram
equalized mapping is selected, or when the module is connected to an RGBA color field or to a 3D
multi-channel field.

Ports

Orientation

This port provides three buttons for resetting the slice orientation. Axial slices are perpendicular to
the z-axis, coronal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the
x-axis.

Options

If the adjust view toggle is set, the camera of the main viewer is reset each time a new slice orien-
tation is selected. With the rotate toggle you can switch the rotate handle for the cutting plane on
and off. If the immediate toggle is set the slice is updated every time you drag it with the mouse in
the 3D viewer. Otherwise only the bounding box of the cutting plane is moved and the update takes
place when the mouse button is released.

Translate

This slider allows you to select different slices. The slices may also be picked with the mouse and
dragged directly in the 3D viewer.

Mapping Type

ObliqueSlice 285

This option menu controls how scalar values are mapped to screen colors. In case of a linear
mapping a user-defined data window is mapped linearly to black and white. If historam is selected,
an adaptive histogram equlization technique is applied. This method tries to show all features of the
data, even if a wide range of values is covered. Finally, colormap can be used to activate pseudo-
coloring. The port is hidden if the the module is connected to a color field or a multi-channel field.

Data Window

This port is displayed if linear mapping is selected. It allows you to restrict the range of visible data
values. Values below the lower bound are mapped to black, while values above the upper bound are
mapped to white.

Contrast Limit

This port is only visible if histogram equalization is selected. The number determines the contrast
of the resulting image. The higher the value, the more contrast is contained in the resulting image.

Colormap

This port is displayed if colormap is selected. Choose a colormap to map data to colors.

Sampling

This port controls the way how oblique slices are reconstructed. First, an option menu listing differ-
ent sampling resolutions is provided. The four choices coarse, medium, fine, and finest correspond
to an internal resolution of the underlying texture map of 128, 256, 512, and 1024 square pixels,
respectively.

The next toggle, denoted interpolate data, will only be active if the scalar field to be visualized is
defined on a uniform grid. In this case, if the toggle is off nearest neighbour interpolation is used.
If it is on or if the data is not defined on a uniform grid, then the field’s native interpolation method
is used, e.g., trilinear interpolation on regular grids.

Finally, the toggle labeled interpolate texture controls how the slice is texture-mapped by the under-
lying OpenGL-driver. If the toggle is off, nearest-neighbour sampling is used. Otherwise, bilinear
filtering is applied.

Overlay

This port determines how optional ColorWash modules are mapped onto this slice.

286 Chapter 6: Alphabetic Index of Modules

Transparency

This radio box port determines the transparency of the slice. The option is only available if the
module is connected to an RGBA color field. None means that the slice is fully opaque. Binary
means that black parts are fully transparent while other parts are opaque. Alpha means that opacity
is taken as is.

Channels

This port is shown if the module is attached to a 3D multi-channel object. It allows you to toggle
individual channels on or off. Each channel is mapped using a linear intensity ramp. The data
window for each channel can be adjusted in the multi-channel object itself.

Commands
All commands described for ArbitraryCut can be applied to ObliqueSlice as well.

6.89 OrthoSlice

The OrthoSlice module is an important tool for visualizing scalar data fields defined on uniform Carte-
sian grids, e.g., 3D image volumes. Such data are visualized by extracting an arbitrary axial, frontal,
or sagittal slice out of the volume. The data values can be mapped to colors or grey levels by one of
three mapping methods. The most simple mapping technique uses a linear grey ramp together with
two threshold values. This range determines which data values are mapped to black and which are
mapped to white. Alternatively, a contrast limited histogram equalization technique may be applied.
With this method, there is no unique correspondence between grey levels and data values any more.
The method tries to visualize all features of an image. As a third mapping method, an external color
map can be used in OrthoSlice.

The OrthoSlice module is also capable of extracting slices of an RGBA color field or of a 3D multi-
channel field. In these cases the slices are displayed as is and no mapping method need to be chosen.

Connections

Data [required]

The 3D field to be visualized. Currently, regular scalar fields, multi-channel fields, and RGBA color
fields with uniform or stacked coordinates are supported.

Colormap [optional]

Optional color map used to map scalar data to colors. This port is hidden when linear or histogram
mapping is selected. See also Colormap.

OrthoSlice 287

Ports

Orientation

This port provides three buttons for resetting the slice orientation. Axial slices are perpendicular to
the z-axis, coronal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the
x-axis.

Options

If the adjust view toggle is set, the camera of the main viewer is reset each time a new slice orienta-
tion is selected. The bilinear toggle determines how color is interpolated within a slice. By default,
the toggle is off and constant interpolation is used. With constant interpolation individual pixels
become visible. Bilinear interpolation often produces somewhat blurry results.

Mapping Type

This option menu lets you select between the three different mapping methods, namely a linear
grey ramp, histogram equalization, and colormap mode. The port is not available if the OrthoSlice
module is connected to an RGBA color field or to a 3D multi-channel field.

Data Window

This port is displayed if linear mapping is selected. It allows you to restrict the range of visible
data values. Values below the lower bound are mapped to black, values above the upper bound are
mapped to white. In order to quickly change the data window a ContrastControl module can be
attached to the OrthoSlice.

Contrast Limit

This port is displayed if histogram equalization is selected. The number determines the contrast of
the resulting image. The higher the value, the more contrast is contained in the resulting image. A
value of zero means that contrast will not be limited at all.

Colormap

Choose colormap if mapping type is set to colormap.

Slice Number

288 Chapter 6: Alphabetic Index of Modules

This slider allows you to select different slices. The slices may also be picked with the mouse and
dragged directly in the 3D viewer.

Transparency

This radio box port determines the transparency of the slice. None means that the slices are fully
opaque. Binary means that black parts are fully transparent while other parts are opaque. Alpha
means that opacity is proportional to luminance. If a colormap is used for visualization opacity
values are taken from there.

Channels

This port is shown if the module is attached to a 3D multi-channel object. It allows you to toggle
individual channels on or off. Each channel is mapped using a linear intensity ramp. The data
window for each channel can be adjusted in the multi-channel object itself.

Commands

frame {0|1}
This command lets you turn on or off the orange frame indicating the intersection of the plane with
the bounding box of the 3D field.

setFrameColor <color>

Lets you change the color of the plane’s frame.

setFrameWidth <width>

Lets you change the width of the plane’s frame in pixels.

6.90 Parametric Surface

This module can be used to define and animate arbitrary parametric surfaces in two, three dimensions.
There are some pre-defined surfaces like the Moebius strip, Klein bottle and Random mapping to
illustrate the use of the text fields that define expressions for X, Y, and Z.

The expressions may depend on u and v which are Cartesian coordinates of the plane. They can
also depend on theta and r which are their counterparts in polar coordinates. A separate spherical
coordinate system is accessible by the variables lambda and phi. The variable t is linked to the time
port and can be used to perform for example linear interpolations between two mappings like:

(t − 1) ∗ (expression1) + t ∗ (expression2). (6.3)

Surfaces can be exported by the Draw Style port (⇒ more options⇒ Create surface).

Parametric Surface 289

Connections

Data [optional]

If a regular scalar field is supplied, the generated mesh will be scaled and shifted according to its
bounding box. Using the transform editor of the data is a convenient way of scaling and shifting the
generated mesh.

Colormap [optional]

The colormap is used to calculate the color of the mesh based on the expression in the Colorport
(initially r, the radial distance of the u-v mesh point from its mean position).

Time [optional]

An additional variable which can be used in all the expression fields. It can be used to generate
animations.

Cluster [optional]

If you connect to this module a Cluster object (points in space), the module will generate a second
cluster object and apply the transformation in the expression fields to its x and y coordinates. This
may be useful to visualize the u/v plane as a point cloud.

Ports

Draw Style

Select a specific draw style for the mesh currently on display. For higher resolution meshes usually
shaded works best.

Colormap

This colormap will be used to map colors per vertex using by the values in the Color port.

Pre-defined surfaces

The pre-defined surfaces are some commonly used to illustrate analytically defined meshes. They
are mainly here to illustrate the use of the different variables in the Colorports.

As a last entry you will find a Random generator which will generate random entries for the x, y
and z ports, i.e. a random mapping. Currently there is a maximum depth of 10 for the randomly
generated expressions.

U

290 Chapter 6: Alphabetic Index of Modules

This port describes the u resolution of the initial mesh (before the transformation was applied).
Its values code the minimum value of u (step size) and the maximum value of u. Lowering the
step-size will directly increase the resolution of the mesh.

V

This port works the same way as the 6.90 port for the v parameter of the initial mesh.

X

Enter an expression to be evaluated in order to describe the x-position of a mesh in 3D space. Use
the 6.90 port to see some useful settings for this port.

Y

Enter an expression to be evaluated in order to describe the y-position of a mesh in 3D space. Use
the 6.90 port to see some useful settings for this port.

Z

Enter an expression to be evaluated in order to describe the z-position of a mesh in 3D space. Use
the 6.90 port to see some useful settings for this port.

Color

Enter an expression to be evaluated in order to describe the vertex color of the mesh. All variables
of the other fields can be used in this field. By default it contains r which is the radial distance from
the center position of the mesh.

Time

This slider is directly linked to the expression t which can be used in all x, y, z and Color ports.

DoIt

Press this button if you want to do an animation because you will need to re-compute the mesh
every time t changes.

Parametric Surface 291

6.91 PlanarLIC

This module intersects an arbitrary 3D vector field and visualizes its directional structure in the cutting
plane using a technique called line integral convolution (LIC). The LIC algorithm works by convolving
a random noise image along the projected field lines of the incoming vector field using a piecewise-
linear hat filter. The synthesized texture clearly reveals the directional structure of the vector field
inside the cutting plane. As long as no valid LIC texture has been computed a default checkerboard
pattern is displayed instead.

PlanarLIC is derived from ArbitraryCut. See the documentation of this module for details on how
to adjust the position and orientation of the cutting plane. Click here in order to execute a script
demonstrating the use of the PlanarLIC module.

Connections

Data [required]

Vector field to be visualized.

ColorField [optional]

A scalar field which may be used for pseudo-coloring.

Colormap [optional]

Colormap used for pseudo-coloring. If no colormap is connected the default color of the colormap
port will be used. The port is hidden if pseudo-color mode is set to none.

Ports

Orientation

This port provides three buttons for resetting the slice orientation. Axial slices are perpendicular to
the z-axis, coronal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the
x-axis.

Options

If toggle adjust view is active then the camera of the 3D viewer will be reset whenever one of the
orientation buttons is clicked.

If the rotate toggle is active then a virtual trackball is displayed. By picking and dragging the track-
ball you may change the orientation of the plane. Remember that the viewer must be in interaction
mode in order to do so. The ESC-key inside the viewer window toggles between navigation mode
and interaction mode. The trackball of the last active ArbitraryCut can also be turned on and off by
pressing the TAB-key inside the viewer window.

292 Chapter 6: Alphabetic Index of Modules

Translate

This port lets you translate the plane along its normal direction.

Colorize

An option menu allowing to select different pseudo-color modes. If item none is selected the LIC
texture will be displayed in greyscale only. If magnitude is selected each pixel of the LIC texture
will be colored according to vector magnitude at this point. If normal component is selected then
color denotes the signed length of the vector component perpendicular to the cutting plane. This
length will be positive if the vector points upwards or negative if the vector points downwards. If
parallel component is selected then color denotes the length of the vector component tangential to
the plane. This length will always be greater or equal than zero. Finally, if color field is selected
and if a scalar field is connected to port ColorField the external scalar field will be used for pseudo-
coloring.

Colormap

Port to select a colormap.

Lic

The input denoted filter length controls the one-sided length of the filter kernel used for line integral
convolution. The larger this value is the more coherent is the greyscale distribution along the field
lines. Often larger values are visually more attractive than smaller ones. A value of 0 lets you see
an isotropic noise pattern without any directional information.

The second input of this port determines the resolution of an intermediate sampling raster used to
compute field lines. Fine details of the vector field might be missed if the sampling resolution is
too low. The resolution value also has an effect on the granularity of the resulting LIC image. The
size of the LIC texture being computed is chosen to be the next power of two larger or equal than
the sampling resolution. For example, if the resolution is set to 128 the size of the LIC texture will
be 128x128. If the resolution is set to 129 then a LIC texture of size 256x256 will be computed,
resulting in much finer structures.

Phase

This port will only be visible if a complex-valued vector field is connected to the module. It provides
a phase slider controling which part of the complex 3D vectors is visualized. A value of 0 degree
corresponds to the real part, while a value of 90 degrees corresponds to the imaginary part. Other
values yield to intermediate vectors

PlanarLIC 293

Action

Starts computation of the LIC texture. If no LIC texture has been computed yet a default checker-
board pattern is displayed. This pattern is also displayed as soon as filter length or resolution are
changed. Press the DoIt button again in order to update the texture.

Commands

setNumSubPixels {1|2|3}
Allows you to change an internal parameter of the LIC algorithm. Since LIC images contain very
high spatial frequency components they are susceptible for aliasing. Aliasing can be almost elim-
inated by choosing the number of sub-pixels to be 2 or even 3. However, this is achieved at the
expense of in increased computing time.

writeTexture <filename>

This command allows you to write the current LIC texture into a file in raw PPM format.

6.92 PointProbe

See Section Data Probing for details.

6.93 PointWrap

This algorithm performs a surface reconstruction from a set of unorganized points. It models a probe
sphere, that is being ’dropped’ onto and then ’rolled over’ the set of points. Every three points the
sphere rests on during this tour become a triangle in the resulting surface. The result is (almost)
guaranteed to be an oriented manifold.

Connections

Data [required]

The input point set.

Ports

Probe Radius

This slider specifies the radius of the probe sphere. It is only relevant if the module is run in the

294 Chapter 6: Alphabetic Index of Modules

fixed radius mode and when looking for an initial triangle. If the algorithm is unable to find an
initial triangle try increasing this value.

Search Axis

The direction the probe is initially dropped from to find a starting triangle. If no such triangle can
be found, try a different axis.

Probe Mode

Here you can choose the probe radius to be fixed throughout the whole computation or to adapt it
to local feature size. Adaptive probe size is faster than fixed probe size and gives better details on
point sets that are relatively ’well behaved’. However, it is less robust.

Enlargement

If the algorithm is run in adaptive probe size mode the local probe size might be too small to find any
more triangles. If that happens, the size is enlarged by this factor and the local search is restarted.

MaxIterations

The iterative process described under Enlargement is repeated no more times than the number spec-
ified with this slider.

Action

The DoIt button triggers the computation.

6.94 ProbeToLineSet

This module can be connected (tight connection) to a LineProbe or SplineProbe module. It saves the
probe line resp. spline into a LineSet data object. The LineSet contains all points where samples are
taken as coordinates and the sampled values as data. Furthermore the spline controlpoints are saved in
the parameters of the LineSet. Since a LineSet can hold more than one line additional probe lines will
be saved whenever the DoIt button is hit.

If a LineSet is connected to the data port (optional) this LineSet is then copied and the probe lines are
saved into the copy.

ProbeToLineSet 295

Connections

SplineProbe [required]

This is the controlling SplineProbe resp. LineProbe module.

Data [optional]

Can be optionally connected to a LineSet. A copy of that LineSet is used to save the probe lines.

Ports

Export

Pushing this button saves the current probe line into the LineSet.

Commands

6.95 ProjectionView

This module computes a shadow projection of a 3D uniform scalar field (an image volume) onto the
three major planes (xy, xz, yz). Color fields and multi-channel fields are also supported. Maximum
intensity projection or averaging can be chosen as projection method. This module is especially useful
for data containing line-like structures like neurons or angiographic data.

If attached to a 1-component scalar field, the location of voxels containing maximal values can be
investigated interactively using the module Projection View Cursor.

Connections

Data [required]

The dataset to be projected. Uniform scalar fields, uniform color fields, and uniform multi-channel
fields are supported.

Colormap [optional]

An optional colormap which is used when the mapping type is set to colormap (see below).

296 Chapter 6: Alphabetic Index of Modules

Ports

Options

interpolate: Bilinearly interpolate between pixels on the projection planes. This in general gives
better image quality and less aliasing. However sometimes the resulting image may appear some-
what blurred.
inverse: Invert gray values. Inversion is done after mapping data values to intensity values via the
selected range.
restrict: If this toggle is set the projection is restricted to a subvolume of the original data set. The
size of the subvolume can be adjusted via the minimum and maximum ports, or interactively via a
tab-box dragger (see below).
lighting: Specifies whether the slices should be illuminated or not. If lighting is on the luminance
of the slices changes when the scene is rotated.

Show

The first three toggles can be used to turn off the yz-, xz-, or xy-slice. The fourth toggle (dragger)
is only sensitive if the restrict option is enabled (see above). If set a 3D tab-box dragger is shown
allowing you to adjust the size of the projection volume.

Mapping

The first menu specifies the projection mode. Maximum searches the largest data value in each
projection ray. Average computes the average data value for each projection ray. The options depth
and depth + max are only available for scalar fields. If depth is chosen on each slice the depth of
the pixel containing the maximum value is depicted, instead of the maximum value itself. If depth
+ max is chosen, first an ordinary maximum intensity projection is computed and mapped to a grey
image. Then the grey image is multiplied with a pseudo-color image of the depth values. This
allows to visualize both projected structures and depth information at once.

The second menu specifies how the projected data should be mapped to color or intensity. Three
modes are available, linear, histogram, and colormap. These modes are identical to the ones de-
scribed for the OrthoSlice module. Colormap is not available for color fields and for multi-channel
fields.

Channels

This port is shown if the module is connected to a multi-channel field. It allows you to turn individ-
ual channels on or of.

ProjectionView 297

Range

This port is only available in linear mapping mode. All data values smaller than the specified
minimum are mapped to black, all values larger than the maximum are mapped to white, and the
values in between are mapped linearly.

Contrast Limit

This port is only visible if histogram equalization is selected. The number determines the contrast
of the resulting image. The higher the value, the more contrast is contained in the resulting image.

Minimum

Only available if the restrict option is active. Specifies the lower left front corner of the projection
subvolume.

Maximum

Only available if the restrict option is active. Specifies the upper right back corner of the projection
subvolume.

Update

Only available if the restrict option is active. Press this button to recompute the projection after
changing the size of the subvolume.

6.96 ProjectionViewCursor

This module can be attached to a Projection View module. It visualizes a 3D location on all three
planes. The location is specified by picking (i.e. clicking on) any geometry, like an isosurface, in the
viewer. If one of the three planes of the Projection View itself is picked the module will search for the
brightest pixel to determine the missing coordinate. However, this will only work if a scalar field is
connected to the Projection View, but not for color fields or multi-channel fields.

Connections

Module [required]

This module is attached directly to a ProjetionView module.

298 Chapter 6: Alphabetic Index of Modules

Ports

Color

Color of sphere and circles.

Options

If the 3D sphere option is selected, a sphere is shown at the 3D position of the selected location.
Otherwise only the three projections of the sphere are shown.

Size

Radius of sphere and circles in percent of the bounding box diagonal length.

LandMarkSet

This port can be used to export the current cursor position into a landmark set data object. Such
an object will be created automatically the first the the Add button is pressed. After that you can
modify the cursor position and append the new position to the landmark set by pressing the Add
button again. The Clear button removes all landmarks stored in the landmark set data object.

6.97 Registration

This module computes an affine transformation for registration of two image data sets, using an it-
erative optimization algorithm. A hierarchical strategy is applied, starting at a coarse resampling of
the dataset, and proceeding to finer resolutions later on. Different similarity measures like Euclidean
distance, mutual information and correlation can be chosen.

To use this module, you must connect it to two scalar fields. To follow the progress visually, a module
like BoundingBox or Isosurface should be connected to each of them, but this may slow down the reg-
istration process. If the Register button of the Action port is pressed, the module starts by successively
optimizing the transformation of the first input.

The optimization can be interrupted at any time. Interruption might take some seconds.

Connections

Model [required]

The model dataset to be transformed.

Registration 299

Reference [required]

The reference dataset to which the model is registered.

Ports

Metric

This port selects the similarity measure to be applied. Euclidean means the Euclidean distance, i.e.
the mean squared difference between the gray values of model and reference. Correlation measures
the correlation of the registered images. The Mutual information metrics, especially the normalized
one, are recommended when medical images from different modalities, e.g., CT and MRT, are to
be registered.

Transformation

At this port you can select the number of transformation parameters to be optimized. The numbers
are 6 for Rigid (3 translations and 3 rotations), 7, 9, and 12 for IsoScale, AnisoScale, and Shear,
respectively.

If you select for example Rigid and AnisoScale, on each resolution level the 6 parameters of a
rigid transformation will be optimized first, followed by an optimization of all 9 parameters of an
anisoscale transformation. In this way as much as possible is done using a rigid transformation.

If only AnisoScale is selected, all 9 parameters will be optimized at once. A larger contribution of
the scaling parameters may be expected for this selection.

Extended options

If this toggle is unset, only the most important ports are visible. The other ports are set to default
values which should work well in most cases.

If the toggle is selected, the additional ports Optimizer, Optimizer step, QuasiNewton Optimizer
on finest N levels, CoarsestResampling, Histogram range reference, Histogram range model, and
Options become visible (see below).

Action

If the Align Centers button is pressed, the centers of gravity of both datasets are computed, taking
the image intensity as a mass density. The model dataset is translated in order to align both centers
of gravity.

If the Align Principal Axes button is pressed, the centers of gravity and moments of inertia of both
datasets are computed, again taking the image intensity as a mass density. The principal moments

300 Chapter 6: Alphabetic Index of Modules

of inertia and corresponding principal axes are computed. The best of 24 possible alignments of the
principal axes is determined according to the similarity measure as selected at the Metric port.

Pressing the Register button starts the actual registration process.

Optimizer

At this port you can choose between different optimization strategies. The ExtensiveDirection or
BestNeighbor optimizers are well suited for coarse resolution levels, the QuasiNewton or Line-
Search optimizers for the finer resolution levels. The default strategy uses the ExtensiveDirection
optimizer on the coarse levels and the QuasiNewton optimizer on the finest levels.

Optimizer step

This port sets the initial and the final value for the stepwidth to be applied in the optimizations.
These stepwidths refer to translations. For rotations, scalings, and shearings appropriate values are
chosen accordingly.

The default value for the initial stepwidth is 1/5 of the size of the bounding box. If both datasets are
already reasonably aligned, you may choose a smaller initial stepwidth.

The default value for the final stepwidth is 1/6 of the voxel size.

QuasiNewton Optimizer on finest N levels

At this port you can select the number of resolution levels (between 0 and 2) where the QuasiNewton
optimizer is applied. On the coarser levels the optimizer as selected at port Optimizer is applied.
If the number of levels is less than or equal to the number selected at this port, the optimizer as
selected at port Optimizer is applied at least at the coarsest level.

CoarsestResampling

At this port you can define the resampling rate for the coarsest resolution level where registration
starts. The resampling rate refers to the reference dataset. If the voxels of the reference dataset
are anisotropic, i.e. have a different size in x-, y-, and z-direction, the default resampling rates are
chosen in order to achieve isotropic voxels on the coarsest level. If the voxel sizes of model and
reference differ, the resampling rates for the model are chosen in order to achieve similar voxel sizes
as for the reference on the same level.

Histogram range reference

Registration 301

This port is only active if one of the Mutual information metrics has been selected. Here you can
define the range of gray values for the histogram of the reference dataset. The essential information
of the dataset should be within this range. It is a good idea to determine the range via a visualization
of the dataset, e.g., using an OrthoSlice module.

Histogram range model

The same as the previous port, now for the model dataset.

Options

If toggle IgnoreFinestLevel is selected, registration will be performed on all but the finest (i.e. the
original) resolution. In many cases a sufficient accuracy can be achieved in this way. Registration on
the finest level may slightly improve the accuracy, but the computation time will typically increase
by one order of magnitude.

6.98 Relabel

This module sorts the materials in a LabelField according to the material list of a template. Materials
which are only present in the template are added. If materials are found in the input, which are not
present in the template, a warning is issued.

The module is also capable of merging multiple label fields of the same size. This is useful if different
parts of the same data set have been segmented independently. If corresponding voxels in the input
are assigned different materials, which are both different from Exterior, the last input will be used.
If the option Conflict Material is checked, such voxels will be assigned to a new material named
MergeConflict.

This module can be used to fill a new, empty label field with materials from a previous segmentation.

Connections

Data [required]

Input LabelField.

Data2 [optional]

Additional LabelField to be merged with the first one.

Data3 [optional]

Additional LabelField to be merged with the first two ones.

302 Chapter 6: Alphabetic Index of Modules

Template [optional]

LabelField with the template material list.

Ports

Options

The verbose flag produces some information on the actual mapping. If the Modify Input option is
chosen, the input data set itself is modified instead of duplicating it, do not use this option on a data
set, while an editor is active. If the Conflict Material option is chosen in a merging action, voxels
with different materials in the input data sets are assigned to a special material called MergeConflict.

Action

Trigger computation.

6.99 Resample

This module works on any 3-dimensional field with regular coordinates, e.g., complex and non-
complex scalar or vector fields or RGBA color fields. It lets you resample the data, i.e., enlarge or
shrink the dimensions of the regular grid while recalculating the data according to it. The first port
displayed is Input Resolution which indicates the resolution of the incoming data field to be resam-
pled. If the input field has uniform coordinate the voxelsize is also displayed. The other ports depend
on whether the input field contains ordinary numbers or labels as used in image segmentation (c.f.
LabelField).

For non-labeled data fields you see the Filter, the Mode, the Resolution port and if the input field has
uniform coordinates you will see the Voxel Size port. In case of a labeled data field you see the Average
port. In both cases the DoIt button completes the port list. Depending on the existence of labeled data
the resampling operation is performed differently.

6.99.1 Resampling non-labeled data fields

For non-labeled input data the ports denoted Filter, Mode, Resolution and Voxelsize will be shown.

Filter provides an option menu allowing you to specify the filter kernel for the resampling operation.
Usually the default kernel, Triangle, yields sufficiently good results for both minifications and magni-
fications. The following filters are supported:

• Box - simple replication of scalar values, shows considerably tiling or jaggies

• Triangle - computationally simple, still sharp transition lines

Resample 303

• Bell - smoothing filter

• B-Spline - no sharp transitions, but its width causes excessive blurring

• Lanczos - excessive ”ringing” effect

• Mitchell - no sharp transitions, good compromise between ”ringing” and ”blurring”

• Minimum - useful for down-sampling, preserves tiny dark features on a bright background

• Maximum - useful for down-sampling, preserves tiny bright features on a dark background

• Cubic, width 6 - similar to Lanczos

• Cubic, width 8 - performs similar to Lanczos

The Minimum and Maximum filters can only be used to downsample non-complex data fields.

Port Mode gives you choices how to specify the resolution of the output field. If you select ‘dimen-
sions’ the port Resolution will be enabled to take your input. if you select ‘voxel size’ port voxel size
is enabled.

If you connect a second field to the Reference connection the behavior will be a little bit different. If
you select ‘dimensions’ the output field will have the same dimensions as the reference field. If you
select ‘voxel size’ the voxel size will be taken from the reference. Additionally the choice ‘reference’
is enabled which resamples directly onto the lattice that is provided by the reference field.

To start resampling, press the DoIt button.

6.99.2 Resampling labeled data fields

Labeled data fields can only be down-sampled. Instead of Filter and Resolution a port denoted Average
appears. This port allows you to enter the number of cells to average in every dimension. Note, that
no enlargement is possible.

As above, the DoIt button initiates the resampling.

6.99.3 Coordinates of the resampled data set

Resampling can be performed on any 3-dimensional field with either uniform, stacked, rectilinear, or
curvilinear coordinates. The resampling operation does not change the coordinate type. If you want to
convert a data set with stacked, rectilinear, or curvilinear coordinates into one with uniform coordinates
you should use the Arithmetic module instead of Resample. The coordinates of the resampled data set
are obtained by a resampling operation on the coordinates of the input data set.

Note, that in general the bounding box of the resampled data set will be different from the one of the
input data set. In particular, for uniform coordinates the bounding box will extend from the center of
the first voxel to the center of the last one.

304 Chapter 6: Alphabetic Index of Modules

6.99.4 Resampling in progress

While resampling, the progress bar at the bottom of the work area indicates the percentage of resam-
pling that is done. You may cancel the resampling calculation any time by pressing the stop button on
the right of the progress bar.

Connections

Data [required]

The underlying data field to be resampled.

Reference [optional]

A reference lattice. It can provide the new resolution, the new voxelsize or the new lattice.

Ports

Input Resolution

Displays the resolution of the input data set.

Input Voxel Size

Displays the voxelsize of the input data set (if available).

Filter

This lets you select one of the resampling filters mentioned above. This will only be visible if the
input data set does not contain labels.

Mode

This lets you select whether you want to specify the new resolution or the new voxelsize. If a
reference lattice is connected the values a taken from there. Additionally there is the option enabled
to sample directly onto the points of the reference lattice.

Resolution

Specifies the resolution of the output data set. This port will only be visible if the input data set does
not contain labels.

Resample 305

Voxelsize

Specifies the voxelsize of the output data set. This port will only be visible if the input data set does
not contain labels and has uniform coordinates.

Average

Specifies how many labels should be averaged during down-sampling. This port will only be visible
if the input data set contains labels.

Action

Starts resampling.

6.100 Scale

The Module displays a 2D coordinate System on top of the rendering area. The coordinate a calculated
on a plane perpendicular to the viewing direction located a the focal distance of the camera. The focal
distance is the point about which rotations are preformed. In orthogonal projections the displayed
distances are valid for all parts of the picture, in perspective projection only for the mentioned plane.
The location and size of the coordinate system can be controlled by the ports. The module scales things
to get ‘nice’ numbers (no fractionals). Create an instance with the Edit-Create menu.

Ports

PosX

The position of the origin (fraction of horizontal size of the viewing area).

PosY

The position of the origin (fraction of vertical size of the viewing area).

SizeX

Maximal size of the coordinate system. (fraction of viewport size).

306 Chapter 6: Alphabetic Index of Modules

SizeY

Maximal size of the coordinate system. (fraction of viewport size).

Frame

Select the parts of the frame which should be drawn.

Ticks

Select whether Ticks, Grid and Text should be drawn.

SubTicks

Select whether SubTicks and SubGrid should be drawn.

Unit

A unit that is displayed at the axes.

Color

Color of the coordinate system.

6.101 ScanConvertSurface

This module computes a volumetric representation of closed manifold and non-manifold surfaces. The
result is a 3D uniform LabelField, whose bounding box and dimension can either be specified by filling
in the corresponding ports or by a connecting a reference field. Each voxel on the inside of the surface
is labelled according to material index of the surface. The user can choose to label all or pick out single
materials.

Connections
Data [required]

Surface to be converted.

Field [optional]

Reference regular 3D field, whose dimensions and bounding box are used to define the resulting
field.

ScanConvertSurface 307

Ports

Bbox

Bounding box of the resulting field.

Dimensions

Dimensions of the resulting field.

Materials

Material(s) of the surface to be converted.

Options

If a reference LabelField was connected, the volume overlap of the materials of the resulting field
with the reference field can optionally be computed. Its value will be written to the console window.

Action

Starts the computation.

6.102 SeedSurface

This module extends the vector field visualization module DisplayISL. It allows you to compute
illuminated field lines of a vector field with seed points distributed across an arbitrary surface.

First, load both the vector field and the surface into amira. Then attach DisplayISL to the vector field.
From the popup menu of DisplayISL choose SeedSurface. The SeedSurface module automatically
connects itself to the first surface found in the object pool. Of course, you may change the surface
connection at any time later on. Properties of the illuminated field lines such as base opacity, fade
factor, or color will be determined by DisplayISL.

Connections

Data [required]

Module of type DisplayISL which is used to display the illuminated field lines.

DisplayISL [required]

The surface on which the field lines will be distributed.

308 Chapter 6: Alphabetic Index of Modules

Ports

NumLines

Number of field lines to be displayed. This port will only be visible if distribution mode on surface
has been selected. The distribution algorithm tries to achieve a constant seed density per surface
area.

Length

The length of the field lines, or more precisely, the number of atomic line segments, in forward
respectively backward direction. The lines may stop earlier if a singularity (i.e. zero magnitude) is
encountered or if the field’s domain is left.

Balance

On default field lines are equally long in forward and backward direction, corresponding to a balance
value of 0. This port allows you to change this behavior. A value of -1 indicates that field lines
should extend in backward direction only, while a value of 1 indicates that field lines should extend
in forward direction only.

Distribute

On the one hand, this port provides a DoIt button which is used to initiate distribution of seeds and
recomputation of field lines. Once the incoming vector field has changed or you have modified the
number of field lines or the line’s length you have to press DoIt in order to update the display.

On the other hand, the port also provides an option menu specifying the seed distribution mode. If
at vertices is chosen a field line is started at each vertex of the surface. If on surface is chosen a
user-defined number of field lines will be uniformly distributed across the surface.

6.103 SelectRoi

This module defines a region-of-interest with the shape of an axis-aligned 3D box. This box can be
used to restrict the output of many visualization modules like Voltex, ProjectionView, or all modules
derived from ViewBase, e.g., Isosurface or HxSurfaceView.

Connections

Data [required]

Connection to a 3D data object which defines the maximum size of the region-of-interest. Only the

SelectRoi 309

bounding box of the data object but not the data itself is interpreted by this module.

Ports

Minimum

Minimum x-, y-, and z-coordinates of the region-of-interest.

Maximum

Maximum x-, y-, and z-coordinates of the region-of-interest.

Options

If the option show dragger is enabled a tab-box dragger is shown which allows you to interactively
adjust the region-of-interest in the 3D viewer.

Draw

After pressing the restrict button you can draw a contour in the viewer window in order to restrict
the region-of-interest. However, note that although you can draw an arbitrary contour the region-of-
interest itself still remains a box. The reset button resets the box so that is covers the full bounding
box of the connected data set.

6.104 Shear

This module shears a uniform scalar field by shifting each xy-slice in y direction. The shift is propor-
tional to the z-coordinate of the slice, resulting in a shear-operation. The angle between the original
and the sheared z-axis can be specified.

Connections

Data [required]

Connects to uniform scalar fields.

Ports

Info

The output field will be larger than the input field. This port gives the details.

310 Chapter 6: Alphabetic Index of Modules

Angle

Specifies the angle between the input z-axis and the sheared z-axis. Positive and negative values are
allowed.

DoIt

Triggers the computation.

6.105 Smooth Surface

This module smoothes a surface by shifting its vertices. Each vertex is shifted towards the average
position of its neighbors. Special care is taken in the case of boundary vertices, for which not all the
neighbors are considered, but only those that are also on the boundary. In this way sharp boundaries
are preserved.

The smoothing operation is controlled by two tunable parameters: the number of iterations to be
performed and a lambda coefficient which should be in the range 0...1 and describes the step for each
iteration.

Connections

Data [required]

The surface to be smoothed.

Ports

Parameters

Contains two parameters: Iterations specifies the number of steps for the smoothing, lambda is a
shifting coefficient which should be in the range (0..1)

Action

The DoIt button starts the smoothing operation. Pressing DoIt once again causes the result to be
smoothed further. The input is only accessed if no result is present. This behaviour is different from
most other modules but it allows better interactive control of the smoothing operation.

Pressing the Reset button restores the original surface, i.e., the input is copied to the output.

Smooth Surface 311

6.106 Splats

This module visualizes scalar fields defined on tetrahedral grids using a direct volume rendering
technique called cell projection splatting. The principle of this method is to display a kind of
semi-transparent clouds. The higher the data values the brighter and more opaque these clouds
are. Often, meaningful results are obtained if this technique is used in conjunction with a standard
isosurface module.

In order to get correct results for linearly varying functions a special texture mapping technique is
applied. On machines where texture mapping is not supported in hardware this might be quite slow.
As an alternative untextured splats may be used. However, in this case the scalar field is assumed to be
constant in each tetrahedron. To obtain such a piecewise constant function the vertex values of each
tetrahedron are averaged. As a consequence artifical discontinuities might be observed.

Connections
Data [required]

The tetrahedral scalar field to be visualized.

Ports

Alpha Scale

A global factor used to change the overall transparency of the individual splats. Higher values
produce denser clouds.

Gamma

This value determines how the function value between the min and max values of port Range will be
mapped to opacity and color. If the gamma value is 1 a linear mapping will be used. If the gamma
value is smaller than 1 the overall appearance of the cloud gets more opaque. If the gamma value is
bigger than 1 the cloud gets more transparent.

Range

Data range. Regions where the function value is below the min value will be completely transparent.
Likewise, regions where the function value is above the max value will be opaque.

Interpolation

Lets you select the type of splats being used. Constant enables untextured splats. Linear enables
textured splats. The latter setting will be able to correctly display linearly varying scalar fields.

312 Chapter 6: Alphabetic Index of Modules

Commands

setColor <color>

Lets you define the base color of the volume rendered clouds. On default an orange color
will be used (0.8 0.6 0.1). The color may be specified by either an RGB triple in range 0...1 or by a
common X11 color name, e.g., green.

6.107 SplineProbe

See Section Data Probing for details.

6.108 StandardView

The StandardView module displays a 3D image data set or, more precisely, a 3D scalar field with either
uniform or stacked coordinates in three different 2D windows at once. The windows show coronal,
sagittal, and axial views of the data, respectively. These views correspond to standard xy-, yz, and
xy-orientations. Note, that for the axial (xy) view the origin is in the upper left corner. This is the
standard orientation used in radiology. In each 2D view the position of the two other slices is indicated
by a colored cross hair. You may click at any point in a 2D view in order to reposition the two other
slices. The upper left part of the viewer window shows the usual 3D view.

Connections

Data [required]

The 3D scalar field to be visualized.

OverlayData [optional]

If this port is connected to a second 3D image data set, an overlay of both images is shown in the
2D windows.

Ports

Info

This port gives some information about the value of the 3D scalar field at the point where the three
2D slices intersect, as well as its coordinates.

Range

SplineProbe 313

Controls the mapping of input data to gray values. Values below min are mapped to black, values
above max are mapped to white. Values between min and max are mapped linearly.

SliceX

Number of slice currently displayed in sagittal (yz) window.

SliceY

Number of slice currently displayed in coronal (xz) window.

SliceZ

Number of slice currently displayed in axial (xy) window.

Zoom

Allows you to decrease, reset, or increase the current image magnification factor. You may also
press [Ctrl][z] to zoom down or [Ctrl][Shift][z] to zoom up.

Overlay mode

This port is only visible if a second image dataset has been connected to input port OverlayData.
You can choose one of four overlay modes: in blend, add, and maximum mode a blending, the sum,
or the maximum of both images is shown, respectively. In checkerboard mode the 2D windows are
divided like a checkerboard showing both image datasets alternately.

Overlay range

This port is only visible if a second image dataset has been connected to input port OverlayData. It
controls the mapping of the second image dataset to gray values, similar to port Range for the first
image dataset.

Blend factor

This port is only visible if overlay mode blend has been selected. It controls the blending of both
image datasets. Blend factors 0 and 1 mean that only the first or only the second dataset is shown,
respectively. For values between 0 and 1 a linear interpolation is done.

314 Chapter 6: Alphabetic Index of Modules

Pattern size

This port is only visible if overlay mode checkerboard has been selected. It controls the size of the
checkerboard tiles.

6.109 StreamRibbons

This module displays stream lines or stream ribbons in a flow field. Stream ribbons are computed
by tracing two individual stream lines and connecting them by triangles. The initial orientation of
a stream ribbon is orthogonal to the normal direction of the flow field at the seed point. The seed
points themselves are defined interactively by moving a seed shape in space (a line, a circle, or a filled
square). The seed shape can be transformed using an Open Inventor transformer dragger. In amiraVR
it is also possible to pick and transform the dragger using the 3D mouse.

Connections

Data [required]

The vector field to be visualized.

Colormap [optional]

Colormap used to depict vector magnitude.

Ports

Colormap

Colormap used to depict vector magnitude.

Resolution

Logarithmic slider allowing to adjust the resolution of the stream line tracing algorithm. A value of
1 means a 10 times higher resolution compared to the default, while a value of -1 means a 10 times
smaller resolution. The higher the resolution the more line segments and triangles are generated.

Density

Logorithmic slider allowing to adjust the density of stream lines or stream ribbons. The higher the
value the more lines or ribbons are traced.

StreamRibbons 315

Width

This slider can be used to adjust the width or thickness of the stream ribbons. The default thickness
is set proportional to the length of the diagonal of the bounding box of the input data set.

Length

Adjusts the length of the stream lines or stream ribbons.

Seed type

Defines the seed type: along a straight line segment, along a circular line, or inside a square regions.

Mode

Defines if simple stream lines or stream ribbons should be traced.

Action

The Add and Clear buttons have no meaning yet. The third button allows you to show or hide the
Open Inventor dragger for manipulating the seed shape position.

Commands
Inherits all ports of Object.

setBox -b xmin xmax ymin ymax zmin zmax
Sets the position of the Open Inventor dragger so that it matches the specified box. The display is
updated automatically.

setBox [-t x y z] [-r x y z phi] [-s x y z]

Alternate way of setting the Open Inventor dragger. The three optional arguments indicate the
translational, rotational, and scaling part of the dragger’s transformation matrix. With this command
it is possible to set the dragger in an arbitrary way (it must not be axis-aligned). If all three parts are
specified the option strings -t, -r, and -s can be omitted.

getBox
Returns the current transformation of the dragger in terms of translation (first three numbers), rota-
tions (next four numbers), and scaling (last three numbers). The result can be used as the arguments
of the setBox command.

316 Chapter 6: Alphabetic Index of Modules

6.110 StreamSurface

This module computes stream surfaces of an arbitrary 3D vector field. A stream surface consists
of multiple interconnected stream lines started along a predefined line source. The algorithm auto-
matically inserts new stream lines in divergent regions of the field. Likewise, in convergent regions
stream lines are automatically removed. The resulting stream surfaces can be accumulated in a sepa-
rate Surface object. In this way further post-processing is facilitated, for example, computation of a
LIC texture using SurfaceLIC.

Connections

Data [required]

The 3D vector field to be visualized.

Colormap [optional]

Optional colormap. On default, the current stream surface will be display in wireframe mode and
will be colored according to the arc-length of the stream lines forming the stream surface.

Ports

Colormap

Port to select a colormap.

Origin

This port defines the seed point of the stream surface. By pressing the toggle show a crosshair
dragger can be activated which allows you to change the seed point interactively in 3D.

Actually, in order to compute a stream surface not only a seed point but a seed line is required.
Starting from the seed point, such a line will be defined automatically taking into account the seed
selection mode chosen in port Action.

Resolution

Controls the resolution of the discretized stream surface or, more precisely, the preferred edge length
of the triangulation. Smaller values results in more details.

Length

Value n determines how far the surface should be traced in backward direction. Value m determines

StreamSurface 317

how far the surface should be traced in forward direction. Value width determines the extent of the
seed line. The actual lengths in physical space depend on the value of port resolution. All values
may be changed using the right mouse buttons by means of a virtual slider.

Action

This port provides push buttons allowing you to store the current stream surface in a surface object
(add to result), respectively to remove all triangles from this surface again (clear result). Moreover,
the port provides an option menu allowing you to select the mode used for automatic seed line
definition. The following modes are supported:

Binormal: The seed line will be traced in a direction perpendicular to both the stream line’s tangent
and normal (curvature) direction. Often this gives quite meaningful results. However, note that in
general the stream surface’s normal vectors do not conicide with the stream line’s curvature vectors
except at the seed line.

Normal: The seed line will be traced along the field line’s normal (curvature) direction.

X-axis: The seed line is chosen in x-direction

Y-axis: The seed line is chosen in y-direction.

Z-axis: The seed line is chosen in z-direction.

Commands

setLineWidth <width>

Sets line width of wireframe model.

setTolerance <eps>
Sets relative tolerance used for field line integration. The default is 0.001 times the sampling width
set in port resolution.

doLineSet {0|1}
If argument is 1 only stream lines will be displayed instead of the stream surface’s triangulation.

setDrawStyle {1|2}
Allows you to set the draw style used in surface mode, i.e., when doLineSet is off. A value of 1
denotes wireframe mode, while a value of 2 denotes shaded surface mode. In order to display the
surface in a more fancy way convert it into a surface object and use SurfaceView.

6.111 SurfaceArea

This module calculates the area of the individual patches of a surface (patch mode). The results are
stored in a spread sheet data object.

318 Chapter 6: Alphabetic Index of Modules

In an alternative mode the area and the enclosed volume of the different regions defined in the surface
are computed (material mode). In this mode the total surface area is twice as large since every triangle
contributes to two regions. Note, that for this mode it is required that the surface is closed, i.e., that all
regions are completely enclosed by triangles. Otherwise, the computed volumes will be incorrect.

Connections

Data [required]

The surface to be investigated.

Ports

Mode

Toggles between material mode and patch mode.

In material mode the resulting spread sheet object contains one row for every non-empty region
of the surface. Each row contains the name of the region, the number of triangles of the region’s
boundary, the surface area of the boundary, as well as the enclosed volume. Usually, for the exterior
region the volume is negative.

In patch mode the resulting spread sheet object contains one row for every patch of the surface.
Each row ontains the patch id, the patch’s inner region name, the patch’s outer region name, the
number of triangles of the patch, and the surface area of the patch. In the following columns the
total number of triangles and the total surface area are printed. If the surface data structure also
contains the surface contour, the surface perimeter is displayed. Note that you might have to use the
recompute command of the Surface module, to obtain the contour information.

Action

Starts computation.

6.112 SurfaceCut

The SurfaceCut displays a filled cross-section through a surface generated by the SurfaceGen module.
The surface is supposed to separate different volumetric regions from each other without any holes.
Within the cross section the different materials are indicated by their respective colors. If the surface
does not form closed loops in the intersection plane these parts will not be shown. The module is
derived from ArbitraryCut and thus provides the same methods for manipulating the position and
orientation of the cross section as this base class. An analog module GridCut exists for displaying
cross-sections in a tetrahedral finite-element grid.

SurfaceCut 319

Connections

Data [required]

The surface to be visualized.

Ports

Orientation

This port provides three buttons to specify the slice orientation. Axial slices are perpendicular to
the z-axis, coronal slices are perpendicular to the y-axis, and sagittal slices are perpendicular to the
x-axis.

Options

If the adjust view toggle is set, the camera of the main viewer is reset each time a new slice orienta-
tion is selected. With the rotate toggle you can switch on the rotate handle for the cutting plane and
off again. If the immediate toggle is set the slice is updated every time you drag it with the mouse
in the 3D viewer. Otherwise only the bounding box of the cutting plane is moved and the update
takes place when you release the mouse button.

Translate

This slider allows you to select different slices. The slices may also be picked and dragged directly
in the 3D viewer.

Selection

This port maintains a list of materials to be displayed within the cross section. With the selection
menu one can select a single material. The Add button adds the currently selected material to the
list so the that is becomes visible and the Remove button removes the material so that is becomes
invisible.

Commands
Inherits all commands of ArbitraryCut.

selectMaterial <id1> [<id2> ...]

Selects the materials with the specified ids so that intersections of these materials with the cutting
plane will be shown. You need to call fire before changes take effect.

320 Chapter 6: Alphabetic Index of Modules

unselectMaterial <id1> [<id2> ...]

Unselects the materials with the specified ids so that intersections of these materials with the cutting
plane will not be shown. You need to call fire before changes take effect.

6.113 SurfaceDistance

This module computes several different distance measures between two triangulated surface. For each
vertex of one surface it computes the closest point on the other surface. From the histogram of these
values the following measures are computed:

• mean distance

• standard deviation from the mean distance

• root mean square distance

• maximum distance (Hausdorff distance)

• medial distance

• area deviation: percentage of area that deviates more than a given threshold

By using an octree structure the computation is sped up, but may fail, when two surfaces are too
different in their shape or location.

Connections

surface1 [required]

any triangulated surface

surface2 [required]

any other triangulated surface

Ports

Direction

The distance measures are non–symmetric. Thus one can compute them from surface 1-¿2 or vice
versa 2-¿1. One way to get symmetric measures is to join the histograms from both directions into a
single histogram (Two–sided option). Note that the two-sided option takes twice as long to compute
as their one-sided counterparts.

Consider

SurfaceDistance 321

When computing the closest points, one can chose to respect either patches or patches and con-
tours. This means, that closest points from any patch/contour will be restricted to lie on the same
patch/contour of the other surface.

Maximal distance

Value for the distance to be used when no closest point could be computed. This can happen when
surfaces are too far apart or too different in their shape.

AboveThreshold

Threshold value for the computation of the area deviation.

Output

Optional output of the vectors from each point on one surface to their associated closest points on
the other surface, or only their magnitude (distance option).

Action

Start computation.

Info

Resulting distance measures will be displayed here: mean, standard deviation, root mean square
and maximum.

Info2

Resulting distance measures will be displayed here: median, area deviation. If the connected sur-
faces have the same number of nodes. The root mean square distance between two vertices with the
same index will be computed as well. This is of interest, when you have computed correspondences
by some other method than the closest points computation.

6.114 SurfaceField

This module computes a SurfaceField from a Surface and a UniformScalarField. It can be choosen
between encoding on nodes, on triangles, and on triangle nodes.

322 Chapter 6: Alphabetic Index of Modules

Connections

Surface [required]

A surface that is the domain of the surface field to be generated.

Data [required]

A 3D scalar field.

Ports

DoIt

starts computation of surface field

Encoding

The encoding defines how the data is stored:

• On the the nodes of the surface.

• On the triangles of the surface.

• Three data values per triangle, one for each node.

6.115 SurfaceGen

This module computes a triangular approximation of the interfaces between different tissue types in
a LabelField with either uniform or stacked coordinates. The resulting surfaces can be non-manifold
surfaces. In earlier releases of amira this module was called GMC.

Depending on the resolution of the incoming LabelField the resulting triangular surface may have a
huge amount of triangles. Therefore it is often recommended to start with a downsampled version of
the LabelField, e.g., with a resolution of 128x128 pixels per slice. During the resampling process the
Resample module will create or update the probability information of the LabelField. This way the
loss of information caused by the resampling process will be minimized. The SurfaceGen module can
use the probability information to generate smoother surfaces.

Connections

Data [required]

LabelField from which the interfaces should be extracted.

SurfaceGen 323

Ports

Smoothing

This port controls the way in which the module generates a smooth surface. If set to none, no sub-
voxel weights are used and the resulting surface will look staircase-like. If set to existing weights,
then pre-computed weights are used; such weights can be generated with the resample module
or the smoothing filter in the image segmentation editor. The options constrained smoothing and
unconstrained smoothing generate sub-voxel weights, such that the surface is naturally smooth;
in the constrained smoothing mode, the module guarantees that no label be modified: any two
voxel centers that have been labeled differently before the smoothing are separated by the generated
surface afterwards. This is not necessarily the case for every small detail in the unconstrained case.
The amount of smoothing can be controlled via the TCL interface. Type

SurfaceGen setVar SmoothKernelSize <value>

into the amira console, to change the default, which is 5 for the unconstrained and 4 for the con-
strained case. The values are not limited to integer variables.

Options

This port provides two toggles.

The first toggle, add border, ensures that the resulting surfaces will be closed, even if some regions
extend up to the boundary of the LabelField. Closed surfaces are required if a tetrahedral grid is to
be generated later on.

If compactify is on then a specialized post-processing edge-contraction technique is used to reduce
the number of triangles in the resulting surface. See the description of the port Minimal Edge Length
below for a more detailed explanation.

Border

This port will only be visible if add border has been selected. It provides two toggle buttons labeled
adjust coords and extra material.

It the first option is selected points belonging to triangles adjacent to boundary voxels will be moved
exactly onto the nearest boundary face of the bounding box. In this way the resulting surface appears
to be sharply cut off at the boundaries.

The second toggle indicates that triangles adjacent to boundary voxels will be inserted into separate
patches. The outer region of these patches will be called Exterior2. If the toggle is off no such
extra material will be created. Instead, the boundary is assumed to be labeled with 0, which usually
corresponds to Exterior.

324 Chapter 6: Alphabetic Index of Modules

Minimal edge length

A non-vanishing value indicates that short edges of the final surface should be contracted in order
to increase triangle quality as well as to decrease the number of triangles. The value of the port
indicates the minimal allowed edge length relative to the size of a unit grid cell. On default, values
between 0 and 0.8 can be entered. Typically, a value of 0.4 already yields good results. However,
note that intersections may be introduced during edge contraction. If you want to avoid this try to
use the simplification editor. The editor applies some special strategies in order ensure topological
consistency.

Action

This port has a single button Triangulate which is used to start surface extraction. Depending on
the size of the LabelField the algorithm requires up to a minute to finish.

6.116 SurfaceLIC

This module visualizes a vector field defined on an arbitrary triangular surface using line integral
convolution (LIC). Alternatively, a 3D vector field projected onto such a surface can be visualized.
The LIC algorithm works by convolving a random noise function along field lines tangential to the
surface using a piecewise-linear hat filter. In this way for each triangle a small piece of texture is
computed and mapped back onto the surface. The final surface texture clearly reveals the directional
structure of the surface vector field. A similar 2D algorithm is implemented by the PlanarLIC module.

Click here to execute a script demostrating the SurfaceLIC module. Computation of the surface LIC
texture may take about half a minute.

Connections

Data [required]

Surface for which a LIC texture is to be computed.

VectorField [required]

Surface vector field or 3D vector field to be visualized.

ScalarField [optional]

An optional scalar field which can be used for pseudo-coloring.

Colormap [optional]

Colormap used for pseudo-coloring. If no colormap is connected the default color of the colormap
port will be used.

SurfaceLIC 325

Ports

Colormap

Port to select a colormap.

ColorMode

Three different color modes are provided. If Constant is selected then a uniform overall base color
is used for the LIC texture. This will be the default color of the colormap port or the left-most color
of the colormap connected to this port, if any. If Magitude is selected then the LIC texture will be
colored according to the magnitude of the vector field. Finally, if Color field is selected and a scalar
field is connected to the module then the LIC texture will be colored according to the values of this
scalar field.

Texture Interpolation

A radio box determining how the triangle textures are being filtered by the underlying OpenGL
driver. Possible choices are constant or bilinear interpolation. Usually, you will not see a big
difference unless you zoom up the image very much.

Contrast

This port provides two parameters controlling the amount of contrast of the final LIC texture. Input
field center specifies the average grey value of the texture. Higher values result in brighter images.
Input field factor determines the width of the grey value histogram, which is of Gaussian type.
Higher numbers produce more contrast.

Options

Parameter filter length specifies the one-sided length of the triangular filter kernel used for line
integral convolution. The larger this value the more coherent the greyscale distribution along the
field lines. Often larger values are visually more attractive than smaller ones.

The second input determines the resolution of the LIC texture. More precisely, the width of a
single texture cell is chosen to be equal to the length of the diagonal of the incoming vector field’s
bounding box divided by the value of the resolution field.

Action

326 Chapter 6: Alphabetic Index of Modules

Starts computation of the surface LIC texture. Computation may take a minute or more depending
on texture resolution and on the number of triangles of the surface.

Commands

setAmbientColor <color>

Allows you to change the ambient color of the surface.

setDiffuseColor <color>

Allows you to change the diffuse color of the surface.

setSpecularColor <color>

Allows you to change the specular color of the surface.

setShininess <value>

Allows you to change the shininess of the surface.

setCreaseAngle <value>

Neighboring triangles will share a common vertex normal if the angle between their face normals
is smaller than the crease angle. The default value is 60 degrees. This command lets you overwrite
this value. Note, that discontinuities will appear if the triangles of the input surface are not oriented
in the same way. In order to fix this, use the command fixOrientation of the surface.

6.117 SurfaceView

This module allows you to visualize triangular surfaces, i.e., data objects of type Surface. Derived
from the generic ViewBase class, the module provides an internal buffer of visible triangles. You
can add triangles to this buffer by means of two special option menus. For example, if your surface
contains regions FAT and MUSCLE, you may first highlight all triangles separating these two regions
by choosing FAT and MUSCLE in port Materials. Highlighted triangles are displayed in red wire-
frame. By pressing button Add of port Buffer highlighted triangles can be added to the internal buffer,
which causes them to be displayed in their own colors. You may restrict highlighting by means of
an adjustable box. In order to resize the box pick one of the green handles at the corners of the box.
Highlighted triangles may also be removed from the buffer by pressing button Remove. In addition,
individual triangles may be removed from the buffer by shift-clicking them.

Connections

Data [required]

The surface to be visualized.

ColorField [optional]

In conjunction with a colormap an optional field can be visualized on top of the surface in pseudo-
color mode. The field may be either of type HxScalarField3 or of type HxSurfaceScalarField. In

SurfaceView 327

addtion to scalar surface fields also 3 and 4-component surface fields are supported. In this case, the
field components are directly interpreted as RGB or RGBA values. The values should range from 0
to 1.

Colormap [optional]

The Colormap is used to visualize the data values of a scalar field connected to port ColorField.

Ports

Draw Style

This port is inherited from the ViewBase class and therefore the description will be found there.

Colormap

This port becomes visible only if a scalar field has been connected to the ColorField port.

Buffer

This port lets you add and remove highlighted triangles (being displayed in red wireframe) to an
internal buffer. For a further description and for the functionality of each of the port buttons see
ViewBase.

Materials

This port provides two option menus listing all regions defined in the surface. By setting the menus
properly, you can highlight all triangles separating two different regions. Highlighted triangles
are displayed in red wireframe. You may restrict the set of highlighted triangles by means of an
adjustable box. Use port Buffer to add or remove highlighted triangles to the internal buffer.

Colors

There are four different color modes:

Normal: Each side of a triangle is colored according to the color of the opposite region.

Mixed: Both sides of a triangle are colored in the same color, which is a mixture of the colors of
the two sides in normal mode.

Twisted: Each side of a triangle is colored according to the color of the adjacent region.

328 Chapter 6: Alphabetic Index of Modules

Boundary id: Color denotes the boundary ids of the triangles. For each boundary id a separate
color can be defined in the surface’s parameter section. Boundary ids can be set and removed using
the surface editor.

BaseTrans

This port is visible if transparent has been chosen as the draw style. It allows you to modify
the transparency of the surface. For each material an own transparency value can be defined in
the surface’s parameter section. If base transparency is 0.5, exactly this default transparency is
taken. Larger values make all parts of the surface more opaque, smaller values the surface more
transparent.

VR-Mode

This port is only available in VR mode (see amiraVR documentation). It allows you to choose how
to interact with the surface using the 3D wand. In query mode information about the clicked point
is displayed similar to what is displayed in standard amira when clicking onto a surface with the
middle mouse button. The other modes are select patches, highlight patches, select triangles, and
highlight triangles.

6.118 TetToHex

The TetToHex module converts a tetrahedral grid to a equivalent hexahedral grid. Each tetrahedron
is converted to four hexahedra which have the same material ID as the ’parent’ tetrahedron. The new
hexahedral grid has not the same points set as the original tetrahedral grid. The new points set has more
points, the new points being the center of each tetrahedron, the center of each face and the middle point
of each edge.

The module also converts the data objects connected to the hexahedral grid.

Connections

Data [required]

Tetrahedral grid to be converted.

Ports

Options

Toggles wether the data objects connected to the tetrahedral grid are also converted or not.

TetToHex 329

Action

Press the DoIt button to make the conversion.

6.119 TetraCombine

This module takes two tetrahedral grids as input, puts them together and creates a new combined grid.
The module can be used to create an extended grid from a patient grid and a grid representing the
exterior space including parts of a treatment device or support to which the patient’s body is attached.
Triangles representing the boundary of the patient’s body may be present in both input grids. Combine
provides an option to remove any duplicated triangles and vertices from its output. The order in which
the input grids are combined does not matter.

To make sure that both grids being combined fit exactly together, you can attach a GridVolume module
to the combined grid. When invoking that module, all exterior triangles of the grid are highlighted, i.e.,
all triangles which are incident to only one tetrahedron. The displayed triangles should all be located
at the outer boundary of the combined grid, not in its interior.

Connections

GridA [required]

The first input grid.

GridB [required]

The second input grid.

Ports

Options

Remove duplicated causes all duplicated points and triangles to be removed from the output.

Boundary

Mark exterior faces sets boundaryConditionId = 1 for all exterior faces. BoundaryCondi-
tionIds may be useful if a numerical simulation shall be performed on the resulting grid.

Check exterior faces checks whether all exterior triangles lie on a sphere around the center of the
bounding box of the grid.

330 Chapter 6: Alphabetic Index of Modules

Action

The DoIt button triggers computation.

6.120 TetraGen

The TetraGen module creates a volumetric tetrahedral grid. Its input is a description of the 3D geom-
etry by triangulated surfaces. The advancing front method is applied to fill each region defined by the
surface data with tetrahedra. Tetrahedron generation can be performed on-line or as a batch job.

There are some ’reserved region names’ for the exterior region that should not be filled with tetrahedra
(otherwise the grid would extend to infinity): no name at all, ’Outside’, and all names starting with
’Exterior’. If you choose a different name for the exterior region, tetrahedron generation will fail.
Currently the SurfaceGen module creates correct names (’Exterior’ and ’Exterior2’), but the module
IvToSurface does not. You must edit the region names before applying TetraGen to a surface created
by the latter module.

Connections

Data [required]

The input surface file (suffix surf).

Ports

Region

The menu of this port allows you to specify whether tetrahedra should be generated for all regions
or just for one selected region. The latter choice is needed for testing purposes only.

Options

If toggle ’improve grid’ is set, the quality of the resulting tetrahedral grid will be improved in a
post-processing step. A combined smoothing will be applied which includes moving inner vertices
and flipping inner edges or faces of the grid.

If toggle ’save grid’ is set, an additional port Grid will occur where you can enter a filename. The
resulting tetrahedral grid will be automatically saved under that filename. This toggle must be set if
tetrahedron generation shall be performed as a batch job.

Grid

TetraGen 331

This port is only visible if toggle ’save grid’ at port Options is set. Here you can define the filename
for the resulting tetrahedral grid. We recommend to include a suffix grid into the filename.

Action

If you press the Meshsize button an editor window appears. It allows you to define a desired mesh
size for each region. Note that there are predefined values for some materials in amira’s material
database. Check wether these values are appropriate for your application.

After you have setup the simulation, you can commit it by pressing the Run batch or the Run now
button. If the file specified at port Grid did already exist, a warning message is issued. If you don’t
want to overwrite the file, press Cancel and change the filename.

If you press the Run batch button, the job dialog window appears, showing the status of the job
queue. If you press the Start button, the first pending job of the queue starts running.

If you press the Run now button, tetrahedron generation will be performed on-line. This may take
some time for large surfaces. The progress bar informs you about the current region and which part
of its volume is already filled with tetrahedra.

6.121 TetraQuality

The TetraQuality module creates a histogram of qualities for tetrahedral volume grids, e.g., tetrahedral
patient models. For this purpose it has to be attached to a Grid Volume module. Quality is calculated
for all tetrahedra selected by that module. On default, the histogram is shown with a logarithmic scale
to direct the focus on the tetrahedra with worst quality.

Connections

Data [required]

The tetrahedral volume.

GridVolume [required]

A Grid Volume module that selects the tetrahedra for which the quality is calculated.

Ports

Quality Measure

This option menu lets you select between different quality measures:

• Diameter Ratio: Ratio of diameters of circumscribed and inscribed sphere. The optimal
(minimal) value is 3.

332 Chapter 6: Alphabetic Index of Modules

• Aspect Ratio: Aspect ratio = 3 / diameter ratio. The optimal (maximal) value is 1.

• Dihedral Angle: For each tetrahedron edge the dihedral angle is defined as the angle between
its adjacent faces. For an equilateral tetrahedron all dihedral angles are about 70 degrees.

• Solid Angle: For each tetrahedron vertex the solid angle is defined as the part of the unit
sphere which is occupied by the tetrahedron. For an equilateral tetrahedron all solid angles
are about 30 degrees.

• Edge Length: If you choose this measure, a histogram of edge lengths is created for all
selected tetrahedra.

Select Angle

If the quality measure is dihedral or solid angle, you can select whether a histogram is created for

• all angles,

• the minimal angle,

• the maximal angle, or

• minimal and maximal angle

of each tetrahedron.

Samples

This slider lets you select the number of samples for the histogram. Normally, the default values
should be adequate.

Histogram

If you select this toggle, a plot window appears showing the histogram of qualities for all tetrahedra
selected by the Grid Volume module. If no tetrahedra have been selected, the plot window will not
be shown.

6.122 TimeSeriesControl

This module is created automatically if files are imported via the Load Time Series... option of the
main window’s File menu. The module assumes that all files selected in the file browser represent the
same data object at different time steps. Instead of loading all files at once a slider is provided allowing
the user to select the current time step. Whenever a new time step is loaded data objects associated
with a previous time step are replaced. The replacement is performed in such a way that connections
to down-stream modules are retained.

TimeSeriesControl 333

The time series module is also able to linearly interpolate between subsequent time steps. However,
this only works for certain types of data objects, namely surfaces, tetrahedral grids, hexahedral grids,
fields defined on surfaces, tetrahedral or hexahedral grids, or data objects derived from the vertex
set base class. In addition, it is required that for each time step the same number of data objects
is created, that corresponding data objects are created in the same order in all time steps, and that
corresponding data objects have the same number of vertices or elements. For example, you cannot
easily interpolate between surfaces with a different number of triangles (Amira provides other modules
to support this). If multiple data objects are created for each time step interpolation of particular objects
can be suppressed by switching off the orange viewer toggle of these objects.

In addition to the step number the module can also display the physical time associated with each time
step, provided the physical time is specified as a Time parameter for each data object. It is required
that the physical times of subsequent time steps are monotonously increasing. In order to use physical
time mode it the relevant time steps must be loaded in index mode first.

Connections

Time [optional]

Connection to a global time object.

Ports

Info

This port displays the total number of time steps. If the data objects provide a physical time in
a Time parameter, the physical time range is displayed too. If the last time step has not yet been
loaded, a question mark is printed instead of the maximum time value. In addition, if a physical
time is provided the current physical time or the current time step index is displayed, depending on
the value of the physical time toggle.

Cached steps

Allows to adjust the cache size. On default every time step is cached, i.e., the number of cached
steps is equal to the total number of time steps. If the number of cached steps is zero the cache is
disabled. Data objects associated with a previous time step are deleted before a new time step is
loaded. Interpolation mode requires a cache size of two, i.e., in addition to the current interpolated
time step at least two additional time steps have to be stored in memory.

Options

The first toggle is used to activate interpolation mode. In this mode fractional time steps can be

334 Chapter 6: Alphabetic Index of Modules

specified and a linear interpolation between two subsequent time steps is performed. Note that
interpolation can only be performed if certain requirements are met (details are descibed above).

The second toggle is used to activate physical time mode. Physical time mode is only available if
the loaded data objects provide a Time parameter. In physical time mode the time slider displays
the physical time instead of the current time step.

Time

Specifies the current time step or the current physical time. The port provides a popup menu (right
mouse button click) which can be used to configure settings like animation mode or subrange in-
terval. The two outer buttons allow to automatically animate the time step or the physical time in
forward or backward direction. Animation speed in physical time mode can be controlled via the
increment value in the configure dialog.

6.123 TissueStatistics

This module takes a uniform or stacked label field as well as an optional scalar field as input and
computes some statistical quantities for the regions defined in the label field.

If the quantities are computer per material or per connected component, the different columns of the
spreadsheet have the following meaning:

• Number: Enumerates all materials (regions) of the label field.

• Material: Denotes which material (region) is stored in a row.

• Count: Number of voxels contained in a region.

• Volume: Number of voxels times size of a single voxel.

• CenterX: X-coordinate of the region’s center.

• CenterY: Y-coordinate of the region’s center.

• CenterZ: Z-coordinate of the region’s center.

If an additional scalar field is connected to the module, then four more columnns will be generated:

• Mean: Mean value of the field in a particular region.

• Deviation: Standard deviation of the field in a region.

• Min: Min value of the field in a particular region.

• Max: Max value of the field in a particular region.

The scalar field will be evaluated at the center of each voxel.

TissueStatistics 335

Connections

Data [required]

Label field defining the regions.

Field [optional]

Optional scalar field, for example the image data the label field is associated with. If the scalar field
has the same dimensions as the label field the voxels are accessed directly. Otherwise, a lookup
using the field’s native interpolation method is performed.

Voi [optional]

Optional label field used as a volume of interest. It is only used if the statistics are set to Volume per
VOI.

Ports

Select

The quantities can be computed in different modes:

• per material (Material)

• per connected components (Region)

• per slice (Volume per Slice)

• per material in another attached label field (Volume per VOI)

The results are stored in a spreadsheet object.

For example, in a medical application you may have two kidneys both assigned to the same material.
In the Material mode, the two kidneys will be interpreted as one object, in the Region mode as two
objects.

In mode Volume per slice the slices are stored as rows in the spreadsheet. The columns are labeled
by the materials and the cells contain the volume of these materials in each slice. The scalar field is
ignored.

In mode Volume per VOI (Volume of Interest) another label field has to be attached to the connection
named Voi. The rows of the spreadsheet are labeled with the materials in this label field. The
columns are labeled with the material of the main label field and the cells contain the volume of a
material in the main label field at positions where the Voi contains the material indicated by the row.

Pixels

This port allows to exclude small regions from the statistics.

336 Chapter 6: Alphabetic Index of Modules

Action

Triggers the computation.

6.124 TriangleQuality

The TriangleQuality module computes the triangle qualities for a triangular surface. You can attach
to the result a SurfaceView module to visualize the triangle qualities or a Histogram module to plot a
histogram of triangle qualities. You can also use the TriangleQuality module in conjunction with the
Surface Editor to detect the worst triangles and manually repair them.

Connections

Data [required]

A triangular surface.

Ports

Average edge length

Displays the average length of triangle edges in the input.

Output

This option menu lets you select between different quality measures:

• R / r: Ratio of diameters of circumscribed and inscribed circle. The optimal (minimal) value
is 2.

• Largest Angle: Computes the largest angle [degree] of each triangle. For numerical applica-
tions obtuse angles above 90 degree should be avoided.

• Dihed Angle: Computes the dihedral angle [degree] for each pair of adjacent triangles. Small
dihedral angles below 5 - 10 degree should be avoided.

• Triangle Number: For testing purposes only: assigns the triangle number to each triangle.

Action

Press the DoIt button to start calculation of triangle qualities.

TriangleQuality 337

6.125 VRML Export

This module enables you to export a triangular surface and optionally the 3D dataset from which the
surface is derived into a VRML scene. The scene consists of a coordinate system and some little
animations: the 3D dataset is displayed by three orthoslices. To get an idea how the basic 3D dataset
is related to the derived surface you can set the orthogonal slices via sliders, scrolling through the
triangular surface. Moreover, the materials of the surface are clickable objects, which means that they
can be hidden or shown by a mouse click.

You can publish such a VRML scene directly on the web, just put a link to it into your homepage.
To view the file by yourself, make sure that a VRML viewer plugin like cosmoplayer (version 2.1 or
newer) plugin from SGI is installed for your web browser.

If connected to the surface view module, a special simple export mode becomes avalilable which
produces a VRML-scene containing only a single IndexedFaseSet node. This is necessary e.g., for
some 3D-printers with limited VRML parsing abilities.

If no surface is connected, only the slices may exported to VRML.

Connections

Data [required]

The surface to be inserted into the VRML scene could either be a amira Surface dataset or the
surface view module.

Image [optional]

A scalar field of type UniformScalarField3 or of type UniformColorField3 is needed to export the
orthoslices. If ommited, no slices are displayed in the VRML scene.

Ports

Tabbar

Tab bar to navigate through the user interface sections. The Slices tab remains disabled as long no
image data is connected.

Info

In simple export mode, the coloring mode and the number of primitives is shown here. (only avail.
in simple mode)

Selected

This port shows the selected materials. (not avail. in simple mode)

338 Chapter 6: Alphabetic Index of Modules

Material

With this port you can choose a material in order to add or to remove it from the current selection.
(not avail. in simple mode)

Buffer

With this port the selection of materials can be modified. To remove a material from the list, choose
this material from the Material menu and hit Remove. Similarily you can use Add. Clear clears the
selection list. Initially, all materials are selected. (not avail. in simple mode)

Mask

If the simple export mode was chosen, no selection by material is provided. Instead one can use
the selection mechanism of the connected surface view module. Toggle Selected to export only the
primitives selected there, i.e., the visible ones. (only avail. in simple mode)

Simple mode

If connected to the surface view module, a special simple export mode becomes avalilable which
produces a VRML-scene containing only a single IndexedFaseSet node. This is necessary e.g., for
some 3D-printers with limited VRML parsing abilities.

Render specular

Adding a specular color to the scene which makes the surface more look like plastic.

Render smooth

Gives the scene some smoother look by using vertex normals.

Move slices

If clicked, the slices will actually be moved through the volume, when the sliders are operated.
Otherwise, only the textures mapped onto the slices are cycled.

Static switches

VRML Export 339

If clicked, the small objects used to switch on and off the surface parts will be fixed on the screen.
Note that this requires at least CosmoPlayer 2.1 or similar.

Labels

Toggle this for displaying the material names near the material toggles in the VRML scene.

Export slices

If toggled, the slice images taken from the image data are exported. If no image data is connected
no slices are exported regardless of this toggle.

Data window

Needed to map data values of input field to gray values. See module OrthoSlice for explanation.

Slice numbers

Enter the numbers of slices per direction you want to be selectable in the VRML scene. Only
available on SGI and when image data is connected.

Filename

Name of the File, the VRML code is written to. If export of slices is selected, the slice images are
stored to the same directory.

Do it

Hit this button to start the export.

6.126 VectorProbe

The VectorProbe module allows you to interactively investigate a 3D vector field by moving around a
dynamic vector field probe. The probe displays certain quantities associated to the first order derivative
of the field in an intuitive way. This kind of probe has been originally proposed by W.C. de Leeuw
and J.J. van Wijk in A Probe for Local Flow Field Visualization, Proceedings of Visualization’93, pp.
39-45. It looks as follows:

340 Chapter 6: Alphabetic Index of Modules

Figure 6.5: Components of the vector field probe.

Connections

Data [required]

The 3D vector field to be visualized.

Ports

Dragger

Shows or hides the dragger and the vector field probe attached to it. The dragger provides a cylinder
handle and a square plate handle. The cylinder handle allows you to translate the icon along the
center axis. The orientation of the cylinder can be changed using the [Ctrl] key while the mouse
is located somewhere over the dragger.

Buffer

Adds the current vector field probe to an internal buffer. In this way multiple probes can be displayed
at once.

Scale

Scales the overall size of the vector field probe.

Length

Adjusts the length of the probe’s arrow part.

VectorProbe 341

6.127 Vectors

This is a so-called overlay module which can be attached to any module defining a cutting plane, e.g.
OrthoSlice or ArbitraryCut. Inside this plane a 3D vector field can be visualized using a regular array
of vector arrows.

Connections

Data [required]

The 3D vector field to be visualized.

Module [required]

The module which defines the cutting plane where the arrows are placed.

Colormap [optional]

An optional colormap used for pseudo-coloring.

Ports

Colormap

Port to select a colormap.

Resolution

Provides two text inputs defining the resolution of the regular array of vector arrows in the plane’s
local x- and y-direction. The larger these values are the more arrows are displayed.

Scale

Scaling factor used to control the length of the vector arrows.

Options

This port provides the following toggle buttons.

Projection: If this option is set then 3D vectors are projected into the current plane. Otherwise, the
arrows will indicate the true direction of the vector field.

Constant: If this option is set then all arrows will be of equal length. Otherwise, the length of the
arrows is chosen to be proportional to vector magnitude.

342 Chapter 6: Alphabetic Index of Modules

Arrows: If this option is set then true arrows will be displayed. Otherwise, only simple line segments
will be drawn.

Points: If this option is set then a little dot will be drawn at the bottom of an arrow. This is useful to
highlight a sampling point at locations where the vector magnitude is so low that the arrow vanishes
completely.

Colorize

An option menu allowing to control how arrows are colored. In order to see an effect a colormap
must be connected to the module. If Magnitude is chosen then the vector magnitude is used to
lookup a color from the colormap. If Normal component is chosen then color denotes the signed
length of the vector component perpendicular to the cutting plane. This length is positive if the
vector points upwards or negative if the vector points downwards. Finally, if Parallel component is
chosen then color denotes the length of the vector component tangential to the plane. This length
will always be greater or equal than zero.

Phase

This port will only be visible if a complex-valued vector field is connected to the module. It provides
a phase slider controlling which part of the complex 3D vectors is visualized by the arrows. A value
of 0 degree corresponds to the real part, while a value of 90 degrees corresponds to the imaginary
part. The display can be animated with respect to the phase by the cycle button, this way polarization
properties of the field can be revealed or wave phenomena become visible.

Commands

setLineWidth <value>

Allows to change the line width of the arrows. By default arrows are drawn two pixels wide.

6.128 Vectors (Tetrahedra)

This display module can be attached to a GridVolume or a GridBoundary module as well as to a 3D
vector field defined on a tetrahedral grid. In the latter case all vectors are displayed otherwise the
vector field is displayed on the surface nodes or on all nodes of the selected tetrahedra (GridVolume)
resp. triangles (GridBoundary).

The vector representation can be done using simple lines or arrows. The vector lines/arrows can be
coloured using a colormap taking the magnitude of the vectorfield in to account.

Vectors (Tetrahedra) 343

Connections

Data [required]

The 3D tetrahedral vector field to be visualized.

PortModule [required]

The GridVolume resp. GridBoundary master module.

Colormap [optional]

An optional colormap used for colouring the magnitude of the vectors.

Ports

Colormap

Choose a colormap to control how lines/arrows are coloured. In order to see an effect the colormap
must be connected to the module. The vector magnitude is used to lookup a color from the colormap.

Scale

Scaling factor used to control the length of the vector lines/arrows.

Options

Constant: If this option is set then all lines/arrows will be of equal length. Otherwise, the length is
chosen to be proportional to vector magnitude.

Arrows: Choose between simple lines and arrows

Points: If this option is set then a little dot will be drawn at the bottom of an arrow. This is
useful to highlight a point at locations where the vector magnitude is so low that the arrow vanishes
completely.

Show

All Vectors: If this radio option is on the vectors from all nodes are displayed.

On Surface: Only those vectors are displayed which lie on the surface of the selected boundaries.

In Volume: All vectors of all selected tetrahedrons are shown.

344 Chapter 6: Alphabetic Index of Modules

Phase

This port will only be visible if a complex-valued vector field is connected to the module. It provides
a phase slider controlling which part of the complex 3D vectors is visualized by the arrows. A value
of 0 degree corresponds to the real part, while a value of 90 degrees corresponds to the imaginary
part. The display can be animated with respect to the phase by the cycle button, this way polarization
properties of the field can be revealed or wave phenomena become visible.

Commands

setLineWidth <value>

Allows to change the line width of the arrows. By default arrows are drawn two pixels wide.

setPointSize <value>
Allows to change the size of the points at the bottom of the arrows. By default points are drawn two
pixels wide.

setLogScale 0|1

Switches logarithmic scaling on or off.

6.129 Vectors/Normals (Surface)

This is a multifunctional display module having the following applications:

- attached to a SurfaceView module, it shows the normals on the Surface displayed by the module.
Only the normals corresponding to selected patches/triangles are displayed; the normal binding in the
SurfaceView module (triangle normals, vertex normals or direct normals) is respected.

- attached to a 3D vector field defined on a Surface,it visualizes the whole vector field

- connected to both SurfaceView module showing a Surface and a 3D vector field defined on the same
Surface, it displays the vector field only in the selected regions of the surface.

The representation can be done using simple lines or arrows. In the case of vector fields it can be
chosen between a constant length or a magnitude - dependent length of the lines/arrows. The lines are
coloured using the colormap.

Connections

Data [optional]

The 3D vector field to be visualized. If there is no vector field, the normals on surface are displayed.

Surface [optional]

The SurfaceView master module.

Vectors/Normals (Surface) 345

Colormap [optional]

An optional colormap used for coloring the magnitude of the vectors.

Ports

Colormap

Choose a colormap to control how lines/arrows are colored. In order to see an effect the colormap
must be connected to the module. The vector magnitude is used to lookup a color from the colormap.

Scale

Scaling factor used to control the length of the vector lines/arrows.

Options

Constant: (Only for vector fields) If this option is set then all lines/arrows will be of equal length.
Otherwise, the length is chosen to be proportional to vector magnitude.

Arrows: Choose between simple lines and arrows

Points: (Only for vector fields) If this option is set then a little dot will be drawn at the bottom of an
arrow. This is useful to highlight a point at locations where the vector magnitude is so low that the
arrow vanishes completely.

Commands

setLineWidth <value>
Allows to change the line width of the arrows. By default arrows are drawn two pixels wide.

setPointSize <value>
Allows to change the size of the points at the bottom of the arrows. By default points are drawn two
pixels wide.

setArrowSize <value>

Allows to change the size of the arrows.

6.130 Vertex Morph

This module takes two Vertex Set objects as input, e.g. two surfaces or two tetrahedral grids, and
computes an output surface by linearily interpolating the vertex positions. This can be used to create a

346 Chapter 6: Alphabetic Index of Modules

smooth transition between the two objects. Note, that the two input data sets must be related in order
to produce meaningful results. For example, the second input could actually be a copy of the first one
with an applied transformation.

Connections

Input1 [required]

First input data set. This data set is duplicated to produce the output.

Input2 [required]

Second input data set, must have at least as many points as the first input.

Ports

t

Interpolation parameter. For t=0 the output will be identical to the first input. For t=1 output will be
second input.

6.131 Vertex View

This module allows you to visualize arbitrary vertex sets. Vertex sets occur as part of objects of other
types, such as Surfaces, Tetrahedral Grids, Line Sets or Molecules. The vertices can be displayed in
three different modes: spheres, plates and points. The vertices may be colored according to a scalar
field and a color map. Alternatively, colors may also be defined via the command interface of the
VertexView module. Furthermore an internal buffer exists that allows you to view only those vertices
that are of interest to you.

Connections

Data [required]

The data object from which the vertex set is read.

ColorField [optional]

3D scalar field which is used along with a color map to color the vertices according to the value of
the scalar field at the position of a vertex.

Colormap [optional]

Used to color the vertices in connection with the ColorField.

Vertex View 347

Ports

Colormap

Port to select a colormap.

Draw Style

Vertices may be drawn in three different styles:

• Spheres: Points are drawn as triangulated spheres with equal radius.

• Plates: Points are drawn as quadrats with mapped-on image of a sphere.

• Points: Points are drawn as points. The size of the points does not differ according to the
distance of the vertex from the viewer; they all have the same size.

SphereRadius

Specifies unique radius for all spheres. This port is only visible if Spheres or Plates is chosen as
draw style.

Point Size

Size of points for draw style Points. Only visible in Points mode.

Complexity

Set complexity of displayed spheres. Reducing the complexity leads to coarser spheres and im-
proved rendering performance. If draw style is set to plates the complexity controls the size of
the texture maps containing the sphere’s images. The smallest texture size is 32x32, the biggest is
512x512. The port is not visible for draw style points.

Options:

A toggle list of options.

• Show text: If selected vertex numbers are drawn. This might be quite slow, especially for
large vertex sets. Alternatively, you may select a vertex by clicking on it. Then its number is
printed in the console window.

348 Chapter 6: Alphabetic Index of Modules

• Transparency: Optionally, the spheres and plates may be drawn transparent. Note that the
vertices are not sorted along the z-axis. Thus the appearance of the vertex set may look
flawed.

• Buffer only: The default is to display all spheres of the vertex set. By clicking this toggle you
can display only those vertices that were previously added to the buffer.

Text Size

Specify textsize if show text is active.

Transparency

Allows you to specify the degree of transparency of the spheres.

Buffer:

A list of buttons that allow to manipulate the internal buffer. In order to actually see the buffer
content activate the buffer only option.

• Add: adds selected vertices to buffer.

• Remove: removes selected vertices from buffer.

• Clear: removes all vertices from buffer.

• Show/Hide Box: controls box to select vertices.

• Invert: exchanges buffer content.

Commands

setHighlightColor <red> <green> <blue>
Set the color that is used to highlight selected spheres.

setDefaultColor <red> <green> <blue>

Set default color.

setColorHighlighted <red> <green> <blue>
Color all highlighted spheres.

setColor [<first-vertex-number> [<last-vertex-number>]] <red>
<green> <blue>
Set color for all spheres from first-vertex-number to last-vertex-number. If last-vertex-number is
omitted the color is set for the sphere with index first-vertex-number. If first-vertex-number is
omitted too, the color for all spheres is set. Red, green, and blue range from 0 to 1.

Vertex View 349

highlight <first-vertex-number> [<last-vertex-number>]

Highlight spheres from first-vertex-number to last-vertex-number.

unhighlightAll

Unhighlight all spheres.

addToBuffer <first-vertex-number> [<last-vertex-number>]

Add all spheres ranging from first-vertex-number to last-vertex-number to buffer. If last-vertex-
number is omitted, only the sphere with index first-vertex-number is added.

removeFromBuffer <first-vertex-number> [<last-vertex-number>]

Remove all spheres ranging from first-vertex-number to last-vertex-number from buffer. If last-
vertex-number is omitted, only the sphere with index first-vertex-number is removed.

getNumVertices
Print number of vertices.

getCoords <vertex-number>
Print coordinates of vertex with number vertex-number

setTextSize <size>
Set size with which the text is displayed.

setTextOffset <x> <y> <z>

Set offset which is added to the text position.

setTextColor <red> <green> <blue>

Set text color.

updateTextures

To both plates and spheres textures are applied to make the spheres look smoother. If the direction
from which the light comes changes, those textures need to be recomputed. Updating is invoked by
this command only.

6.132 VertexDiff

The module computes the displacement field. A vector field on a surface is computed by the difference
of the vertex positions of corresponding vertices in both surfaces.

Connections

Data [required]

Surface 1

Surface2 [required]

Surface 2

350 Chapter 6: Alphabetic Index of Modules

Ports

Do it

Compute the displacement field.

6.133 VertexShift

The module displaces the vertices of a surface. The displacements are given by one or more vector
fields. The computed vector fields automatically connect to the domain surface.

Connections

Data [required]

The surface to be displaced

Vector field [required]

The displacement field

Ports

Info

Lambda 1

For each displacement field, a parameter lambda controls the displacement. When the mouse is
moved over the slider, an icon indicates which field the slider belongs to.

Deform Surface:

Compute the displaced surface.

6.134 ViewBase

This module is the base class for several other amira modules displaying a set of triangles, like
Isosurface, SurfaceView, GridVolume, and others. ViewBase is not useful on its own but provides
special features common to all derived modules. In particular, these features comprise the following:

VertexShift 351

• A dedicated port allowing the user to modify the draw style of a triangular surface in an easy
and consistent way. All modules derived from ViewBase thus have a similar GUI. Among the
supported draw styles is a physically correct transparency mode.

• A generic buffer concept allowing the user to select triangles by means of an Open Inventor
tab-box dragger. Only triangles added to the internal buffer will be displayed. Thus, complex
surfaces may be decomposed into smaller pieces.

• An arbitrary 3D scalar field may be visualized on top of the triangular surface by means of
pseudo-coloring. Pseudo-coloring may be achieved via Gouraud shading (mapped vertex colors
will be interpolated) or, more accurately, via texture mapping (vertex values will be interpolated
linearly and mapped to color afterwards).

• The set of triangles currently being visible can be converted automatically into a Surface object.
This is useful for example in order to post-process isosurfaces or to extract parts from a bigger
surface.

• Common Tcl-commands allow to control many parameters of modules derived from ViewBase.
This includes line width, outline color, highlight color, specular color, shininess, alpha mode,
normal binding, and more.

Connections

Color Field
Arbitrary scalar field to be visualized via pseudo-coloring. The color field will be evaluated at the
surface’s vertex positions and the vertex color will be set approriately.

Colormap
Colormap used for pseudo-coloring. To connect the port to a colormap use the popup menu under
the right mouse button. To change the port’s default color click it with the left mouse button. See
also Colormap.

Ports

Draw Style

This port determines the draw style of the surface. Five major styles may be selected via an option
menu:

Outlined: Opaque shaded display with edges superimposed.

Shaded: Opaque shaded display without edges being visible.

Lines: Shaded wireframe display.

Points: Triangle vertices only.

Transparent: Semi-transparent display.

352 Chapter 6: Alphabetic Index of Modules

Transparent mode implies physically correct transparencies, i.e., triangles appear more opaque if
they are viewed under a small angle. It also implies approximate depth-sorting, i.e., triangles are
roughly rendered from back to front in order to obtain correct blending results. Note, that in some
cases visual artifacts may occur for long and thin triangles, for self-intersecting surfaces, or for
multiple semi-transparent surfaces being displayed simultaneously.

The drawstyle may be fine-tuned by means of an additional popup menu which is activated by
clicking on the button labeled more options. This menu contains the following items:

Shaded: Enables or disables specular highlights. Specular color and shininess may be changed via
the Tcl-command interface.

Gouraud: Indicates that if a color field is connected pseudo-coloring is performed via Gouraud
shading. First, colors are looked up at the traingles’ vertices, then these colors are interpolated
inside the triangles.

Texture: Indicates that if a color field is connected pseudo-coloring is performed via texture map-
ping. The color field’s values are interpolated linearly before color lookup is performed. In this
mode no specular colors can be used.

Opaque: All triangles will be rendered opaque.

Const alpha: Opacity values of a triangle will be taken as is. Usually, if no pseudo-coloring is done,
all parts of the surface will have equal opacity.

Fancy alpha: Enables physically correct transparencies. The triangle’s opacity values will be mod-
ified according to their orientation with respect to the viewing direction. Causes the silhouette of
the surface to be fully opaque, thus enhancing perception for very transparent surfaces.

Depth sorting: Enables approximate depth sorting. The triangle’s centers are presorted along the
major coordinates axes.

Create surface: Creates a Surface object containing the set of currently visible triangles.

The following items are only present for a subset of derived modules, e.g., Isosurface or
SurfaceView:

Both faces: Indicates that triangles are rendered both from back and front.

Front face: Enables back face culling. Increases rendering speed but may lead to artifacts for non-
closed surfaces.

Back face: Enables front face culling. Increases rendering speed but may lead to artifacts for non-
closed surfaces.

Triangle normals: Enables per-triangle normals. Shading will be discontinuous at the triangles’
edges.

Vertex normals: Enables per-vertex normals. An average normal is computed for all triangle ver-
tices.

Direct normals: An averaged normal is computed for every vertex a triangle. No averaging is
performed if two neighboring triangles form an angle bigger than the crease angle set via the Tcl-
command setCreaseAngle. The default is 30 degrees.

ViewBase 353

Buffer

This port can be used to modify the list of currently visible triangles. All triangles being visible
are stored in an internal buffer. You may add or remove triangles from this buffer via an Open
Inventor tab-box dragger. Triangles selected by this dragger will be highlighted, i.e., displayed in
red wireframe. If the dragger is not visible, click on one of the buttons to activate it.

Add: Adds highlighted triangles to the buffer. If the Shift key is held down while pushing the button
the buffer will be cleared before adding. The Shift key is especially useful in conjunction with the
Draw selection.

Remove: Removes highlighted triangles from the buffer.

Clear: Removes all triangles from the buffer.

Show/hide: Shows or hides the tab-box dragger without modifiying the internal buffer.

Draw: Activates a lasso style selection mechanism: Using the mouse you can draw a curve in the
viewer. All triangles within this curve will be highlighted. If CTRL is pressed while drawing, the
triangles within the curve are un-highlighted.

Commands

createSurface [name]

Converts set of visible triangles into a surface.

setAlphaMode {opaque|constant|fancy}
Triangles may be drawn either opaque or transparent. Two transparent modes are possible: with a
constant alpha value (constant) or an alpha value varying according to triangle normal (fancy).

setNormalBinding {perTriangle|perVertex}
Normals can be bound either per triangle or per vertex. In the first mode the triangles appear flat.

setPointSize size
Sets the size of points.

setLineWidth width

Sets the width of lines.

setOutlineColor color
Sets color of lines in outlined mode.

setHighlightColor color

Sets wireframe color of selected triangles.

setEmissiveColor color
Sets the emissive color of the surface.

354 Chapter 6: Alphabetic Index of Modules

setSpecularColor color

Sets the specular color of the surface. This will only take effect if specular lighting has been enabled
in port Draw Style.

setShininess shininess
Sets the shininess of the surface.

showBox

Shows box that is used for selecting triangles.

hideBox
Hides box that is used for selecting triangles.

6.135 VolPro-1000

This module is available for Windows only. If you need it on other platforms, contact us at
amira@indeed3d.de.

Note that this module requires special hardware.

This module provides high quality real time volume rendering by exploiting the TetraRecon Volume-
Pro 1000 board (compare www.terarecon.com). The volume rendering algorithm is implemented in
hardware on the VolumePro board. Hence, the rendering can be performed at interactive frame rates
even on low-end machines. For general information about volume rendering see the description of the
Voltex module.

The VolPro-1000 module exploits most of the features provided by the VolumePro 1000 system, such
as transfer functions, lighting, super sampling, several blend and modulation modes, cropping and cut
planes in the three main orientations. Rendering can be combined with other polygonal geometry, as
long as no transparent polygons are involved.

Connections

Data [required]

The scalar field to be visualized. The module is also able to handle objects of type LargeDiskData.

Colormap [optional]

The transfer function represented by a color map.

Ports

Tabbar

This port facilitates the navigation in the user interface by grouping the ports.

VolPro-1000 355

Colormap

This port allows you to select one of the predefined color maps and to specify a range of the scalar
values which the colors of the color map should be mapped to.

Alpha scale

This value scales the opacity of the object.

Super sampling space

Supersampling is a technique for improving the quality of the rendered image. This port allows
you to choose among two supersampling spaces, i.e. camera and object space. Supersampling
in object space is especially useful if the distance between the voxels varies strongly along the
three main axes. At rendering time object space supersampling factors are transformed into camera
space factors. Supersampling in camera space in the x and y directions results in more samples in
the base plane. This is done by multipass rendering, which drastically decreases the performance.
Supersampling in the z direction results in more slices in the viewing direction, which is supported
by the hardware and, hence, hardly influences performance.

Super sampling factors

This port allows to specify the degree of supersampling in the x, y and z direction.

Blend mode

Three blending modes are supported:

• FrontToBack: Going along the ray from the front of the volume to the back, the final color
value is accumulated from all the samples.

• MIP (Maximum Intensity Projection): Chooses the voxel with the greatest intensity along the
ray.

• MINIP (Minimum Intensity Projection): Chooses the voxel with the lowest intensity along
the ray.

Modulation

356 Chapter 6: Alphabetic Index of Modules

• GMOM (Gradient Magnitude Opacity Modulation): The original opacity is scaled by the
magnitude of the sample gradient. Thus only surfaces will be perceived.

• GMIM (Gradient Magnitude Illumination Modulation): Multiplies the computed diffuse or
specular color with the magnitude of the sample gradient. As a result the illumination from
non-surfaces, which have small gradients, is reduced. GMIM is only effects the image if light
is applied to the scene.

Light

Up to five lights can be applied to the scene at the same time.

Specular color

Specify the color of the light(s).

Diffuse

Material coefficient.

Specular

Material coefficient.

Emissive

Material coefficient.

Shininess

Material coefficient.

Light options

Light intensity.

Crop dragger

A dragger box can be used to crop parts of the volume. With the show toggle you hide or show

VolPro-1000 357

the box, which can then be scaled and translated in the viewing window. With the enable toggle
cropping is switched on or off.

Crop mode

There exist six different crop modes:

• SubVolume: Only the volume within the box is shown.

• 3DCross: The sides of the box are projected to the bounding box and everything within
within this 3d cross is displayed.

• 3DFence: All voxels within the x-, y-, OR z-range of the box are displayed.

The results of these three modes can also be inverted.

Cut plane

With the help of the cut plane slices of varying thickness can be cut out of the volume. Either
the part of the volume defined by this slice or the rest of the volume except this slice might be
visualized separately. Apart from slices half spaces can be clipped. The Cut Plane port has three
toggle buttons, which determine how clipping is done. The first button enables or disables the
cut plane. If the second toggle button, halfspace, is pushed, not a plane is selected, but a whole
halfspace, i.e. the volume on one side of the plane is clipped, the other one is shown. The toggle
invert inverts clipping, e.g., if it is off and halfspace is off too, a slice with a certain thickness is
shown. If you then switch the invert toggle on, the slice that could formerly be seen is now clipped
and the rest of the volume can be seen.

Slice number

Determines the number of the cut plane slice.

Slice thickness

Determines the thickness of the cut plane. Notice, that the thickness grows only into one direction.

Slice orientation

With this port you can specify the plane which the cut plane should be parallel to.

Draft render

358 Chapter 6: Alphabetic Index of Modules

If checked the rendering process gets simplified during object animation. The desired effect ist to
increase the rendering speed. The loss of quality is the price for the more of interactivity. If the
objects stops to transform a maximum quality still picture is renederd.

Draft render quality

With this slider one can adjust the amount of simplicity or quality loss when draft rendering is
enabled. The lower the value the faster but messier the render result. No matter which value was
chosen, the depth buffer feature (providing correct occlusion with polygonal objects) is always
turned off during draft rendering.

Multiboard mode

A volume buffer can be replicated or spread over multiple VolumePro 1000 boards. This port can
be either set to single, replicate or split.The default is single disabling multiboard rendering for that
volume. Multiboard mode replicate replicates the volume data onto all boards in the system. Each
board will render the entire volume for one horizontal band of the output image buffer. This will
speed up rendering when the slowest part of the rendering process is the ray casting process, but
will slow down volume updates because each update must go to all boards. Multiboard mode split
splits the volume into pieces and loads one piece onto each board in the system. This allows very
large volumes to be rendered, since two boards will be able to support a volume greater than one
board. However, the images from each hardware rendering operation are full size images that must
be blended together in a separate rendering process; this adds extra overhead for rendering.

Multiboard min size

Minimum size to enable multiboard capabilities for a volume.

Multiboard overlap

For multiboard rendering mode split, this specifies how much overlap there will be between the split
volume data. The minimum is 2, which is fine for non-mipmap volumes. The larger the overlap,
the more mipmap levels can be generated correctly. For example, an overlap of 64 will allow levels
1 through 5 even with the mipmap shrink factor set to 50

Mip map min level

Range of mipmap levels to use when rendering. Valid values are 0 to 32.

Mip map max level

VolPro-1000 359

Range of mipmap levels to use when rendering. Valid values are 0 to 32.

Mip map min volume size

Minimum size to enable mipmap capabilities for a volume.

Mip map shrink factor (in %)

Shrink factor (in percent) to be used for automatic mipmap level generation. The valid range is 50

Update

Press this button ro reload the volume to the VolumePro 1000 board(s). This may be necessary after
changing some crucial ports. As long there is no need to reload the volume, the button is disabled.
The default behaviour of this module at its creation time is to load the volume into a single board.
This can be stopped by pressing the stop button in the work area beside the progress bar. Then one
could change the multiboard parameters and press this button to reload the volume.

6.136 Voltex

Direct Volume Rendering is a very intuitive method for visualizing 3D scalar fields. Each point in
a data volume is assumed to emit and absorb light. The amount and color of emitted light and the
amount of absorption is determined from the scalar data by using a color map which includes alpha
values. Default colormaps for volume rendering are provided with the distribution and can be edited
using the colormap editor. Then the resulting projection from the ”shining” data volume is computed.

This module provides you with a hardware accelerated implementation, which uses 2D or 3D texture
hardware, to allow for real-time rendering. Note that this currently is not supported by all grahics
hardware. Currently hardware acceleration for 2D and 3D textures is available on e.g., SGI Octane,
SGI Reality and InfiniteReality, SGI High/Max Impact, HP fx/4, fx/6, and fx/10. The SGI O2 supports
2D texturing. Most PC graphics cards support 2D texture mapping. Older SGI systems, like Indigo2
Extreme, and many Linux drivers currently do not offer hardware texture acceleration. Using this
module on the latter platforms can be extremely slow.

Note that on some systems a significant slowdown can occur if the data set is larger than the available
texture memory (which typically is 4 - 16 MB).

360 Chapter 6: Alphabetic Index of Modules

Connections

Data [required]

The 3D scalarfield to visualized. Alternatively an RGBA data volume (Colorfield) can be connected.
In this case no colormap is used, but the color and opacity values are taken directly from the data.
As a third mode the module can operate on multi-channel fields. Here the transfer function for each
channel is computed automatically based on the channels native color, the channels data range, and
the value of the Gamma port (see below).

ROI [optional]

Connection to a module providing a region-of-interest, like SelectRoi. If such a module is con-
nected, only the selected part of the volume will be displayed.

Colormap [optional]

Colormap used to vizualize the data.

Ports

Options

mip stands for maximum intensity projection. When this option is selected, the brightest data value
along each ray of sight is displayed instead of the result of the emission absorption model described
above. This mode is especially useful for very ”sparse” data sets, for example: angiographic data
or images of neurons.

The color table is supported by some graphics boards only, e.g., SGI Onyx InfiniteReality and
nVidia boards. When this option is activated only a quarter of the texture memory is needed for
RGBA rendering and the color table and its range can be modified in real-time (i.e. without pressing
DoIt). Note that due to incomplete OpenGL implementations some graphics boards which claim to
support color tables, they do not. If you see artifacts or only plain white cubes, disable this option.

Range

This port is only available if the module operates on a 3D scalar field and no colormap is connected.
In this case data values are mapped according to this range. Values smaller than the minimum are
mapped to completely transparent (no absorption and no emission). Values larger than the maximum
appear completely opaque and emit the maximum amount of light. Values in between are mapped
proportionally.

Lookup

Only available if a colormap is connected. In Alpha mode, the colormaps alpha value is used for

Voltex 361

both absorption and emission. In LumAlpha mode, the colormaps alpha value is used for absorp-
tion, while the luminance is taken for (uncolored) emission. In RGBA mode, colored images are
generated by using all four channels of the colormap.

Colormap

Port to select a colormap.

Gamma

Controls the shape of the transfer function when multi-channel fields are visualized. The opacity
value is taken to be α = xγ , x = 0 . . . 1 (proportional to data values). The smaller the gamma value
is, the more prominent regions with small data values will be.

Alpha scale

A global factor to change the overall transparency of the object independent of the data value.

Number of slices

Only available in 3D texture mode. The larger this number, the better the image quality and the less
the rendering performance.

Texture mode

2D texture mode requires some precomputation time but also works on machines which do not
support hardware accelerated 3D texturing, e.g., SGI O2. 3D mode needs less setup time and
sometimes provides superior quality on high-end machines. 3D texture mapping is not available on
the Windows platform.

Downsample

You can specify integer downsample factors to reduce the size of the data set on-the-fly. e.g.,
downsampling by 2 in each direction would decrease the size of the data set by a factor of 8. This
can dramatically improve rendering performance.

Update

Click on this button in order to trigger the computations necessary to display the volume. Most
parameter changes require pressing this button again.

362 Chapter 6: Alphabetic Index of Modules

Commands

showSlices on

If on is nonzero, the slices used to display the volume are drawn outlined instead of full textured.
This mode is mainly useful for debugging.

setInterpol <value>
Enables or disables linear interpolation of texture values. If linear interpolation is disabled a nearest
neighbour lookup is performed. On default, linear interpolation is enabled.

getInterpol

Checks if linear texture interpolation is enabled or not.

setColorTableInterpol <value>

Enables or disables linear interpolation within the color table. The setting will be ignored if color
table mode is off or if color table rendering is done using paletted textures. The default value is on.

getColorTableInterpol
Checks if linear color table interpolation is enabled or not.

setColorTableMode 0|1|2|3|4
Sets the type of OpenGL extension used for color table mode. The modes are encoded as follows:
0 = Don’t use any extension, turning off color table mode.
1 = GL SGI texture color table.
2 = GL EXT paletted texture.
3 = GL NV fragment program.
4 = GL ARB fragment program.

getColortableMode
Returns the type of OpenGL extension used for color table mode.

doBricking <value>
Enables or disables bricking in 3D texture mode. If bricking is enabled the volume is rendered in
smaller blocks if it is larger than the 80 percent of the total amount of texture memory. Since it
is difficult to determine precisely the total amount of texture memory can be specified using the
environment variable AMIRA TEXMEM (the value of this variable is interpreted as megabytes).

verbose <value>
If value is 1 additional message for debugging are printed.

6.137 VolumeEdit

This module provides tools for the interactive modification of 3D image volumes. This is particularly
useful for removing noise or undesired objects in a 3D image before applying isosurfaces, volume
rendering or other image segmentation tools.

VolumeEdit 363

The module takes a scalar field as input and produces a new data set as output which can be modified
iteratively. The module does not display any geometry in the viewer. It is typically being used in
conjunction with a Voltex or an Isosurface module.

Connections

Data [required]

The input dataset to be edited (uniform scalar field).

Ports

Tool

The module provides two different types of tools: a lasso or draw tool and 3D dragger tools.

The lasso or draw tool lets you encircle a specific region in the 3D viewer which then can be cleared
in the output data set. Alternatively the part not encircled (exterior) can be cleared (cut away), or
the original data values can be restored in the encircled region. In order to use the draw tool, first
press one of the action buttons cut interior, cut exterior, or restore. Then draw a line around the
specific region in the 3d viewer.

The dragger tools let you specify a region to be modified by dragging, rotating and resizing a 3D
shape (box, ellipsoid, cone, or cylinder). A cut or restore operation can then be applied to the
interior or exterior part of that shape.

ZeroLevel

This port specifies by which data value voxels in selected regions are replaced when either cut
interior or cut exterior is pressed.

Cut

If the button interior is pressed, voxels inside the region selected by a dragger shape are replaced by
the zero level port. If the button exterior is pressed, voxels outside this region are replaced. If the
draw tool is active, you have to encircle the region to be replaced after pressing one of the buttons.

Restore

If the button interior is pressed, voxels inside the region selected by a dragger shape are replaced
by the original data values. If the button exterior is pressed, voxels outside this region are replaced.
If the draw tool is active, you have to encircle the region to be replaced after pressing one of the
buttons.

364 Chapter 6: Alphabetic Index of Modules

If the button all is pressed, the entire volume is reset to its original state.

Edit

This port provides two buttons for undoing or redoing the last cut or restore operation. The create
mask buttons creates a binary label field in which all voxel with a modified data value are set.

6.138 VoxelView

This module can be attached to an OrthoSlice module. It allows you to visualize contiguous 3D regions
of a LabelField or of some other uniform scalar field with integer values. The regions are selected by
clicking onto the OrthoSlice with the middle mouse button. Starting from the selected pixel a 3D flood
fill process is performed. Multiple regions can be selected by shift-clicking multiple seeds.

On default the regions to be visualized are taken from the same input object the OrthoSlice module
is attached to. However, optionally an independent scalar field may be connected to the VoxelView
module. For example, an OrthoSlice module may be used to visualize a stack of CT images, while a
VoxelView attached to it is used to display segmented regions defined in a label field.

Connections

Slice [required]

The OrthoSlice module which provides the slice where seed points have to be selected using the
middle mouse button.

Data [optional]

Optional scalar field. If set contiguous regions of this field will be displayed instead of regions of
the field the OrthoSlice module is attached to.

Colormap [optional]

The colormap used to color the 3D regions.

Ports

Colormap

Port to select a colormap.

Max Dist

VoxelView 365

This port limits the region growing process. At most the given number of slices are considered in
upward or downward direction. May be useful on slow machines in order to limit the number of
triangles.

Draw Style

Three different draw styles are provided, filled, lines, and points. Due to the regular structure of the
voxel data only three different face orientations occur. Thus only three different colors will be used
to render the voxel regions.

Floodfill Type

Specifies the kind of flood fill algorithm to be applied (neighbours at faces, faces and edges, or
faces, edges, and corners). If take all is selected all voxel with the same value as the seed voxel will
be selected and displayed.

Action

Provides a button to hide all selected 3D regions.

366 Chapter 6: Alphabetic Index of Modules

Chapter 7

Alphabetic Index of Ports

7.1 Port

This is the base class of all ports in amira.

Ports are used to interact with an amira object. There are several different types of ports, e.g., option
menus, sliders, or toggle buttons. If an object is selected its ports are displayed in the lower part of the
amira main window, the so-called working area. An object may choose not to display all ports at all
times, depending on the internal state of the obejct. Most ports have a pin, allowing to keep the port
visible even if the the object the port belongs to is deselected.

Connections are special ports, allowing to specify dependencies between objects. In contrast to other
ports connections usually don’t have their own user interface, but they are represented by correspond-
ing lines in the object pool.

Every port provides its own Tcl command interface. This allows script programmers to interact with
the port in an automated way. In addition to the commands defined by a port itself also all commands
of the port’s base class are available (this is the same as for amira modules and data classes). Port
commands are called using the following syntax:

<modulename> <portname> <commandname> [optional parameters]

In order to get a list of all ports of an object you can use the command <modulename> allPorts.
In most cases, but not in all cases, the name of a port used in Tcl commands is equal to the port’s label
as displayed in the graphical user interface, with the only exception that the name usually starts with a
lower case letter and that white spaces are omitted.

Commands

help
Displays all commands available for the port. The same result can be obtained by just calling the
port without any command.

isNew

Returns 1 if the port was changed after the object was fired the last time, and 0 otherwise.

getState
Returns a string which later on can be used to restore the state of a port using the command set-
State. The format of the state string is not specified and it may be different for each port. Usually
the state string contains the same information which is also stored in amira network files, but not
for example label strings which might have been modified using the script interface as well.

setState <state-string>
Restores the state of a port from a string previously obtained using the getState command.

getLabel

Returns the label of the port displayed in graphical user interface, for example Options:.

setLabel <label>

Sets the label of the port.

getLabelWidth

Returns the width of the port’s label in pixels.

setLabelWidth <width>
Sets the width of the port’s label in pixels, see also align.

align <port2> <port3> ...

Align this and all other ports specified as arguments so that all labels have the same width.

getPin

Check if the port has been pinned or not.

setPin <value>

Set or unset the port’s pin button. If the port is pinned it will be displayed in the work area even if
the owner of the port is deselected.

touch

Touch the port to simulate a change of value.

untouch
Untouch the port so that isNew will return 0 the next time even if the port was changed.

object
Returns the name of the object the port belongs to.

368 Chapter 7: Alphabetic Index of Ports

send

Fires the object the port belongs to as well as all downstream objects.

show
Shows the port, provided the owning object is selected.

hide

Hides the object, provided the owning object is selected.

isVisible

Returns 1 if the port is shown, or 0 if it is hidden.

reposition <index>

Changes the position of the port within the object’s port list and in the graphical user interface. Note
that connection ports are counted too even if they may not have any controls.

isOfType <typeid>

Checks if this port if of the specified type or derived from it.

getTypeId
Returns the port’s type name.

7.2 Connection

This port represents a connection from one object to another. It is commonly used to specify on which
input objects some other object should depend on. A connection does not provide its own user interface
like other ports, but is visually represented in the object pool by a line between the source object and
the object the connection port belongs to. In order to change the connection this line can be picked
with the mouse and dragged to some other source object. All connection ports of an object are listed in
a special popup menu which is activated by clicking with the right mouse button in the little connection
area (left most rectangle) of the object’s icon.

Commands
Inherits all commands of Port.

source

Returns the name of the source object connected to this port. If there is no source object connected
an empty string is returned.

connect <source>

Tries to connect the port with the specified source object. If the connection cannot be established a
Tcl error is generated.

Connection 369

disconnect

Disconnects the port from any source object.

setTightness {0|1}
Sets the tightness flag of the port. If the connection is tight no connection line is drawn in the object
pool. Instead, the icon of the owning object is glued together with the icon of the source object,
so that both icons comprise an icon group. Each object can only have one connection port with
tightness set to 1.

isTight
Checks if the connection is tight or not (see above).

setVisibility {0|1}
Sets the visibility flag of the port. If visibility is switched off the connection will not be represented
by a line in the object pool.

isVisible

Checks if the connection is visible or not (see above).

allowEditing {0|1}
Allow or disallow interactive editing of the connection. If editing is disallowed the connection
cannot be changed interactively by moving the connection line to some other source object.

isEditable

Checks if the connection can be edited interactively or not.

validSource <source>

Checks if the specified object can be connected to this port. If this is the case 1 is returned, otherwise
0 is returned.

7.3 MasterConnection

This port represents a special connection port which is provided by every data object. It allows to
connect the data object to a particular slot of a compute module or to an editor. A master connection
is not available for script objects.

Commands
Inherits all commands of Connection.

editor

Returns the name the editor which currently has control over the data object, i.e., which possibly
modifies the data object.

370 Chapter 7: Alphabetic Index of Ports

connect <source> [<slot>]

If this command is called with only one argument, it behaves like the connect command of an
ordinary connection. If this command is called with two arguments and if the source object is a
compute module, it connects the data object the master connection belongs to to the specified result
slot of the compute module. Result slots are used to allow compute modules to have multiple result
objects.

7.4 Port3DPointList

This port lets you enter an arbitrary number of 3D points. The points can be specified either by typing
in their coordinates in appropriate text fields or by activating a dragger in the 3D viewer. In order to
move the dragger you have to put the viewer into interaction mode (press the ESC key). Then move
the mouse over one of the dragger’s crosshairs and push the left mouse button. The color of the picked
crosshair changes and a grey transparent plane is shown. The moving area of the dragger is restricted
to this plane. The new coordinates are delivered to the application when you release the mouse button,
or, if immediate mode is on, while you are moving. If the orthogonal mode is on, all other points are
moved in sync. You can only move one point, the current point, at a time. Type TAB in the viewer
window to cycle through all points if you want to change the current point. You can also hit the up or
down arrows of the port’s point index spin box. Theses arrows are shown only if the port manages a
list of at least 3 3D points. The current point is shown as a red sphere, all other points as yellowish
spheres.

Note: You can pick a location with the middle mouse button on a pickable object in the scene, e.g., an
OrthoSlice, to set the current point to that location.

This port is used for example by the data probing modules.

Commands
Inherits all commands of Port.

getNumPoints

Returns the current number of points defined by this port.

getValue [<index>]

Returns the coordinates of point <index> or of the current point, if no argument was specified.

setValue [<index>] <x> <y> <z>

Sets the coordinates of point <index> or of the current point, if no argument was specified. The
coordinates are automatically clipped against the bounding box of the dragger.

Port3DPointList 371

getBoundingBox

Returns the bounding box of the dragger. The command returns six number, namely the xmin,
xmax, ymin, ymax, zmin, and zmax coordinates of the bounding box in that order.

setBoundingBox <xmin> <xmax> <ymin> <ymax> <zmin> <zmax>

Sets the bounding box of the dragger. Most modules adjust the bounding box if the module is
connected to a new input data object.

getFormat

Returns the format used for the coordinate text fields.

setFormat <format>
Sets the format used for the coordinate text fields in printf syntax. The default is %g.

getImmediate
Checks whether immediate mode is enabled or not.

setImmediate {0|1}
Enables or disables immediate mode. If immediate mode is enabled the module the port belongs to
is fired permanently while the dragger is moved. Otherwise the module is fired only once after the
dragger was moved.

getOrtho
Checks whether orthogonal mode enabled or not.

setOrtho {0|1}
Enables or disables orthogonal mode. In orthogonal mode all points of the port are moved at the
same time when the dragger is moved. Otherwise only the current point is moved.

showDragger
Shows the dragger at the current point.

hideDragger

Hides the dragger.

showPoints

Shows the points. The points are represented by little red spheres.

hidePoints
Hides the points.

getPointSize
Returns the current point size (radius) in absolute coordinates.

setPointSize <radius>

Sets the point size (radius). The point size is automatically adjusted if the dragger’s bounding box
changes.

372 Chapter 7: Alphabetic Index of Ports

getPointScale

Returns the current point size scale factor.

setPointScale <factor>
Sets the point size scale factor. On default the scale factor is 1. If you find that the default size of
the points is too small or too big you can adjust this factor.

appendPoint [<x> <y> <z>]
Appends a new point to the port’s point list. If no coordinates are specified a point with some
default coordinates will be appended. If the number of points exceeds some limit (which cannot be
modified via the script interface) nothing happens and -1 is returned. Otherwise the index of the
appended point is returned.

insertPoint <index> [<x> <y> <z>]

Inserts a new point at position index in the port’s point list. If no coordinates are specified a
point with some default coordinates will be inserted. If the number of points exceeds some limit
(which cannot be modified via the script interface) nothing happens and -1 is returned. Otherwise
<index> is returned.

removePoint <index>

Removes point <index> unless a minimal number of points (which cannot be modified via the
script interface) is reached. If the point couldn’t be removed 0 is returned. Othwerwise 1 is returned.

7.5 PortButtonList

This port provides an arbitrary number of push buttons. The buttons are implicitely numbered 0, 1,
2, ... from left to right. When a button is pushed the port’s new flag is set. The index of the pushed
button can be obtained using the command getValue. After the module was fired the port’s new flag
is unset again and getValue returns -1. This means that the port does not store a permanent state. A
push button is frequently used to trigger some action.

Modules using this port are for example GridVolume or ObliqueSlice.

Commands
Inherits all commands of Port.

getValue
Returns the index of the pushed button. If no button was pressed since the module was fired the
last time -1 is returned. The method does not interprete the snap toggle. In order to handle snapped
buttons better use the command wasHit (see below).

PortButtonList 373

setValue <index>

Marks button index as being pushed.

wasShiftDown
Checks if the shift key was down the last time a button was pressed.

wasCtrlDown

Checks if the control key was down the last time a button was pressed.

wasAltDown

Checks if the alt key was down the last time a button was pressed.

setShiftDown {0|1}
Sets the shift key modifier flag.

setCtrlDown {0|1}
Sets the control key modifier flag.

setAltDown {0|1}
Sets the alt key modifier flag.

getSensitivity [<index>]

Checks whether the first button or button index is enabled or disabled.

setSensitivity [<index>] {0|1}
Enables or disables the first button or button index. If a button is disabled it is grayed out and
cannot be pushed anymore.

getLabel [<index>]
Returns the label of button index or the port’s label.

setLabel [<index>] <label>
Sets the label of button index of the port’s label.

setCmd [<index>] <command>

Sets a Tcl command which is executed when the specified button is pressed. This feature is espe-
cially useful in script objects since it avoids writing long Tcl code with many if statements. If a
command has been set for a button the owning module will not be fired and the port will not be
touched when the button is pressed. The command will be executed in the global Tcl namespace.
The variable this refers to the owning module.

getCmd [<index>]
Returns the Tcl command associated with the specified button or an empty string if no Tcl command
has been set.

getNumButtons
Returns the number of buttons of the port.

374 Chapter 7: Alphabetic Index of Ports

setNumButtons <number>

Sets the number of buttons of the port. New buttons are created with an empty label.

enableSnapToggle [<index>] {0|1}
Enable or disable the snap toggle for the first button or for button index.

snap [<index>] {0|1}
Snap or unsnap a button. The button’s snap toggle must be enabled.

isSnapped [<index>]

Check whether the specified button is snapped or not.

wasHit [<index>]
Returns 1 if the specified button was hit or if its snap toggle is down.

7.6 PortButtonMenu

This port combines an arbitrary number of push buttons with one or more option menus containing an
arbitrary number of options. The port is derived from PortButtonList and hence inherits its behaviour.

This port is used for example by the modules FieldCut or DisplayISL.

Commands
Inherits all commands of PortButtonList.

setNumOptEntries [<menu>] <number>

Sets the number of entries in the option menu.

getNumOptEntries [<menu>]
Returns the number of entries in the option menu.

setOptValue [<menu>] <index>

Selects item <index> in the option menu.

setOptValueString [<menu>] <label>

Selects the item with the specified label string in menu <menu> or in the first option menu, if
only one argument is given. If no item with such a label exists, nothing happens and 0 is returned.
Othwerwise 1 is returned.

getOptValue [<menu>]
Returns the index of the selected item in the option menu.

PortButtonMenu 375

setOptLabel [<menu>] <index> <label>

Sets the label of the option menu item specified by <index>.

getOptLabel [<menu>] <index>

Returns the label of the option menu item specified by <index>.

setOptSensitivity [<menu>] <index> {0|1}
Enables or disables a particular item in the option menu.

getOptSensitivity [<menu>] <index>
Check whether a particular item in the option menu is enabled or not.

7.7 PortChannelConfig

This is a special port used exclusively by multi-channel fields. There is one such port for each channel
of a multi-channel field. Derived from connection, this port manages the link to the actual channel
object. In addition, it provides two text fields allowing the user to define a data range used for mapping
the channel data to gray values. The channel’s color can be set using a color button. Clicking on this
button pops up the amira color dialog. This port is not available for script objects.

Commands
Inherits all commands of Connection.

getMinValue

Returns the lower value of the channel’s data window.

setMinValue <value>
Sets the lower value of the channel’s data window.

getMaxValue

Returns the upper value of the channel’s data window.

setMaxValue <value>
Sets the upper value of the channel’s data window.

getColor

Returns the channel’s color as an RGB tuple of floating point values.

setColor <color>
Sets the channel’s color. The color can be specified either as a tuple of three RGB integer values
in the range 0...255, or as a tuple of three RGB floating point values in the range 0...1, or as a text
string (e.g., blue or red).

376 Chapter 7: Alphabetic Index of Ports

7.8 PortColorList

This port provides one or more color buttons which can be used to define a constant color. Colors
can be easily edited using the amira color dialog which is popped up when one of the color buttons is
pushed.

This port is used for example by the Axis module.

Commands
Inherits all commands of Port.

setColor <index> <color>

Sets the color of button <index>. The color can be specified either as a tuple of three RGB integer
values in the range 0...255, or as a tuple of three RGB floating point values in the range 0...1, or as
a text string (e.g., blue or red).

getColor <index>
Returns the color of button index as an RGB tuple of three floating point numbers in the range 0...1.

setAlpha <index> <alpha>

Sets the alpha value of button <index>.

getAlpha <index>

Returns the alpha value of button <index>.

setLabel [<index>] <label>

Sets the label of button index of the port’s label, if only one argument is specified.

getLabel [<index>]

Returns the label of button index or the port’s label, if no argument is specified.

setNumButtons <number>

Sets the number of color buttons of the port.

getNumButtons

Returns the number of color buttons of the port.

setContinuousMode {0|1}
Enables or disables continuous mode. If continuous mode is activated the owning module is fired
permanently when changing a color using the color dialog.

getContinuousMode
Checks whether continous mode is enabled or not.

PortColorList 377

7.9 PortColormap

This port provides a connection to a colormap object. In contrast to a standard connection port this
port has a user interface, i.e., it is represented in the work area as any other port if the owning object
is selected. In particular the contents of the connected colormap as well as its range are shown. New
colormaps can be quickly connected to the port via a context menu which pops up when pressing the
right mouse button over the colormap area of the port.

The context menu also allows you to switch between global and local range mode. In global range
mode the coordinates used to map data values to colors are taken from the colormap itself. If the same
colormap is used by two different modules and if the range then is modified, both modules are updated.
In contrast, in local range mode the coordinates are defined by the port itself. Thus, although the same
colormap might be used by two different modules, the ranges still can be different.

If no colormap is connected to the port, still a default color and a default alpha value can be defined.
The default colors can be modified via the amira color dialog which is popped up by double-clicking
on the colormap area with the left mouse button. If a colormap is connected a left mouse button
double-click makes the icon of the colormap visible in the object pool.

See also: Colormap, ColormapEditor

Commands
Inherits all commands of Connection.

setDefaultColor <red> <green> <blue>
Sets the default color of the port. An RGB tuple of three floating point values between 0...1 must
be specified.

getDefaultColor

Returns the default color of the port.

setDefaultAlpha <alpha>
Sets the default alpha (opacity) value of the port.

getDefaultAlpha
Returns the default alpha (opacity) value of the port.

enableAlpha {0|1}
Enables or disables the display of the alpha channel in the port’s colormap area. Even if the alpha
channel is not displayed by the port it is up to the owning module to interprete alpha values or not.

isAlphaEnabled
Checks is alpha values are displayed by the port or not.

378 Chapter 7: Alphabetic Index of Ports

setLocalRange {0|1}
Enables or disable the local range feature (see discription above).

getLocalRange
Checks is the local range feature is enabled or not.

setLocalMinMax <min> <max>
Sets the coordinate range used for mapping data values to colors when the local range feature is
enabled. The port is touched but the network is not fired.

getLocalMinValue
Returns the lower bound of the local range.

setLocalMinValue <min>

Sets the lower bound of the local range.

getLocalMaxValue

Returns the upper bound of the local range.

setLocalMaxValue <max>

Sets the upper bound of the local range.

setMinMax <min> <max>
Sets the coordinate range used for mapping data values to colors. If local range is enabled or if no
colormap is connected the local range is updated. Otherwise the range of the connected colormap is
updated. In both cases the network is fired, i.e., the module owning this port or modules connected
to the modified colormap are updated.

7.10 PortDoIt

This port is essentially identical to PortButtonList. The only difference is that this port always comes
up with a single button initially and that this button has a snap toggle by default.

This port is mainly used by compute modules, for example Arithmetic or CastField.

Commands
Inherits all commands of PortButtonList.

7.11 PortDrawStyle

This is a special port allowing to adjust the drawstyle of display modules derived from ViewBase. The
port provides a combo box (option menu) offering the following drawstyles:

PortDoIt 379

• outlined

• shaded

• lines

• points

• transparent

In addition, the port allows to set additional options vai a popup menu which is activated by pressing
the more options button. For a detailed description of these options please refer to the documentation
of ViewBase. This port is not available for script objects.

Commands
Inherits all commands of Port.

getValue

Returns the index of the current draw style.

setValue <index>
Sets the current draw style. The draw styles are indexed in the same order as they appear in the
combo box, i.e., 0=outlined, 1=shaded, 2=lines, 3=points, 4=transparent.

isTexture
Checks if 1D-textures for pseudo-coloring are enabled (as opposed to Gouraud shading).

setTexture {0|1}
Enables or disables 1D-textures for pseudo-coloring.

getNormalBinding

Returns an index describing the current normal binding mode.

setNormalBinding {0|1|2}
Sets the normal binding. The indices have the following meaning: 0=triangle normals, 1=vertex
normals, 2=direct normals (computed using a crease angle criterium, compare ViewBase).

7.12 PortFilename

This port is used to define a file name. The file name may be either manually typed in the text field,
or it may be selected using the amira file browser. The file browser can operate in three modes, one
allowing to select any file, one allowing to select one existing file only, and one allowing to select
multiple existing files. However, if the file name is typed in manually no check is performed to ensure

380 Chapter 7: Alphabetic Index of Ports

that the file really exists. Typically the first mode is used for saving while the second and third modes
are used for loading. Associated with every filename is a filetype.

This port is used for example by the TetraGen module.

Commands
Inherits all commands of Port.

getFilename
Returns the filename or a list of filenames.

getFileType

Returns the filetype or a list of filetypes.

setFilename <filename> <filetype>

Sets the filename.

setFilenames [list <filename1> <filename2> ...] [list <file-
type1> <filetype2> ...]

Sets a list of filenames in multi file mode.

getValue
Returns the filename (same as getFilename) or a list of filenames.

setValue <filename> <filetype>
Sets the filename (same as setFilename or setFilenames in multi file mode).

getMode

Returns 0 if the file browser operates is any file mode, 1 if it operates in existing file mode, or 2 if it
operates in multi file mode (see description above).

setMode {0|1|2}
Sets the mode of the file browser (0 for any file, 1 for existing file, 2 for multi file (see description
above).

registerFileType [<formatname>] [<extension>]

If the file browser is opened in any file mode, it shows a combo box allowing the user to specify an
optional format to be used to save a data set. This command allows you to register format names
and optional file extensions which are added to the file type combo box. Calling this command
without any arguments removes all previously registered file types.

exec

Pops up the file browser. The file browser is opened in modal mode, i.e., the command blocks until
the user closed the dialog again. There is no way to close an open file browser using a Tcl command.

PortFilename 381

The method returns 0 if the browser was closed using the cancel button and the port’s filename field
was not updated. Otherwise it returns 1.

7.13 PortFloatSlider

This port provides a slider allowing the user to specifiy a floating point number. The floating point
number is limited to the current range of the slider. The range can be changed either using the Tcl
command setMinMax or interactively using a configure dialog, which is be popped up by pressing
the right mouse button over the slider.

Optionally the slider may have arrow buttons allowing the user to decrease or increase the value by
some predefined increment. The slider may also have so-called subrange buttons allowing the user to
restrict the actual range of the slider to a smaller subrange. In this way it is possible to interactively
adjust the slider’s value with high precision. In order to numerically adjust the lower (left) subrange
value the command L <value> can be typed in the slider’s text field. In order to numerically adjust
the upper (right) subrange value the command R <value> can be typed in the slider’s text field.

This port is used for example to specify the threshold of the Isosurface module.

Commands
Inherits all commands of Port.

getValue

Returns the float value.

setValue <float>
Sets the float value.

getMinValue
Returns the lower bound.

getMaxValue

Returns the upper bound.

setMinMax <min> <max>

Sets the lower and upper bounds of the slider.

setFormat <format>
Sets the format used for the slider’s text field in printf syntax. Typically, the default format is %g.

getFormat
Returns the printf format used for the slider’s text field.

382 Chapter 7: Alphabetic Index of Ports

setIncrement <increment>

Sets the increment. The increment is used for adjusting the slider value using the optional arrows
buttons. It is also used to constrain the slider value in discrete mode (see below).

getIncrement

Returns the slider’s increment.

setButtons {0|1}
Enables or disables the display of the optional arrow buttons.

hasButtons
Checks whether the optional arrow buttons are enabled or not.

setSliderWidth <width>
Sets the width of the slider in pixels.

getSliderWidth
Returns the width of the slider in pixels.

setNumColumns <columns>

Sets the width of the slider’s text field in characters.

getNumColumns

Returns the width of the slider’s text field in characters.

setTracking {0|1}
Enables or disables tracking mode. If tracking mode is enabled the network is fired permanently
while the user moves the slider. Otherwise it is fired only once when the slider is released.

getTracking
Checks whether tracking mode is enabled or not.

setDiscrete {0|1}
Enables or disables discrete mode. If discrete mode is enabled the slider value will always be a
equal to the lower bound plus an interger multiple of the current increment.

getDiscrete

Checks whether discrete mode is enabled or not.

setSubRangeButtons {0|1}
Enables or disables the subrange buttons (see description above),

hasSubRangeButtons
Checks whether the subrange buttons are enabled or not.

PortFloatSlider 383

7.14 PortFloatTextN

This port represents a variable number of bounded float values which can be edited interactively. The
actual number of float fields can be changed at run-time. Each float field has a label, a printf-style
format string, and a lower and upper bound used to constrain the value of the text field. minimum and
maximimum values, as well as the sensitivity of each field.

In order to quickly change the value of a float field, a virtual slider is provided. The virtual slider is
activated by clicking into a text field with the shift key hold down, and then moving the mouse up or
down.

This port is used for example by the Resample module.

Commands
Inherits all commands of Port.

getValue [<index>]
Returns the value of the text field <index> or of the first text field, if no argument is specified.

getMinValue [<index>]
Returns the lower bound of the text field <index> or of the first text field, if no argument is
specified.

getMaxValue [<index>]

Returns the upper bound of the text field <index> or of the first text field, if no argument is
specified.

setValue [<index>] <value>
Sets the value of the text field <index> or of the first text field.

setMinMax [<index>] <min> <max>
Sets the lower and upper bound of the text field <index> or of the first text field.

setValues <value1> <value2> ... <valueN>

Sets the values of all text fields. The number of arguments must match the number of text fields.

setMinMaxAll <min1> <max1> ... <minN> <maxN>

Sets the lower and upper bounds of all text fields. The number of arguments must be equal to twice
the number of text fields.

getFormat [<index>]
Returns the printf format string of the specified text field.

setFormat [<index>] <format>
Sets the printf format string of the specified text field.

384 Chapter 7: Alphabetic Index of Ports

getSensitivity [<index>]

Checks if the specified text field is enabled or not. Unsensitive text fields are grayed out and they
accept do not accept user input.

setSensitivity [<index>] {0|1}
Enables or disables the specified text field.

getLabel [<index>]

Returns the label of text field index or the port’s label.

setLabel [<index>] <label>

Sets the label of text field index of the port’s label.

setPart <index> {0|1}
Shows or hides the specified text field. A hidden text field is not displayed at all (in contrast to an
insensitive one), but still exists and stores a value.

getNum

Returns the current number of text fields.

setNum <value>

Sets the current number of text fields.

7.15 PortGeneric

This is a generic port which can be dynamically configured in various way. Several different predefined
user interface components can be used:

• text fields for integer values

• text fields for floating point values

• check boxes

• groups of radio buttons

• combo boxes (option menus)

• push buttons

• labels

Interface components inserted into this port are identified using a unique ID, which has to be specified
when creating the component. This ID is used in all commands to set or get the value of the particular
component.

The design goal of this class was primarily ease-of-use. Thus flexibility is somewhat limited. If you
want to create a port with custom GUI components you should use amiraDev and derive a new class
from Port using Qt widgets.

This port is used for example by the TransformEditor.

PortGeneric 385

Commands
Inherits all commands of Port.

getValue <id>

Returns the value of the specified component. For combo boxes and radio groups the index of the
selected item is returned.

setValue <id> <value>

Sets the value of the specified component. If the specified component is a combo box or a radio
group and if value is not a number than the value is interpreted as a label and the combo box item
or the radio button with that label is selected.

getColor <id>

Returns the color of a color button inserted via the command insertColorButton. If the
component <id> is not a color button the result is undefined.

setColor <id> <color>
Sets the color of a color button with the specified id. If the component <id> is not a color button
the command returns immediatly.

isItemNew <id>

Checks if the specified component was modified since the owning module was fired the last time.

deleteItem <id>

Deletes the specified item.

insertIntText <id> [<columns> [<index>]]
Inserts an integer text field. In order to set the text field to e.g., 27, use setValue <id> 27. In
order to query the value of the text field, use getValue <id>. <columns> specifies the width
of the text field. <index> specifies the position where the text field should be inserted. If this
argument is omitted the text field is appended after all other elements.

insertFloatText <id> [<format> [<columns> [<index>]]]

Inserts a floating point text field. In order to set the text field to e.g., 5.5, use
setValue <id> 5.5. In order to query the value of the text field, use getValue <id>.
<format> specifies the printf format of the text field. Usually %g is a good choice. <columns>
specifies the width of the text field. <index> specifies the position where the text field should be
inserted. If this argument is omitted the text field is appended after all other elements.

insertCheckBox <id> [<label> [<index>]]

Inserts a check box with a label. In order to set the check box use setValue <id> {0|1}. In
order to query the value of the check box use getValue <id>. <index> specifies the position
where the check box should be inserted. If this argument is omitted the text field is appended after
all other elements.

386 Chapter 7: Alphabetic Index of Ports

insertRadioGroup <id> <num> <label1> ... <labelN> [<index>]

Inserts a group of n radio buttons. The button labels are specified by <label1> to <labelN>.
The number of labels must match the number of radio buttons. In order to set for example the
second radio button (and unset all others) use setValue <id> 1. In order to query which radio
button is checked use getValue <id>. <index> specifies the position where the radio group
should be inserted. If this argument is omitted the radio group is appended after all other elements.

insertComboBox <id> <num> <label1> ... <labelN> [<index>]

Inserts a combo box with n items. The item’s labels are specified by <label1> to <labelN>.
The number of labels must match the number of radio buttons. In order to select for example
the second item (and unset all others) use setValue <id> 1. In order to query which item is
selected use getValue <id>. <index> specifies the position where the combo box should be
inserted. If this argument is omitted the combo box is appended after all other elements.

insertPushButton <id> <label> [<index>]

Inserts a simple push button. <label> specifies the label of the button. In order to simulate
a button press event use setValue <id> 1. In order to check if the button was pressed use
the command isItemNew <id>. <index> specifies the position where the button should be
inserted. If this argument is omitted the button is appended after all other elements.

insertColorButton <id> [<index>]

Inserts a color button. The button can be used to specify an RGB color. Pushing the button opens
the color dialog, In order to set the color use the command setColor <id> <color>. In order
to query the color use the command getColor <id>. <index> specifies the position where the
button should be inserted. If this argument is omitted the button is appended after all other elements.

insertLabel <id> <label> [<index>]
Inserts a label. <index> specifies the position where the label should be inserted. If this argument
is omitted the label is appended after all other elements.

setSensitivity <id> {0|1}
Sets the sensitivity of an element. If an element is insensitive it is grayed out and accepts no user
input. On default, all new elements are sensitive.

getSensitivity <id>
Returns the sensitivity of an element.

7.16 PortInfo

This port displays a simple single line information message. It does not allow any user interaction, and
thus never causes the owning object and the network to be fired.

This port is used for example by the Interpolate module.

PortInfo 387

Commands
Inherits all commands of Port.

getValue
Returns the text displayed by the port.

setValue <text>
Sets the text displayed by the port.

printf <fmt> <arg1> <arg2> ...

Sets the text displayed by the port using a C-style printf command. <fmt> is a message string
which may contain %s format specification fields. These fields are substituted by the arguments.
Note, that only %s string type fields must be used, but no numerical format fields like %d or %g.

7.17 PortIntSlider

Slider port representing an integer value. This class is derived from PortFloatSlider and it provides ex-
actly the same features and commands. The only exception is that the values returned by getValue,
getMinValue, and getMaxValue will be rounded to the nearest integer value. In addition, the
dafault format string used by the slider’s text field is %.0f which is suitable for integer values.

Modules using this port are for example OrthoSlice or Vectors.

Commands
Inherits all commands of PortFloatSlider.

7.18 PortIntTextN

This port provides an arbitrary number of text fields for entering integer values. The port is derived
from PortIntTextN and it provides exactly the same features and commands. The only exception is
that the values returned by getValue, getMinValue, and getMaxValue will be rounded to the
nearest integer value. In addition, the dafault format string used for the text fields is %.0f which is
suitable for integer values.

This port is used for example by the Resample module.

Commands
Inherits all commands of PortFloatTextN.

388 Chapter 7: Alphabetic Index of Ports

7.19 PortMultiChannel

This port is commonly used by modules operating on multi-channel fields. The port provides a set of
colored toggle buttons, one for each channel of the multi-channel field. Using these toggle buttons
individual channels of the multi-channel field can be quickly switch on or off. The color of a toggle
button represents the color of the channel it is representing.

This port is used for example by the ProjectionView module.

Commands
Inherits all commands of Port.

getValue <index>

Checks whether channel <index> is switched on or off.

setValue <index> {0|1}
Switchs channel <index> on or off.

getNum

Returns the number of channels controlled by this port.

7.20 PortMultiMenu

This port provides one or more combo boxes with a variable number of items each. At any time exactly
one item is selected in each combo box.

Modules using this port are for example SurfaceView or GridBoundary.

Commands
Inherits all commands of Port.

getValue [<menuindex>]

Returns the index of the item currently being selected in the specified menu or in the first menu, if
no argument is given.

setValue [<menuindex>] <itemindex>

Selects item <itemindex> in the specified menu or in the first menu, if only one argument is
given.

PortMultiChannel 389

setValueString [<menuindex>] <label>

Selects the item with the specified label string in menu <menuindex> or in the first menu, if
only one argument is given. If no item with such a label exists, nothing happens and 0 is returned.
Othwerwise 1 is returned.

setNum [<menuindex>] <numitems>

Sets the number of items in menu <menuindex> or in the first menu, if only one argument is
given.

getNum [<menuindex>]
Returns the number of items in menu <menuindex> or in the first menu, if only one argument is
given.

setLabel [<menuindex>] [<itemindex>] <newlabel>
If only one argument is given, this command sets the port’s label. If two arguments are given, this
command sets the label of item <itemindex> in the first menu. If three arguments are given, this
command set the label of item <itemindex> in menu <menuindex>.

getLabel [<menuindex>] [<itemindex>]

If no argument is given, this command returns the port’s label. If one argument is given, this
command returns the label of item <itemindex> in the first menu. If two arguments are given,
this command returns the label of item <itemindex> in menu <menuindex>.

setMenuSensitivity [<menuindex>] {0|1}
Enables or disables menu <menuindex> or the first menu, if <menuindex> is missing. If a
menu is disabled it is grayed out and it does not accept any user input.

getMenuSensitivity [<menuindex>]
Checks whether the specified menu is enabled or not.

setSensitivity [<menuindex>] <itemindex> {0|1}
Enables or disables item <itemindex> in menu <menuindex> or in the first menu, if <men-
uindex> is missing. If an item is disabled it is no longer listed in the menu.

getSensitivity [<menuindex>] <itemindex>
Checks whether the specified item in menu <menuindex> is enabled or not.

7.21 PortRadioBox

This port provides multiple toggle buttons with a radio behaviour, i.e., only one button can be switched
on at a time. Thus the port facilitates a one-of-many choice. For a larger number of possible choices
usually a combo box as provided by PortMultiMenu is more suitable.

Modules using this port are for example OrthoSlice or SplineProbe.

390 Chapter 7: Alphabetic Index of Ports

Commands
Inherits all commands of Port.

getValue
Returns the index of the button currently being selected.

setValue <index>
Selects button <index> and deselects the previously selected button.

setLabel [<index>] <label>

If only one argument is given, this command sets the port’s label. If two arguments are given, this
command sets the label of radio button <index>.

getLabel [<index>]
If no arguments are given, this command returns the port’s label. If one argument is given, this
command returns the label of radio button <index>.

setSensitivity <index> {0|1}
Enables or disables radio button <index>. A disabled button is grayed out and cannot be selected
interactively.

getSensitivity <index>

Checks whether radio button <index> is enabled or not.

getNum

Returns the total number of radio buttons of the port.

7.22 PortSeparator

This port displays a horizontal line. It is used to visually separate different groups of ports from each
other. In contrast to most other ports this port does not provide a pin button and thus cannot be pinned.
It does not accept any user input.

Commands
Inherits all commands of Port.

7.23 PortTabBar

The QTabBar class provides a bar consisting of a list of labeled, selectable tab elements, e.g., for use
in tabbed dialogs. Only one tab can be switched at a time. Thus the port facilitates a one-of-many
choice. This port has all methods of a PortRadioBox with the additional ability to assign a list of port
objects to every single tab element. If a tab element is chosen, all ports included in the tabs port list

PortSeparator 391

and which are also marked as visible, are scheduled for drawing. If a tab gets deselected, the ports
included in it’s port list become hidden. It’s possible to add the same port to multiple tab elements
and even to multiple QTabBar objects but it gets only visible if all its parent tab elements are selected,
which is never the case for two tabs at the same QTabBar.

Modules using this port are for example VolPro.

Commands
Inherits all commands of PortRadioBox.

portAdd <index> <objectLabel> <portLabel>

Adds the given port <object><port> to the tab objects <index> port list.

portRemove <index> <objectLabel> <portLabel>

Removes the given port <object><port> from the tab objects <index> port list.

7.24 PortText

This port provides a simple text input field.

The port is used for example in the Arithmetic module.

Commands
Inherits all commands of Port.

getValue

Returns the contents of the text field.

setValue <string>
Sets the text in the text field to <string>.

getNumColumns

Returns the width of the text field in characters.

setNumColumns <numcolumns>

Sets the width of the text field so that <numcolumns> characters fit in.

getSensitivity
Checks if the text field is enabled or not.

392 Chapter 7: Alphabetic Index of Ports

setSensitivity {0|1}
Enables or disables the text field. If the text field is disabled it is grayed out and it does not accept
any user input.

7.25 PortTime

This port defines a floating point value like PortFloatSlider. However, the value is typically interpreted
as a time value. It can be automatically animated in forward or backward direction, or it can be
synchronized with any other object providing a time port, for example a global time object. In order to
facilitate this kind of synchronization, PortTime is derived from Connection. If the port is connected
to some other object providing a time port, the value of that port is used, i.e., the time port becomes an
alias of the connected time port. The range of the time port as well as its increment (which is relevant
for animation) can be edited in a little dialog which is pops up when pressing the right mouse button
over the slider.

In addition to the main button the time slider also provides so-called subrange buttons. These buttons
allow you to temporarily restrict the range of the slider. For animations only this restricted range is
considered. The subrange buttons can be set to an exact value via the port’s popup dialog or by typing
L <value> or R <value> in the sliders text field. The letters L or R indicate that the left or right
subrange button should be set, and not the main button.

Commands
Inherits all commands of Connection.

getValue

Returns the current time value.

setValue <value>

Sets the current time value.

getMinMax
Returns two numbers indicating the full range of the time port.

setMinMax <min> <max>

Sets the range of the time port.

getSubMinMax
Returns two numbers indicating the subrange of the time port. The subrange is relevant for anima-
tions.

setSubMinMax <min> <max>
Sets the subrange of the time port.

PortTime 393

getIncrement

Returns the increment of the time port. During animations or when pressing the forward or back-
ward buttons the time value is increased or decreased by the increment.

setIncrement <value>
Sets the increment of the time port.

getDiscrete
Checks if the time port is in discrete mode or not. In discrete mode the time can only take on values
min + n*increment, where min is the minimum value of the range, increment is the port’s increment
value, and n is an integer value.

setDiscrete {0|1}
Sets discrete mode on or off.

setFormat <format>
Sets the format used for the slider’s text field in printf syntax. Typically, the default format is %g.

setTracking {0|1}
Turns tracking on or off. If tracking is enabled the object the port belongs to is fired permanently
while the moving the slider with the mouse. If tracking is off the object is only fired once when the
mouse button is released.

play [-forward|-backward] [-once|-loop|-swing]

Starts to animate the time value. Additional arguments can be specified for the animation direction
(forward or backward) and for the animation mode (play once, loop forever, play forth and back
forever). If no arguments are specified forward play and the last animation mode are assumed.

stop

Stops a running animation.

setRealTimeDuration <duration in seconds>

This command enables real time mode. In real time mode a full animation cycle takes as long as
specified by this command. The increment added to the current time value after each animation step
depends on the time required for that step. When real time mode is enabled discrete mode will be
automatically disabled.

getRealTimeDuration

Returns the time duration of a full animation cycle in real time mode. If real time mode is disabled,
0 is returned. When the min or max time value is changed while real time mode is enabled the time
duration is automatically adjusted.

394 Chapter 7: Alphabetic Index of Ports

7.26 PortToggleList

This port provides multiple toggle buttons. The buttons are implicitly numbered 0, 1, 2, ... from left
to right and each button can be switched independently. Usually each toggle represents a particular
option affecting the operation of a module.

The port is used for example in the LabelVoxel module.

Commands
Inherits all commands of Port.

getValue <index>

Returns 1 if toggle <index> is checked or 0 if it is not.

setValue <index> {0|1}
Sets the state of the button <index>.

getNum

Returns the number of toggle buttons of the port.

setNum <numbuttons>

Sets the number of toggle buttons of the port.

getLabel [<index>]

If no arguments are given, this command returns the port’s label. If one argument is given, this
command returns the label of toggle button <index>.

setLabel [<index>] <label>

If only one argument is given, this command sets the port’s label. If two arguments are given, this
command sets the label of toggle button <index>.

getLabel [<index>]
If no arguments are given, this command returns the port’s label. If one argument is given, this
command returns the label of toggle button <index>.

setLabel [<index>] <label>

If only one argument is given, this command sets the port’s label. If two arguments are given, this
command sets the label of toggle button <index>.

getSensitivity <index>

Checks whether toggle button <index> is enabled or not.

setSensitivity <index> {0|1}
Enables or disables toggle button<index>. A disabled button is grayed out and cannot be modified
interactively.

PortToggleList 395

396 Chapter 7: Alphabetic Index of Ports

Chapter 8

Alphabetic Index of Data Types

8.1 AnnaScalarField3

This data class represents a user defined 3D scalar field based on a regular grid. It provides a port
Expression by which an arithmetic expression depending on uniform cartesian coordinates x, y, z can
be entered that defines the value for each point of the unit cube. The range of values with respect to this
(default) domain is indicated as Component Range. A data object of type AnnaSccalarField3 has two
additional input ports that can be connected to other data objects representing scalar fields on a regular
grid, e.g., to image data objects. The predefined variables a and b are available for referencing such
connected data objects in the arithmetic expression, this way a scalar field depending on other regular
scalar fields can be defined. Whenever an expression evaluation is triggered to compute the value for
a point (x,y,z), the variables a and/or b will be be substituted by the corresponding input values at the
same point (x,y,z). For instance the value at a single point may be obtained by attaching a PointProbe
module to the AnnaScalarField3 data object and entering the point’s cordinates by the Coord port of
that module.

An expression consists of variables and mathematical and logical operators, the syntax is basically the
same as for C expressions. The following variables are always defined:

• x: the x-coordinate of the current point

• y: the y-coordinate of the current point

• z: the z-coordinate of the current point

If data objects ScalarField A or ScalarField B are connected to port InputA resp. InputB the following
variables are also defined:

• a: the values of input object A

• b: the values of input object B

The same C style mathematical and logical operators as well as built-in functions that are availabe for
arithmetic expressions can be used here, see Arithmetic module description.

Connections

InputA [optional]

Optional scalar field.

InputB [optional]

Optional second scalar field.

Ports

Expr

Input field for arithmetic expression defining the scalar field values.

8.2 AnnaVectorField3

This data class represents a user defined 3D vector field based on a regular grid. It provides ports X,
Y, Z by which arithmetic expressions can be entered that define the component mappings with respect
to uniform Cartesian coordinates x, y, and z. The (default) domain is the unit cube, thus for each point
(x,y,z) in it, the associated vector (X,Y,Z) is given by scalar functions X(x,y,z), Y(x,y,z), and Z(x,y,z)
which can be specified by the user in the same way as a function for a HxAnnaScalarField3 data object.

The range of vector magnitudes, defined as Euclidean vectors lengths, is indicated as Magnitude.

A data object of type HxAnnaVectorField2 has three additional input ports named InputA, InputB,
InputC that can be connected to other data objects representing scalar or vector fields on a regular
grid. There are some predefined variables for referencing such connected data objects in the arith-
metic expressions, namely a, b, c for scalar fields and ax, ay, az, bx, by, bz, cx, cy, cz for x-, y-,
resp. z-components of vector fields. This way a vector field depending on other regular scalar and/or
vector fields can be defined. Whenever an evaluation of the three expressions is triggered to compute
the vector associated to a point (x,y,z), each of the variables mentioned that occurs in them will be
substituted by the corresponding input values at the same point (x,y,z). For instance the component
values of a vector associated to a single point may be obtained by attaching a PointProbe module to
the HxVectorField3 data object, entering the point’s cordinates by the Coord port of that module and
setting the Vector toggle to all.

An expression consists of variables and mathematical and logical operators, the syntax is basically the
same as for C expressions. The following variables are always defined:

• x - the x-coordinate of the current point

398 Chapter 8: Alphabetic Index of Data Types

• y - the y-coordinate of the current point

• z - the z-coordinate of the current point

If a scalar data object is connected to any of the ports InputA, InputB, InputC a corresponding variable
for access to the data values is also defined, namely:

• a - the values of input object A

• b - the values of input object B

• c - the values of input object C

If a vector data object is connected to any of the ports InputA, InputB, InputC corresponding component
variables for access to the data values are also defined, namely:

• ax, ay, az - the xyz vector components of input object A

• bx, by, bz - the xyz vector components of input object B

• cx, cy, cz - the xyz vector components of input object C

The same C style mathematical and logical operators as well as built-in functions that are availabe for
arithmetic expressions can be used here, see Arithmetic module description.

Connections

InputA [optional]

Optional scalar or vector field.

InputB [optional]

Optional second scalar or vector field.

InputC [optional]

Optional third scalar or vector field.

Ports

X

Input field for arithmetic expression defining the x-component field values.

Y

Input field for arithmetic expression defining the y-component field values.

AnnaVectorField3 399

Z

Input field for arithmetic expression defining the z-component field values.

8.3 CameraRotate

This object can be created from the main window’s Create menu. It lets you rotate the cameras of all
viewers activated in the object’s viewer mask. This is useful in order to create simple animations. The
animations can be stored in MPEG movie files by attaching a MovieMaker module to this object. More
complex camera animations can be created using the CameraPath object and its associated editor

Connections

Time [optional]

Optional connection to some other object providing a time source. This allows you to synchronize
multiple time dependent objects.

Ports

Time

The current time value. Changing the time modifies the cameras in all viewers activated in the
object’s viewer mask, i.e., with the orange viewer mask button being set.

Action

This port lets you specify the orientation of the camera rotation. Whenever the recompute button is
pressed or a new menu option is selected the camera path is recomputed, i.e., the center of rotation
and the radius are determined by analysing the camera in the main viewer.

8.4 Cluster

Data objects of type Cluster are used to represent sets of 3D points with additional data variables
associated to them. For each point at least the x-, y-, and z-coordinate as well as an additional index
is stored. The index is an arbitrary number which can be used to identify corresponding points in
different data sets.

Moreover, an arbitrary number of additional data columns may be defined. The elements of a data
column may be stored as 32-bit floats, as 32-bit integers, or as 8-bit characters. Each data column also

400 Chapter 8: Alphabetic Index of Data Types

has a string specifying its name. Optionally, a symbol may be defined, which is used to denote the
column in an arithmetic filter expression as provided by the modules ClusterView and ClusterDiff.

Commands

resetIds
Resets all point indices. The index of the first point will be set to 0, the index of the second point
will be set to 1, and so on.

computeConnectivity

Computes connectivity information required to display bonds between neighbouring points. Bond
detection does not take into account any chemical information. Instead, merely nearest neighbours
are computed. Each point may have at most 12 such neighbours. In addition the length of the
longest bond of a point may not be larger than 1.4 times the length of the shortest one.

8.5 ColorField3

An RGBA color field is a regular 3D field with 4 data components per voxel. Each data component
is an 8-byte value. The first 3 components are interpreted as red, green, and blue color values. The
fourth component represents an opacity value (alpha). Color fields usually have uniform coordinates,
i.e., equal slice distances in all directions, but other coordinate types are possible as well.

Color fields can be visualized using the slicing modules OrthoSlice and ObliqueSlice. They are espe-
cially useful in combination with a Voltex module for direct volume rendering. Since the color field
stores an RGBA tuple for each voxel, no additional transfer function is required. This allows you for
example to visualize different data sets in a single volume rendered image at once. The conversion of
one or multiple scalar fields into a color field is accomplished using the ColorCombine module.

Commands

alphaAverage [min] [max]

Sets the alpha value of all voxels equal to the luminance 0.3*R + 0.59*G + 0.1*B, i.e., brighter
objects become more opaque. If min and max are specified the alpha values are scaled so that they
fill this range. On default min and max are 0 and 255, respectively.

alphaSet <alpha>

Sets the alpha value of all voxels to the specified value.

alphaThreshold <luminance>

Sets the alpha value of all voxels with a luminance smaller than the specified value to 0. The alpha
of all other voxels is set to 255. Luminance is computed as 0.3*R + 0.59*G + 0.1*B.

swapRGBA
Swaps ABGR tupels into RGBA tupels or vice versa.

ColorField3 401

8.6 Colormap

A Colormap is a sequence of RGBA-tupels, where every tupel specifes a color by a red, green and
blue value in the RGB color model. Each value ranges from 0.0 to 1.0 and is represented by a floating
point value. A fourth value, the so-called alpha value, defines opacity. It also ranges from 0.0 to 1.0,
where 0.0 means that the color is fully transparent, and 1.0 that the color is fully opaque. A colormap
usually stores 256 different RGBA-tupels, but other sizes and even procedurally defined colormaps are
possible too.

Beside the raw RGBA values the colormap also stores two coordinates, defining a range used for color
interpolation. Color lookup requests for an argument smaller than the minimum coordinate evaluate to
the first colormap entry. Requests for an argument greater than the maximum coordinate evaluate to
the last entry.

Connections

Datafield

Connection to a data field from which the min-max values of the colormap are taken.

Ports

Colormap

This port displays the contents of the colormap. Transparent values are drawn over a checkerboard
background. The coordinate range can be edited via the two text fields left and right from the
graphics area.

Min-Max

This port is only visible if an input is connected to port Datafield. If this is the case and data min-
max is selected, the coordinate range of the colormap is automatically adjusted so that it matches
the min max values of the connected data field. If grow range is selected the coordinate range is
enlarged if the min max values of the connected data field fall outside the current range. The option
data window becomes active only if the connected data field contains a parameter DataWindow. If
the option is selected the coordinate range is set to the range specified by the DataWindow parameter
(see also Section 3.2.7 (Parameters)).

Shift range

This slider allows you to shift the range assumed for a connected data field. Instead of the true min
max values shifted values are used if the value is different from 0.

402 Chapter 8: Alphabetic Index of Data Types

Scale range

This slider allows you to scale the range assumed for a connected data field. Instead of the true min
max values scaled values are used if the value is different from 1. The scaling is applied relative to
the shifted center of the range. The shifted and scaled range will always be clamped to the original
range. The shift and scale ports are useful to investigate certain subrange of a data set in detail.

Commands
Inherits all commands of Data.

setMinMax <min> <max>

Sets the coordinate range of the colormap.

minCoord
Returns the lower bound of the coordinate range.

maxCoord
Returns the upper bound of the coordinate range.

isTransparent
Checks whether the colormap contains transparent values or not.

getRGBA <u>

Returns the interpolated RGBA values for the parameter <u>, which is a value between 0.0 and 1.0.
The value 0.0 corresponds to the first colormap entry, while 1.0 corresponds to the last colormap
entry.

getRGB <u>

Similar to the above command, but returns only three values (RGB, not alpha).

makeSteps <numsteps>

Discretizes the colormap so that only ¡numsteps¿ different colors remain.

setInterpolate {0|1}
Turns interpolation on or off. When interpolation is on, the colors of two neighbouring colormap
entries are interpolated when a color is looked up. When interpolation is off, the color of the
nearest colormap entry is returned. This is be useful is a colormap modified with the makeSteps
command is used.

getInterpolate

Checks wheter interpolation is on or off.

makeRandom
Replaces all colors of the colormap by random values.

Colormap 403

makeVolren <r> <g> <power> <huewidth>

Replaces the colormap by something useful for volume rendering. The first three arguments specify
the base color of the colormap. ¡power¿ denotes an exponent used to compute an alpha curve. If
this is 1 the colormap gos linearly from fully opaque to fully transparent. <huewidth> indicates
the width of the color spectrum around the base color between 0 and 1.

interpol <map1> <map2> <u>

Replaces the colormap by the weighted average of two other colormaps <map1> and <map2>.
The interpolation parameter <u> should be chosen between 0 and 1.

8.7 Data

This is the base class of all amira data objects. Data objects are usually represented by green icons in
the object pool. In contrast to modules, data objects can be duplicated and saved to a file. They also
provide a hierachical list of parameters or attributes. This list can be edited using the parameter editor.

Commands
Inherits all commands of Object.

touch

Touches the data object, marking it as modified. When the network is fired modules connected to a
data object will only be invoked if the data object was modified.

duplicate
Duplicates the data object and returns the name of the duplicated obejct.

save [format filename]

Saves the data object. If no arguments are specified the command does the same as choosing Save
from the File menu, i.e., it saves the object under the same name as it was saved before. Otherwise,
a format and a file name must be specified. The format should be the name of a format as it
is displayed in the file dialog’s file type menu, e.g., "Amiramesh ascii" or "HxSurface
binary". When an object is saved its name is replaced by a possibly modified version of the
filename. The command returns the actual name of the object after it has been saved.

parameters [options ...]

Provides access to the data object’s parameter list. This command takes several different options
allowing you query and set parameters. A list of all folders containing parameters too can be
obtained using list. The name of each folder is used to access that folder. For example, to get a
list of all materials of a surface or of a label field, use parameters Materials list.

A parameter value can be set using setValue <name> <value>, and it can be returned using
getValue <name>. For example, to set the color of the material Exterior of a surface or of a
label field, use parameters Materials Exterior setValue Color <color>.

404 Chapter 8: Alphabetic Index of Data Types

8.8 Field3

This class is the base class for all 3D fields in amira, e.g., scalar fields, vector fields, or color fields
with uniform, stacked, or some other coordinates, or for fields defined on unstructured finite-element
grids. This class provides a transparent interface to evaluate the field at any position without needing
to know how the field is actually represented. This interface can be accessed via the Tcl command
eval described below. A field may have an arbitrary number of data variables which can be queried
using the Tcl command nDataVar. For example, a scalar field has one data variable, while a vector
field has three.

Commands
Inherits all commands of SpatialData.

nDataVar
Returns the number of data variables of the field.

eval <x> <y> <z>
Evaluates the field at the position <x> <y> <z>. On success the command returns as many
numbers as there are data variables. The command may fail because the specified position lies
outside of the grid the field is defined on. In this case the string domain error is returned.

getRange

Returns the minimum and maximum data component of the field. For field with more than one data
variable this is not the magnitude range of the field.

primType
Returns the primitive data type of the field, i.e., the way how the values are represented internally.
A number with the following meaning is returned: 0 = bytes, 1 = 16-bit signed integers, 2 = 32-bit
signed integers, 3 = 32-bit floating point values, 4 = 64-bit floating point values, 7 = 16-bit unsigned
integers.

8.9 IvData

This is a simple data object which encapsulates an Open Inventor scene graph. The scene graph
can be displayed in amira using the module IvDisplay. However, it cannot be edited or processed
further. Instead, amira provides a separate data type Surface for representing triangular surfaces with
connectivity information and with an optional patch structure. An Open Inventor scene graph can be
converted into an amira surface object using the module IvToSurface.

8.10 LabelField3

Data objects of type LabelField are used to represent the result of a segmentation applied to a 3D image
volume.

Field3 405

A LabelField is a regular cubic grid with the same dimensions as the underlying image volume. For
each voxel it contains a label indicating the region that the voxel belongs to. Use module LabelVoxel
to create a LabelField from an image data stack. You can manually modify a LabelField using amira’s
image editor GI.

In addition to the labels themselves a LabelField may also contain weights indicating the degree of
confidence of the label assignment made for each voxel. Such weights are calculated automatically
when you choose option sub-voxel accuracy in LabelVoxel, when you apply the smoothing filter of GI,
or when you resample a LabelField to a smaller resolution using the Resample module.

You can visualize a LabelField by attaching an OrthoSlice module to it. If a LabelField contains
weights, the port Primary Array allows you to choose whether the labels or the probabilities are to be
displayed.

Connections

Master [unused]

ImageData [required]

Connection to the image data that the segmentation results refer to. You cannot connect this port
to an image object with dimensions different from that of the LabelField, except the LabelField has
been newly created via the Edit Create menu. In this case, the LabelField will be resized so that it
matches the dimensions of the image object.

Ports

Primary Array

An option menu which only appears if the LabelField contains weights. In this case the menu lets
you select whether the labels or the weights are the primary data array. The primary data array is
the default array visible to modules expecting an ordinary uniform scalar field like OrthoSlice or
Arithmetic.

Commands

hasMaterial <name>
Returns true if the specified material is defined in the material section of the LabelField.

makeColormap

Creates a new colormap object in amira’s object pool, containing the default colors of all materials
of the LabelField.

406 Chapter 8: Alphabetic Index of Data Types

relabel

Computes new labels so that the materials are numbered in consecutive order starting from 0.

deleteAltData
Deletes the weight information if it is present.

8.11 LandmarkSet

This data type represents specific points or markers in 3D space. It can be used to flag markers in
medical MRI images, or to specify pairs or n-tuples of corresponding points in multiple data sets.

An empty set of landmarks can be created by typing

create HxLandmarkSet

into the amira console window, cf. Section 3.1.8. Individual landmarks can be interactively added,
repositioned, or removed from a landmark set by means of the landmark editor.

Commands

setNumSets <n>

Sets the number of point sets contained in this data object. Upon creation a landmark set contains
one set of points. In order to represent pairs of corresponding points two sets are required.

getNumSets

Returns the number of point sets in this data object.

setPoint <index> <x> <y> <z> [<set>]
Sets the coordinates of the specified marker <index> in a particular set. If <set> is omitted the
first set is used.

getPoint <index> [<set>]
Returns the coordinates of the specified marker <index> in a particular set. If <set> is omitted
the first set is used.

setOrientation <index> <x> <y> <z> <rad> [<set>]
Sets the orientation of the specified marker <index> in a particular set. If <set> is omitted the
first set is used. The orientation is specified by an axis plus an angle of rotation around this axis in
radians.

getOrientation <index> [<set>]
Returns the orientation of the specified marker <index> in a particular set. If <set> is omitted
the first set is used. The orientation is returned as an axis plus an angle of rotation around this axis
in radians.

LandmarkSet 407

appendLandmark <x> <y> <z>

Appends a new marker to the data object. The new marker will have the same coordinates in all
sets.

removeLandmark <index>

Removes the specified marker from all sets, reducing the number of points by one.

swapSets [<set1> <set2>]
Exchanges the coordinates of the specified sets. If no arguments are given the first and the second
set are swapped, provided both sets exist.

computeRigidTransform [<src-set> <dst-set>]
Computes a rigid transformation which move the points of the first set as close as possible onto
the points of the second set (the sum of the squared distances between corresponding points is
minimized). The result is returned as a 4x4 transformation matrix, which for example can be used
to transform some other data object using the setTransform command.

translateCoords <x> <y> <z> [<set>]
Translate the landmarks of the specified set by the given displacement vector. If <set> is omitted
the landmarks in all sets are translated.

scaleCoords [-center <x> <y> <z>] <xscale> [<yscale> <zscale>]
[<set>]

Scales the coordinates of the landmarks in the specified set. If <set> is omitted the landmarks in
all sets are scaled. The optional argument -center defines the center of the scaling operation. If
no center is specified the origin (0,0,0) will be used.

8.12 LargeDiskData

A LargeDiskData object is useful for large image data. It allows to extract subvolumes loaded as
a usual field object. In this way amira can manage data bigger than main memory. Note that only
uniform coordinates are supported.

A couple of fileformats might be loaded as LargeDiskData (AmiraMesh, Raw Data, Stacked-Slices,
LargeDiskData).

To access the data you have to attach an Access module. It provides an interface to load a subblock
into amira. You can use all the amira visualization techniques on this subblock.

As every other amira data object a LargeDiskData object has parameters associated with it. In contrast
to most other data types the LargeDiskData can not be saved directly. But some of the mentioned file
formats allow to save the actual parameters to the file defining the LargeDiskData. This is done by
hitting the save paramters button. It is only visible if you have write access to the file.

The Save As menu entry allows to export the data into a common image file format or as raw data. It
does not save parameters. This might look strange at a first glance, but in contrast to all other data

408 Chapter 8: Alphabetic Index of Data Types

formats the LargeDiskData are not in main memory. The actual data reside only on disk and can not
be saved to another place by amira.

Ports

Action

Save paramters to the file defining the LargeDiskData.

8.13 Lattice3

This class represents regular 3D data arrays. Every node of a regular data array can be addressed
by an index tuple (i,j,k). The data array is characterized by its dimensions (the number of nodes
in each direction), the primitive data type (e.g., bytes or shorts), the number of data variables per
node, and by its coordinates. In amira uniform, stacked, rectilinear, and curvilinear coordinates are
supported, compare Section 3.2.3 (Coordinates and Grids). Lattice3 is a simple but powerful data type.
In particular, all 2D and 3D images in amira are represented by this type.

As a technical detail it should be mentioned that in contrast to other data types Lattice3 is not a data
class by itself, i.e., it is not derived from Data or Object. Instead it is a so-called interface class which
is used by other classes such as RegScalarField3, RegVectorField3, or RegColorField3. Usually this
fact will not be important for end-users, but only for amiraDev users.

Commands
Data objects using this class inherit all commands of Field3.

getDims
Returns three numbers indicating the number of nodes in each direction of the 3D array.

coordType

Returns a number indicating the coordinate type of the lattice, 1 = uniform, 2 = stacked, 3 = recti-
linear, 7 = curvilinear.

getValue <i> <j> <k>

Evaluates the field at the index position <i> <j> <k>. As many numbers are returned as there
are data variables in the lattice.

setValue <i> <j> <k> <value1> [<value2> ...]

Sets the field values at the index position <i> <j> <k>. The number of values specified by this
command must match the number of data variables of the field.

swapByteOrder
Swaps the byte order of the lattice’s data values from litte endian to big endian or vice versa.

Lattice3 409

clearSlice <k>

Sets all values of slice <k> to zero.

exchangeSlices <k1> <k2>
Swaps the contents of the slices <k1> and <k2>.

crop <imin> <imax> <jmin> <jmax> <kmin> <kmax> [<value>]

Crops the lattice. The first six arguments specify the index bounds of the subvolume to be cropped.
It is possible to enlarge the data set by specifiying negative lower bounds or upper bounds exceeding
the current size of the lattice. In this case the last slice is replicated unless <value> is specified.
If this is the case the new slices are initialized with <value>.

flip {0|1|2}
Flips the lattice in i-, j-, or k-direction, depeinding on whether the argument was 0, 1, or 2.

swapDims <iIdx> <jIdx> <kIdx>
Performs a kind of rotation about 90 degrees. The arguments tell at which position an index was
before, i.e., they must be a permutation of 0, 1, 2. For example, to convert ijk into jki you have to
use the arguments 1 2 0.

setBoundingBox <xmin> <xmax> <ymin> <ymax> <zmin> <zmax>

Sets the bounding box of the lattice. The bounding box encloses the centers of all voxels of the
lattice (not the complete voxels). In case of stacked, rectilinear, and curvilinear coordinates the
coordinates of inner points are scaled appropriately.

8.14 Light

Light objects are used to define additional lights in the amira viewer windows. Actually light objects
are neither modules nor standard data objects. Nevertheless, they are displayed in the object pool. Like
modules they provide some ports allowing the user to adjust the object’s properties. In particular, three
different light types are supported, namely directional lights, point lights, and spot lights. Lights can be
define d in scene coordinates or in camera coordinates (camera slave mode). In order to interactively
change the light parameters appropriate Open Inventor draggers can be activated.

Note, that the amira viewers define separate headlighta on default. Light objects represent additional
light sources and are not related to the viewer’s head light. New lights can be interactively created
using the View Lights menu of the amira main window. This menu also allows to activate new light
settings consisting of multiple lights. A light setting is stored as an amira script in the subdirec-
tory share/lights in the amira installation directory. New settings can be added dynamically by
copying new scripts into this directory.

410 Chapter 8: Alphabetic Index of Data Types

Ports

Type

This radio box determines the light type. Three different types are supported:

A directional light emits parallel light. It is faster to compute than the other lights. Another ad-
vantage is that it has no particular location (although the dragger used to edit the light is located
somewhere). Therefore light settings consisting of directional lights only can be easily applied to
new scenes, regardless of the actual size or position of the objects in that scene.

The second type is a point light. A point light is specified by its location only. It emits light
symmetrically in all directions.

The third type is a spot light, which has a position like a point light, but which also defines cone
restricting the shape of the light being emitted.

Options

First, this port provides a color button indicating the color of the light. Pressing the button pops up
the color dialog and lets you change the light’s color.

The next toggle called camera slave specifies, whether the light remains fixed relative to the camera.
If not, the light’s position and direction are fixed with respect to other objects in the scene.

Finally, the last toggle called show dragger allows you to activate an Open Inventor dragger which
can be used to move the light or to modify its direction.

Direction

Shows the direction of the emitted light. The values represent the direction in world or camera
coordinates depending on the camera slave setting. The port is not available for point lights.

Light 411

Location

Shows the location of the light source. The values represent the location in world or camera coor-
dinates depending on the camera slave setting. The port is not available for directional lights.

Spot

Here the two additional parameters for spot lights are specified:

The cut off angle determines the spread of the cone of the emitted light, measured from one edge of
the cone to another.

The drop off rate controls how concentrated the light is. The light’s intensity is highest in the center
of the cone. It’s attenuated toward the edges of the cone. A value of 0 produces very sharp edges,
A value of 1 produces very soft edges.

Commands
Inherits all commands of Object.

getColor

Returns the color of the light as an RGB tuple of floating point number.

setColor <color>
Sets the color of the light. The color can be specified either as a tuple of three RGB integer values
in the range 0...255, or as a tuple of three RGB floating point values in the range 0...1, or as a text
string.

getIntensity

Returns the intensity of the light.

setIntensity <value>
Sets the intenisty of the light. The intensity modulates the light’s color. Instead of modifying the
light’s intensity the brightness of the light’s color could be changed as well.

getDirection
Returns the direction of the light (undefined for a point light).

setDirection <x> <y> <z>
Sets the direction of the light. Has no effect for a point light.

getLocation

Returns the location of the light. For a directional light the location of the associated light dragger
is returned.

412 Chapter 8: Alphabetic Index of Data Types

setLocation <x> <y> <z>

Sets the location of the light. For a directional light the location of the associated light dragger is
set.

8.15 LineSet

A LineSet data object is able to store independent line segments of variable length. Optionally, for
each vertex one or more scalar data items can be stored. LineSet objects inherit the vertex set interface,
cf. Section 3.2.5. In order to visualize the line segements of a LineSet object the module LineSetView
can be used. LineSets sets can be stored using the AmiraMesh file format.

Commands
Inherits all commands of VertexSet. In particular, the methods getNumPoints, getPoint, and
setPoint are inherited.

setNumPoints <num>

Sets the number of points of the line set. The coordinates of new points need to be initialized
afterwards using setPoint. Care must be taken that only existing points are referenced, i.e., that
no point index is be bigger than n-1.

addPoint <x> <y> <z>

Adds a new point to the line set’s vertex array. The new point will not yet be referenced by any line
segment. The method returns the index of the new point.

getNumDataValues

Returns the number of data values per point.

setNumDataValues <num>

Sets the number of data values per vertex. New data values need to be initialized afterwards using
setData.

getNumLines

Returns the number of lines.

getLineLength <line>
Returns the number of points of the specified line.

getLineVertex <line> <point>
Returns the index of point <point> of line <line>.

getData <line> <point> [<set>]

Returns the data value in set <set> of point <point> of line <line>. If <set> is omitted the
first data value at that point is returned.

LineSet 413

setData <line> <point> <value> [<set>]

Sets the data value in set <set> of point <point> of line <line>. If <set> is omitted the first
data set is used. Before using this method the number of data sets has to be set using setNum-
DataValues.

addLine <p1> [<p2> [<p3> ...]]

Adds a new line consisting of the points <p1>, <p2>, <p3> ... to the line set. The index of the
new line is returned.

deleteLine <line>

Deletes the specified line without changing the number of points of the line set.

deleteAllLines
Deletes all lines of the line set.

removeLineVertex <line> <point>

Delete point <point> of line <line>. The method does not remove the point from the global
vertex array even if the point is not referenced by any other line.

addLineVertex <line> <point> [<pos>]

Adds an additional vertex to line <line>. The second argument <point> is the index of the
referenced point. <pos> specifies the position of the new vertex within the line. If this argument is
omitted the new vertex will be appended after all other vertices of the line.

smooth <factor>

Smooths the lines by replacing the coordinates of each vertex by the weighted average of its neigh-
boring vertices. The bigger <scale> the more are the vertices smoothed.

getRange

Returns the min and the max of all data values of the line set.

8.16 Movie

This data module stores a movie description. The general concept of Amira movies is described in the
manual section of the MoviePlayer module.

Connections

Master

If this port is connected to a MoviePlayer modules result port, this movie can be used as destination
movie during a movie conversion process.

414 Chapter 8: Alphabetic Index of Data Types

Ports

Number of streams

Select the requested number of streams. After this, the appropriate number of the following file
name fields will appear.

Stream1

Source specification of the image sequence for stream one. This may be an Amira movie data file (
.amovstream), a single image file or a sequence of images specified by a wildcard expression. For
example specify c:/mymovie/left*.jpg to get all JPEG-images from directory c:/mymovie starting
with ”left” in the filename. Possible wildcards are * and ?. * matches a sequence of arbitrary
characters. ? matches a single character. If specifying an Amira movie data file (which is an Amira
specific file containing a series of images) wildcards are not permitted. For experts: to specify a
whole list of wildcard patterns or single image files edit the Amira movie info file (.amov).

Stream2

Identical to above for stream number 2.

Stream3

Identical to above for stream number 3.

Stream4

Identical to above for stream number 4.

Type

Select here how the MoviePlayer module has to interpret and render the final image sequence.

• mono - every image forms a single frame.

• stereo - two images form a stereo frame.

• stereo(interlaced) - every image forms a stereo frame. The left eye channel is stored in the
even lines and the right in the odd lines. Internally the module resorts the lines to get an
image of the type stereo(up/down) .

• stereo(up/down) - every image forms a stereo frame. The left eye channel is taken from the
upper half of the image and the right from the lower one.

Movie 415

• stereo(left/right) - every image forms a stereo frame. The left eye channel is taken from the
left half of the image and the right from the right one.

Render method

This option affects the playback behavior. If set to GLdraw, the images are copied directly to the
OpenGL frame buffer by using the function glDrawPixels(). If set to texture, the images are first
transfered into an OpenGL texture object and then rendered as polygons textured with this texture.
If an image was compressed using the OpenGL texture compression feature by a preceding movie
conversion process, this image gets rendered as textured polygon independently of how this port is
set. Be warned, that OpenGL texture compression is not available for all systems. SGI for example
seems to implement it less often in it’s OpenGL. On PC systems OpenGL texture compression
seems to be a standard, due to the limited bandwidth and memory storage. Which render method
performs better depends on the individual hardware and software conditions.

Aspect ratio

Force the the aspect ratio of the rendered images to a fixed value. If set to 0 the aspect ratio is taken
from the individual image resolutions.

Swap stereo

Swap left and right images for stereo movies.

Flip

Flip the movie in X- and/or Y-direction.

Max fps

Limit the playback speed to a maximal value of frames per second. Set this value also if the movie
playback looks jerky, that gives the content retrival more time between the single frames. A value
of 0 disables this feature.

Max threads

On multiprocessor systems the image retrieval and decompression is performed on default with so
many threads as processors are available. That gives much speed but can hamper other users or tasks
on this machine. Set this option to a value greater than 0 (which is to disable limitations) to change

416 Chapter 8: Alphabetic Index of Data Types

the number of retrival threads. Set this to 1 if the movie includes images read by non thread-save
readers.

8.17 MultiChannelField3

Multi-channel objects are used to group multiple grey level images of the same size. Display modules
such as OrthoSlice, ProjectionView, or Voltex then can be directly connected to the multi-channel
object, thus allowing to operate on all channels simultaneously.

Multi-channel objects are created automatically when reading microscopic image files containing
multi-channel information, e.g., Zeiss TIF files or Leica image files. Alternatively, channels can be
manually attached to a multi-channel object. Details of how to work with multi-channel objects are
described in a separate tutorial.

For each scalar field attached to a multi-channel object a special-purpose port is show, allowing you to
define the channel’s data window as well as its prefered color. The data window usually is interpreted
in such a way that the lower data value is mapped to black while the upper is mapped to the channel’s
prefered color.

Connections

Channel 1 [required] Used to attach the first scalar field to the multi-channel object. This

input determines the dimensions and the data type of the multi-channel object.

Channel 2 [optional] Used to attach a second scalar field to the multi-channel object. The

second input must have the same dimensions and the same data type as the first one. After a second
input has been connected a new input called Channel 3 will be created, and so on. In this way an
arbitrary number of channels can be conected.

Ports

Channel 1

Determines the prefered data window of a channel as well as its color. For example, if the lower
bound of the data window is set to 100, voxels with values smaller or equal than 100 will be drawn
in black by the slicing modules OrthoSlice or ObliqueSlice.

Channel 2

Specifies the settings of the second channel.

MultiChannelField3 417

8.18 Object

All amira objects represented by icons in the object pool are derived from this base class. The class
provides some basic Tcl commands allowing to select or deselect on object, or to show or hide its
icons. The class is not of interest for end users, but only for script programmers and developers.

Commands

hasInterface <typename>
Checks if the object provides an interface matching the specified type. For more information about
interfaces please refer to the amira Programmer’s Guide.

showIcon
Makes the object’s icon visible.

hideIcon

Hides the object’s icon. Although the object is no longer displayed the object itself is still contained
in the object pool.

iconVisible
Checks if the object’s icon is visible or not.

select

Selects the object, so that the ports are shown in the work area.

deselect

Deselects the object, hiding the ports in the work area.

setLabel <name>
Renames the object. If another object with the same name already exists, the specified name is
modified so that it becomes unique. In any case, the new name of the object is returned.

fire

Updates the object and all downstream objects.

compute
Updates the object by calling its update and compute methods. In contrast to fire downstream
objects are not updated.

allPorts
Returns a list of all ports of an object.

connectionPorts
Returns a list of all connection ports of an object.

418 Chapter 8: Alphabetic Index of Data Types

downStreamConnections

Returns a list of all objects connected to this object. For each object also the name of the cor-
responding connection port is reported. That is, each element of the returned list in turn is a list
containing the the name of the connected object and the name of the connection port.

setIconPosition <x> <y>

Sets the position of the object’s icon in the object pool.

getIconPosition
Returns the position of the object’s icon in the object pool.

clipGeom <PlaneModule>

Causes all geometry display of the object to be clipped by the plane defined by <PlaneModule>.
For example, a plane module is any module derived from Arbitrary Cut. The geometry of an object
might be clipped by up to six clipping planes. Also see unclipGeom below.

unclipGeom <PlaneModule>
Undos the effect of the clipGeom command described above.

destroy

The object is removed, as well as certain dependent objects.

getTypeId
Returns the type name of the object.

help

Displays all commands specific to that object.

setLabel <name>
Changes the name of the object to <name>. If already some other object with the same name exists,
<name> will be automatically modified.

setViewerMask <mask>

This command is used to show a possible 3D output of the object in certain viewer windows and to
hide it in other viewers. The bits in <mask> controls the viewers, e.g., a mask value of 2 shows the
output in viewer 1 and hides it in viewer 0.

8.19 ScriptObject

Note: If you have worked with script objects prior to amira version 3.0, please read the compatibility
notes at the end of this file.

amira is fully scriptable via its built-in Tcl interface (see Section 5 (Scripting)). The ScriptObject
module allows the user or a custom solution provider to create scripts that fit seamlessly into the amira
user interface, and define their own user interface components.

ScriptObject 419

A script object is an object showing up in the object pool similar to an OrthoSlice or an Axis module.
It can have ports, like sliders or buttons. The ports are defined by Tcl code and the reaction to a change
of the ports is also implemented in Tcl. The Tcl code consists of a portion for initialization and a Tcl
procedure that is called whenever the script has to react to changes of input parameters, the compute
procedure.

Any amira script can be turned into a script object by putting a special header line into the script.
Write an amira script (using your favorite text editor) and put a special header for script objects in the
first line:

Amira-Script-Object V3.0
echo "Hello world, a script is called."

Load this file into amira. A blue icon appears. Each time you click on the Restart button, the script
will be read and executed and the above message appears in the console window.

During the execution of a script object, the global variable $this always contains the name of the
currently active script object. This allows to easily access object-specific commands, the so-called
methods. Declaring a method is very similar to declaring an ordinary Tcl procedure:

$this proc name args body

Just like the Tcl command proc, you can declare a method by using $this proc. Methods can
be executed by calling $this name args. The syntax is completely analogous to global Tcl pro-
cedures (see Section 5.2 (Introduction to Tcl)). The special point about a method is that inside the
method the $this variable is set appropriately. Example:

Amira-Script-Object V3.0
$this proc sayHello {} {

echo "module $this is greeting you"
}

If you load this script object, nothing will happen visibly. However, if your script object is called
MyScript.scro, you can type

MyScript.scro sayHello

in the amira console window, and you will get a personalized greeting line as the result.

There are several methods with a special meaning:

• $this proc constructor {} {...} defines a method that is called when the script
object is created. This is used for creating user interface elements and initializing the object.

420 Chapter 8: Alphabetic Index of Data Types

• $this proc destructor {} {...} defines a method that is executed when the object
is deleted or restarted. Used for cleaning up or terminating communications.

• $this proc compute {} {...} defines a method that is called whenever a user inter-
face component of the script object is changed by the user. See examples below.

Here is an example that uses the constructor and compute methods in order to define a simple
user interface and to query the current state of that user interface:

Amira-Script-Object V3.0

$this proc constructor {} {
$this newPortIntSlider myValue
$this myValue setLabel "Value:"

}

$this proc compute {} {
set val [$this myValue getValue]
echo "The value is $val"

}

In the example, the constructor creates a new port, an integer slider which will appear in the user
interface. The port has the internal name myValue and its visible label is set to Value. Whenever the
user modifies the value of the slider, the computemethod is called, and outputs the current port value.

In addition to defining methods, a script object also allows to define member variables. Analogous to
Tcl variables, a member variable is a placeholder for a certain value, but a member is local to each
script object. If you have two script objects A and B, both can have a member variable x, and the
values of these two variables is kept separately. In order to define and query member variables, use the
commands $this setVar and $this getVar (see below).

You can save amira networks containing script objects. When loading the saved network into amira,
the following things will happen:

• the script object is created

• the saved value of all member variables is restored

• the constructor method is called

• the compute method is called

• the value of all ports is restored

• the compute method is called again

Connections
Data [optional]

Can be connected to any data object. Can be used by the script.

ScriptObject 421

Ports

Script

This port is available for any script object. The Restart button deletes all dynamically created ports,
sets the isFirstCall flag to 1 and calls the script. The text field indicates the location of the
script file.

Commands

newPortButtonList <name> <number-of-buttons>
Creates a new button list port.

newPortButtonMenu <name> <number-of-buttons> <number-of-
options>

Creates a new button menu port.

newPortColormap <name>
Creates a new colormap port.

newPortFilename <name>

Creates a new filename port.

newPortFloatSlider <name>
Creates a new float slider port.

newPortFloatTextN <name> <number-of-fields>

Creates a new float text port.

newPortMultiMenu <name> <num-options-1> [<num-options-2> ...]

Creates a new multi menu port.

newPortInfo <name>
Creates a new info port.

newPortIntSlider <name>

Creates a new integer slider port.

newPortIntTextN <name> <number-of-fields>
Creates a new integer text port.

newPortRadioBox <name> <number-of-toggles>

Creates a new radio box port.

newPortSeparator <name>
Creates a new separator port.

422 Chapter 8: Alphabetic Index of Data Types

newPortText <name>

Creates a new text port.

newPortTime <name>

Creates a new time port.

newPortToggleList <name> <number-of-toggles>

Creates a new toggle list port.

newPortConnection <name> <type-name>

Creates a new connection port. The type name specifies what type of objects can be connected to
the port. The type name of an existing object can be obatined using the Tcl command getTypeId.

deletePort <name-of-port>
Deletes a port which has been created using one of the newPort commands.

proc name args body
Define a Tcl member procedure (see above). The syntax is analogous to the global Tcl proc com-
mand. This command is not specific to the ScriptObject, but it is available in all amira objects.

setVar <variable> <value>

Variables stored in this way keep their values between successive calls of the compute procedure.
Ordinary Tcl variables get lost. This command is not specific to the ScriptObject, but it is available
in all amira objects.

getVar <variable>

Returns the value of a variable set using setVar. This command is not specific to the ScriptObject,
but it is available in all amira objects.

testBreak
This commands checks if the stop button has been pressed. If so the execution of the script is
automatically terminated. Use this command inside long animation loops or similar constructs.

In addition to the script object extensions, each script objects inherits a number of methods from the
general amira object type.

Compatibility Note: The semantic of script objects has slightly changed with amira 3.0 compared to
older amira versions. If the first line of the script contains the line ”# Amira-Script-Object V0.1”, the
old behavior is enforced.

8.20 SpatialData

In amira all data objects embedded in 3D space are derived from this class. Every spatial data object
provides a 3D bounding box as well as an optional transformation matrix. The transformation matrix
allows the user to translate, rotate, or scale the object and the geometry of any display modules attached

SpatialData 423

to it. Transformations can be defined interactively using the Transform Editor, or or from a script using
the Tcl commands described below.

Commands
Inherits all commands of Data.

getBoundingBox
Returns the bounding box of the data object. The bounding box consists of 6 values denoting the
xmin, xmax, ymin, ymax, zmin, and zmax coordinates in that order. For data objects defined by a
set of discrete points like point clusters, surfaces, tetrahedral or hexahedral grids, the bounding box
is the smallest box containing all points. For 3D images it is the smallest box containing all voxel
centers, but not all voxels as is.

getTransform [-d]
Returns the transformation matrix of the data object. The transformation matrix is a 4x4 matrix
which can be applied to a 3D vector in homogeneous coordinates. It encodes a translation, rota-
tion, and scaling operation. If the -d option is specified, the transformation matrix is returned in
decomposed form, i.e., the translation, rotation, and scaling operations are separated.

setTransform [<a11> <a12> ... <a44>]

Sets the transformation matrix of the data object. If no arguments are given the transformation is
reset to the identity matrix.

getInverseTransform
Returns the inverse transformation of the data object as a 4x4 matrix.

getTranslation

Returns the translation part of the decomposed transformation matrix of the object.

setTranslation [<x> <y> <z>]

Sets the translation part of the decomposed transformation matrix of the object. If no arguments are
given the translation part is reset to zero.

getRotation

Returns the rotation part of the decomposed transformation matrix of the object. Four number are
returned. The first three number denote the axis of rotation. The fourth number denotes the angle
of rotation in degrees (0...360).

setRotation [-center <x> <y> <z>] <x> <y> <z> <degrees>

Sets the rotation part part of the decomposed transformation matrix of the object. The rotation is
specified by a rotation axis and an angle of rotation. The optional argument center can be used
to specify the center of rotation.

getScaleFactor

Returns the scaling part of the decomposed transformation matrix of the object. Three number are
returned, denoting the scaling in x-, y-, and z-direction.

424 Chapter 8: Alphabetic Index of Data Types

setScaleFactor [<x> <y> <z>]

Sets the scaling part of the decomposed transformation matrix of the object. If no arguments are
given the scaling part is reset to unity.

translate [-l|-w] <x> <y> <z>
Translates the object by modifying its transformation matrix. The optional argument -l indicates
that the translation is applied in local coordinates (after the existing transformation). This is the
default. The optional argument -w indicates that the translation is applied in world coordinates
(before the existing transformation).

rotate [-lx|ly|-lz|-wx|-wy|-wz| [-l|-w] <x> <y> <z>] <degrees>

Rotates the object by modifying its transformation matrix. The object can be rotated around the
local x-, y-, or z-axis or around the world x-, y-, or z-axis (as indicated by the arguments -lx to
-wza). Alternatively, the obejct can be rotated around a user-specified axis in either local or world
coordinates. degrees specifies the angle of rotation in degrees (0...360).

scale [-l|-w] <x> <y> <z>
Scales the object by modifying its transformation matrix. The optional argument -l indicates that
the scaling is applied in local coordinates (after the existing transformation). This is the default. The
optional argument -w indicates that the scaling is applied in world coordinates (before the existing
transformation).

multTransform [-l|-r] <a11> <a12> ... <a44>

Multiplies the current transformation matrix with the specified matrix. The arguments -l and -r
indicate whether the matrix should be multiplied from left or from right. Multiplication from left
means that the matrix is applied to the objects local coordinates.

8.21 SpreadSheet

This data type represents a spreadsheet. A spreadsheet will be created e.g., by the module
TissueStatistics.

8.22 Surface

In amira data objects of type Surface are used to represent non-manifold triangulated surfaces. Such
surfaces are required as an intermediate step in generating a tetrahedral patient model from the results
of segmentation of a 3D image stack.

Surfaces mainly consist of a list of triangles as well as a list of 3D coordinates. Each triangle is
defined by three indices pointing into the list of coordinates. Moreover, triangles are grouped into
so-called patches. Conceptually, a patch describes the boundary between two adjacent regions (tissue
types). These two regions, called inner region and outer region, are represented by indices into the

SpreadSheet 425

surface’s material list. Although required for grid generation, the patch structure of a surface does not
necessarily define a valid space partitioning. However, any surface must have at least one patch.

Surfaces may also contain additional data, such as edges, boundary contours, or connectivity informa-
tion. Because these data can be computed online they are usually not written into a file. If the data are
not already present but a certain module requests them, they are recomputed automatically. You may
notice a small time delay in this case. Recomputation of the connectivity information can be enforced
by the Tcl-command recompute.

You may use the SurfaceGen module to extract boundary surfaces from a LabelField describing the
results of s segmentation. You can visualize surfaces by attaching a SurfaceView module to it.

There are two editors that can be applied to modify surfaces: the Surface Simplification Editor and the
Surface Editor. Use the former once to reduce the number of triangles contained in the surfaces. The
latter allows you to perform an intersection test and to modify the surfaces manually.

Commands

recompute
Recomputes any additional data such as edges, boundary contours, or connectivity information from
scratch. If the surface contained patches consisting of unconnected groups of triangles these patches
are automatically subdivided into new patches consisting of connected triangles only.

fixOrientation [patch]

Checks if all triangles of a given patch are oriented in the same way. If this is not the case some
triangles will be inverted in order to fix the orientation. If no patch number is specified all patches
of the surface will be processed in this way.

invertOrientation

Inverts all triangles of the surface.

makeOnePatch

Puts all triangles of the surface into a single patch.

cleanup
Removes any additional data such as edges, boundary contours, or connectivity information from
the surface.

getArea <i>
Compute area of all surface patches incident on material i.

getVolume <i>

Compute volume enclosed by material i.

setColor <material> <color>
Defines the color of a material used in module SurfaceView. The material may be specified by

426 Chapter 8: Alphabetic Index of Data Types

either a material name or by a material index. The color may be specified by either an RGB triple
in range 0...1 or by a common X11 color name, e.g., red or blue.

setTransparency <material> <t>
Defines the transparency of a material used in module SurfaceView when draw style is set to trans-
parent. The material may be specified by either a material name or by a material index. The
transparency value t must by a floating point number in range 0...1.

add -point <x> <y> <z>

Adds a new point to the surface. The method returns the index of the new point.

add -triangle <p1> <p2> <p3>
Adds a new triangle to the surface and returns its index. The triangle will be inserted into the first
patch of the surface. If no patch yet exists one will be created.

refine
Refines the surface by subdividing all edges. After this operation the surface will contain four times
the number of triangles.

8.23 TetraGrid

A data object of type TetraGrid represents an unstructured finite-element grid composed of tetrahedra.
The geometric information is stored in terms of vertices, edges, faces, and tetrahedra. For instance such
data objects are useful as patient models. Like a LabelField with its uniform hexahedral grid structure
a tetrahedral grid also contains a ’dictionary’ of different material types or regions. In addition to the
material names the dictionary may contain colors and other parameters related to material properties.

amira is able to reconstruct tetrahedral grids from 3D image data. This procedure involves several
steps, including image segmentation, extraction of boundary faces, surface simplification, and finally
grid generation. The tutorial in Section 2.7 of the user’s guide illustrated this process in more detail.
The actual grid generation step is performed by the computational module TetraGen. The quality of a
tetrahedral grid may be improved by applying certain operations provided by the Grid Editor.

Commands

hasMaterial <name>

Returns true if the specified material is defined in the material section of the TetraGrid.

hasDuplicatedNodes
Returns the number of duplicated nodes, i.e., nodes with exact identical coordinates. Such nodes
may be used in order to represent discontinous piecewise linear fields.

removeDuplicatedPoints
Removes all duplicated points from the grid. No field object must be connected to the grid.

TetraGrid 427

add <othergrid>

Copies all vertices and tetrahedra from an other tetrahedral grid into this one.

removeTetra <n>
Marks the tetrahedral cell specified by <n> as obsolete.

cleanUp

Removes all obsolete tetrahedra from the grid.

fixOrientation

Fixes the orientation of all tetrahedra so that the enclosed volume is positive.

8.24 Time

Modules such as Time Series Control or other data objects dealing with time-dependent data provide a
time port, i.e., a special slider which also can be animated. Multiple such modules can be synchronized
by connecting them to one global Time object. The time object provides the same functionality as the
time port in the modules themselves. In fact, the time value can be changed in both the time port or in
an upstream time object. A time object can be created by choosing Time from the main window’s Edit
Create menu. Alternatively, it can be created by choosing Create time from the popup menu of a time
port (press the right mouse button over a time slider in order to activate this menu).

Connections

Time [optional]

Connection to an upstream time object. Usually there will only be one instance of a time object and
this port will not be connected.

Ports

Time

This slider specifies the current time value. Additional settings can be modified via a popup menu
which is activated by pressing the right mouse button over the slider. The inner buttons proceed one
step in backward or forward direction, respectively. The outer buttons activate animation mode. The
popup menu lets you choose between simple animation (play once) and two endless modes (loop
and swing). Animation is always restricted to a subrange of the whole time interval. The subrange
can be controlled graphically via the two upper arrow buttons. All settings can also be adjusted in a
configure dialog which can be activated via the popup menu, too.

428 Chapter 8: Alphabetic Index of Data Types

8.25 VertexSet

The HxVertexSet class is an abstract base class. It is derived by many other amira data objects con-
taining a list of 3D vertices, for example landmark sets, surfaces, or tetrahedral grids. HxVertexSet
provides an interface allowing other modules to access the vertices in a transparent way.

In order to visualize the vertices of a vertex set you may use the VertexView module.

Commands

applyTransform
This command changes the coordinates of the vertices of the data object according to the object’s
current transformation matrix. This matrix can been defined using the Transform Editor. After the
vertices have been transformed the transformation matrix is reset to the identity.

This command is useful in order to make transformations permanent. In particular, it should be
issued before a transformed data object is written to a file. Otherwise, the transformation will be
ignored by most file formats.

translate <dx> <dy> <dz>
Translates all vertices by a constant amount.

scale {<f> | <fx> <fy> <fz>}
Scales all vertices by a common factor. If three arguments are specified the x-, y-, and z-coordinates
are scaled by different factors.

jitter {<d> | <dx> <dy> <dz>}
The coordinates of the vertices are jittered randomly. The arguments indicate the maximal amount
of jitter. Each coordinate of a vertex will be changed change by at most ±d/2. The method is useful
in order to resolve problems due to degenerate configurations in certain geometric algorithms.

getNumPoints

Returns the number of vertices of the data object.

getPoint <n>
Returns the coordinates of the specified vertex.

setPoint <n> <x> <y> <z>

Sets the coordinates of the specified vertex.

VertexSet 429

430 Chapter 8: Alphabetic Index of Data Types

Chapter 9

Alphabetic Index of File Formats

9.1 ACR-NEMA

The ACR-NEMA file format is the predecessor of the DICOM standard file format for medical im-
ages. amira can import both old ACR NEMA files and new DICOM files. Actually, both formats are
interpreted by the same reader. Therefore, for more information please refer to the documentation of
the DICOM reader. In contrast to DICOM files ACR NEMA files can not be exported by amira.

9.2 AVS Field

This format provides a bridge between amira and AVS, the Advanced Visual System software. It
enables you to read and write data in the native AVS field format.

Note that AVS supports fields of arbitrary dimensions and with an arbitrary number of components
per node. For some combinations there are no corresponding amira data objects. Thus, the following
restrictions apply:

• Only three-dimensional fields will be handled.

• AVS fields with a one-component data vector at each voxel will be loaded as a regular scalar
field.

• Two-component fields will become regular complex fields.

• Three-component fields will become regular vector fields.

• Four-component fields will be loaded as RGBA color fields, provided they are defined on a
uniform lattice. If not, they are rejected.

• Six-component fields will be loaded as regular complex vector fields.

• Since AVS does not support stacked coordinates these will be written as rectilinear fields and
therefore appear as such when reloaded into amira.

Amira identifies AVS Field files by the file name suffix .fld.

9.3 AVS UCD Format

The AVS UCD (Unstructured Cell Data) format can be used to represent finite-element grids and as-
sociated data fields in 2 and 3 dimensions. Currently, in amira only 2D triangular cells, 3D tetrahedral
cells, and 3D hexahedral cells are supported. Grids with these cells types will be converted into objects
of type Surface, TetraGrid, or HexaGrid, respectively. Corresponding data fields will be converted into
appropriate amira objects as well, provided the data is defined on a per-node basis. Cell data are
currently not supported.

Two variants of the AVS UCD format exist, an ASCII version and a binary version. amira is able to
read and write both of them. amira identifies AVS UCD data files by the file name suffix .inp.

9.4 Amira Script

amira scripts are written in the Tcl command language. Scripts allow you to start demos, to perform
routine tasks, or to create animations. Networks are saved as script files too. When such a file is
executed the network is restored. A detailed description of the amira scripting facilities is contained
in the user’s guide in Chapter 5 (Scripting). A script file is recognized either by the special comment
Amira Script in the first line of the file, or by the file extension .hx.

9.5 Amira Script Object

amira script objects are custom module with user-defined GUI elements (ports) written in the Tcl
command language. Files describing script objects must obey certain requirements as stated in the
data types section about ScriptObjects. When a file describing a scipt object is loaded an instance
of a ScriptObject module is created and initialized as requested. Files describing script object are
recognized by the special comment # Amira Script Object V3.0 in the first line of the file,
or by the file extension .scro. Note, that in previous versions of amira a different syntax was used for
script objects. In order to make clear that a new-style script object is defined the comment mentioned
above should be used.

9.6 AmiraMesh Format

AmiraMesh is Amira’s native general-purpose file format. It is used to store many different data ob-
jects like fields defined on regular or tetrahedral grids, segmentation results, colormaps, or vertex sets

432 Chapter 9: Alphabetic Index of File Formats

such as landmarks. The format itself is very flexible. In fact, it can be used to save arbitrary multi-
dimensional arrays into a file. In order to create an Amira data object from an AmiraMesh file the
contents of the file are analysed and interpreted. For example, a tetrahedral grid is expected to have
a one-dimensional array Nodes containing entries of type float[3] called Coordinates, as well as
a one-dimensional array Tetrahedra containing entries of type int[4] called Nodes. If the Ami-
ramesh file contains an entry ContentType in its parameter section the value of this parameter directly
determines what kind of Amira data object is to be created.

A first example. In order to describe the syntax of an AmiraMesh file we first give
a short example. This example describes a scalar field defined on a tetrahedral grid.
Concrete examples of how to encode other data objects are given below.

AmiraMesh ASCII 1.0

define Nodes 4
define Tetrahedra 1

Parameters {
Info "This is an AmiraMesh example",
Pi 3.1459

}

Materials { {
Name "Stone",
Color 0.8 0.3 0.1

} {
Name "Water",
Color 0 0.3 0.8

} }

Nodes { float[3] Coordinates } = @1
Tetrahedra { int[4] Nodes } = @4

Nodes { float Values } = @8
Tetrahedra { byte Materials } = @12

Field { float Example } = Linear(@8)

@1
0 0 0
1 0 0
0 1 0
0 0 1

AmiraMesh Format 433

@4
1 2 3 4

@8
0 0 0 1

@12
1

The first line of an AmiraMesh file should be a special comment including the identifier AmiraMesh.
Moreover, if the tag ASCII is given in this line all data arrays are stored in plain ascii text. If the tag
BINARY is given, the data arrays are stored in IEEE big-endian binary format. Note, that the header
section of an AmiraMesh file is always given as ascii text.

The statement define Nodes 4 defines a one-dimensional array of size 4. Later on, this array can
be referenced using the name Nodes. Similarly, a statement define Array 100 100 defines a
two-dimensional array of size 100 x 100. The actual kind of data stored per array element will be
specified later on.

The optional section Parameters allows the user to define arbitrary additional parameters. Each
parameter consists of a name (like Pi) and a value (like 3.1459). Values may be one or multiple
integer or floating point numbers or a string. Strings have to be quoted using a pair of "-characters.

The optional section Materials allows the user to define additional material information. This
is useful for finite element applications. The material section consists of a comma-separated list of
parameters just as in the Parameters section.

The statement Nodes { float[3] Coordinates } = @1 specifies that for each element of
the array Nodes defined earlier three floating point numbers (floats) should be stored. These data are
given the name Coordinates and a tag in this line and will appear below as a tagged block with the
marker @1. Such data markers must always begin with the letter @.

Similar, the following lines define additional data to be stored in the arrays called Nodes and Tetra-
hedra. The primitive data types must be one of byte, short, int, float, double, or com-
plex. Vectors of primitive data types are allowed, aggregate structs are not, however.

The statement Field { float Example } = Linear(@8) defines a continuous scalar field
with the name Example. This field will be generated by linear interpolation from the data values
Values defined on the nodes of the tetrahedral grid. Other interpolation methods include Con-
stant(@X) and EdgeElem(@X).

After the marker @1 the coordinate values of the grid are stored. Likewise, the other data arrays are
given after their corresponding markers. In case of a BINARY file the line containing the marker is read
up to the next new line character. Then the specified number of bytes is read in binary format. It is as-
sumed that sizeof(short) is 2, sizeof(int) is 4, sizeof(float) is 4, sizeof(double) is 8, and sizeof(complex)

434 Chapter 9: Alphabetic Index of File Formats

is 8. Multidimensional arrays indexed via [k][j][i] are read with i running fastest.

Backward compatibilty. For backward compatibility the following statements are considered to be
equal:

nNodes 99 is equal to define Nodes 99
nTriangles 99 is equal to define Triangles 99
nTetrahedra 99 is equal to define Tetrahedra 99
nEdges 99 is equal to define Edges 99

NodeData is equal to Nodes
TriangleData is equal to Triangles
TetrahedraData is equal to Tetrahedra
EdgeData is equal to Edges

Other data objects. Of course, not only scalar fields defined on tetrahedral grids can be encoded using
the Amiramesh format. Many other data objects are supported as well. In each case there are certain
rules about what data arrays have to be written and how these arrays have to be named. Below, we
describe how to encode the following data objects:

• Fields with uniform coordinates

• Fields with stacked coordinates

• Fields with rectilinear coordinates

• Fields with curvilinear coordinates

• Label fields for segmentation

• Landmarks for registration

• Line segments

• Colormaps

9.6.1 Fields with uniform coordinates

In order to encode 3D scalar or vector fields defined on a uniform grid you first have to define a 3D
AmiraMesh array called Lattice. The field’s data values are stored on this array. The coordinate type
of the field as well as the bounding box are specified in the parameter section of the AmiraMesh file.
This is illustrated in the following example:

AmiraMesh ASCII 1.0

Dimensions in x-, y-, and z-direction
define Lattice 2 2 2

AmiraMesh Format 435

Parameters {
CoordType "uniform",
BoundingBox is xmin xmax ymin ymax zmin zmax
BoundingBox 0 1 0 1 0 1

}

Lattice { float ScalarField } = @1

@1
0 0 1 1 0 0 2 2

Use float[3] in order to encode a vector field instead of a scalar field. Likewise, you may modify
the field’s primitive data type. For example, 3D images are commonly encoded using byte or short.
Instead of ScalarField you may use any other name in the data definition statement.

The field’s bounding box is given by the minimum and maximum x-, y-, and z-coordinates of the grid
nodes or voxel centers, not of the voxel boundaries. Amira will always assume the width of a single
voxel to be (xmax-xmin)/(dims[0]-1). For degenerated 3D data sets with one dimension being 1 choose
equal minimum and maximum coordinates in that direction.

9.6.2 Fields with stacked coordinates

A field with stacked coordinates has uniform pixel spacing in x- and y-direction, but slices may be
arranged arbitrarily in z-direction. This type of coordinates is commonly used to encode 3D medical
images with non-uniform spacing.

In order to encode a 3D scalar or vector field with stacked coordinates you have to define a 3D array
called Lattice and 1D array called Coordinates. The field’s data values are stored at Lattice while the
slices’ z-positions are stored at Coordinates. The coordinate type of the field as well as the bounding
box in xy are specified in the parameter section of the AmiraMesh file. Here is an example:

AmiraMesh ASCII 1.0

define Lattice 2 2 3
define Coordinates 3

Parameters {
CoordType "stacked",
BoundingBoxXY is xmin xmax ymin ymax
BoundingBoxXY 0 1 0 1

}

436 Chapter 9: Alphabetic Index of File Formats

Lattice { byte Intensity } = @1
Coordinates { float z } = @2

@1
0 0 0 0
1 1 1 1
2 2 2 2

@2
0 0.75 2

Use float[3] in order to encode a vector field instead of a scalar field. Likewise, you may modify
the field’s primitive data type. For example, 3D images are commonly encoded using byte or short.
Instead of Intensity you may use any other name in the data definition statement.

The field’s xy bounding box is given by the minimum and maximum x- and y-coordinates of the grid
nodes or pixel centers, not of the pixel boundaries. Amira will always assume the width of a single
pixel to be (xmax-xmin)/(dims[0]-1). For degenerated 3D data sets with one dimension being 1 choose
equal minimum and maximum coordinates in that direction.

9.6.3 Fields with rectilinear coordinates

A field with rectilinear coordinates still has axis-aligned grid cells. However, the x-, y-, and z-
coordinates of the grid nodes are specified explicitely for each direction.

In order to encode a 3D scalar or vector field with rectilinear coordinates you have to define a 3D array
called Lattice and 1D array called Coordinates. The field’s data values are stored at Lattice while the
x-, y-, and z-positions for each direction are stored at Coordinates in subsequent order. The size of
the Coordinates array must be equal to the sum of the sizes of Lattice in x-, y-, and z-direction. The
coordinate type of the field is specified in the parameter section of the AmiraMesh file. Here is an
example:

AmiraMesh ASCII 1.0

define Lattice 2 2 3
define Coordinates 7 # This is 2+2+3

Parameters {
CoordType "rectilinear"

}

Lattice { float ScalarField } = @1

AmiraMesh Format 437

Coordinates { float xyz } = @2

@1
0 0 0 0
1 1 1 1
2 2 2 2

@2
0 1 # x coordinates
0 1.5 # y coordinates
-1 1 2 # z coordinates

Use float[3] in order to encode a vector field instead of a scalar field. Likewise, you may modify
the field’s primitive data type. Instead of ScalarField you may use any other name in the data
definition statement.

9.6.4 Fields with curvilinear coordinates

A field with curvilinear coordinates consists of a regular array of grid cells. Each grid node can be
addressed by an index triple (i,j,k). The coordinates of the grid nodes are specified explicitly.

In order to encode a 3D scalar or vector field with curvilinear coordinates you have to define a 3D array
called Lattice. This array is used to store the field’s data values as well as the grid nodes’ coordinates.
The coordinates must be given as a float[3] vector containing x-, y-, and z-values. The coordinate
type of the field is specified in the parameter section of the AmiraMesh file. Here is an example:

AmiraMesh ASCII 1.0

define Lattice 2 2 3

Parameters {
CoordType "curvilinear"

}

Lattice { float ScalarField } = @1
Lattice { float[3] Coordinates } = @2

@1 # 2x2x3 scalar values
0 0 0 0
1 1 1 1
2 2 2 2

438 Chapter 9: Alphabetic Index of File Formats

@2 # 2x2x3 xyz coordinates
0 0 0
1 0 0
0 1 0
1 0 0
0 0 1
1 0 1
0 1 1
1 0 1
0 0 2
1 0 2
0 1 2
1 0 2

Use float[3] in order to encode a vector field instead of a scalar field. Likewise, you may modify
the field’s primitive data type. Instead of ScalarField you may use any other name in the data
definition statement.

9.6.5 Label fields for segmentation

Label fields are closely related to ordinary scalar fields with uniform coordinates. However, the data
values at each voxel are interpreted as labels denoting the different materials or regions the voxels have
been assigned to during a segmentation process. Therefore, the most important difference of label
fields compared to uniform scalar fields is the occurence of a Materials section in the AmiraMesh file.
Whenever such a section occurs and elements of type byte denoted Labels are found the AmiraMesh
file is interpreted as a label field. Here is a simple example of a label field containing two different
materials:

AmiraMesh ASCII 1.0

define Lattice 2 2 2

Parameters {
CoordType "uniform",
BoundingBox is xmin xmax ymin ymax zmin zmax
BoundingBox 0 1 0 1 0 1

}

Materials {
{ Id 0, Name "Exterior" }
{ Id 4, Name "Something" }

AmiraMesh Format 439

}

Lattice { byte Labels } = @1
Lattice { byte Probability } = @2

@1
0 0 0 4
0 0 4 4

@2
255 255 130 180
255 200 190 230

Each material is supposed to have a parameter Id specifying the correspondence between labels and
materials. In the example above all voxels labeled with 0 belong to material Exterior, while all voxels
labeled with 4 belong to material Something.

Optionally, label fields may contain probability information or weights as shown in the example
above. These weights denote the degree of confidence of the labeling. This information is used by
the GMC module when extracting boundary surfaces.

9.6.6 Landmarks for registration

The data type Landmark Set is useful for registration and alignment of multiple 3D image data sets.
It allows you to store multiple sets of corresponding marker positions. The data type can also be used
to represent a simple list of 3D points in Amira. In this case you would only specify a single set of
markers. Consider the following example:

AmiraMesh ASCII 1.0

define Markers 3

Parameters {
ContentType "LandmarkSet",
NumSets 2

}

Markers { float[3] Coordinates } = @1
Markers { float[3] Coordinates2 } = @2

@1
38.5363 15.2135 20.3196

440 Chapter 9: Alphabetic Index of File Formats

35.1264 14.0106 37.155
31.6494 14.2791 31.0932

@2
40.2112 15.907 20.3119
35.9551 13.8241 40.4785
30.1375 13.7279 28.9235

In this example first the number of markers or points is defined to be 3. In the parameter section of
the AmiraMesh file the content type is specified, as well as the number of marker sets. The marker
coordinates of the first set are denoted Coordinates (xyz-values stored as float[3]). Likewise,
the marker coordinates of the second set are denoted Coordinates2. If more sets are defined the
coordinate values must be called Coordinates3, Coordinates4, and so on.

It is also possible to define additional data values for each marker such as MarkerTypes or Ori-
entations. How these values are interpreted in detail will be specified in a future release of Amira.

9.6.7 Line segments

The data type Line Set is used to represent a generic set of indexed line segments, i.e., line segments
defined by an index into a vertex list. Optionally, an arbitrary number of scalar data values may be
associated with each vertex.

In order to store line sets in an AmiraMesh file two 1D arrays have to be defined, namely Lines, used
to store the indices, and Vertices, used to store the vertex coordinates as well as additional vertex data.
Here is an example:

AmiraMesh ASCII 1.0

define Lines 15
define Vertices 12

Parameters {
ContentType "HxLineSet"

}

Vertices { float[3] Coordinates } = @1
Vertices { float Data } = @2
Lines { int LineIdx } = @3

@1 # 12 xyz coordinates
0.9 0 0

AmiraMesh Format 441

1 0 0.1
1 0 1.9
0.9 0 2
0 0.9 0
0 1 0.1
0 1 1.9
0 0.9 2
-0.9 0 0
-1 0 0.1
-1 0 1.9
-0.9 0 2

@2 # 12 data values
1 1 1 1 2 2 2 2 1 1 1 1

@3 # 15 indices, defining 3 line segments
0 1 2 3 -1
4 5 6 7 -1
8 9 10 11 -1

Lines are defined using vertex indices as shown above. The index of the first vertex is 0. An index
value of -1 indicates that a line segment should be terminated. An arbitary number of additional vertex
data values can be defined. Multiple values should be distinguished by denoting them Data2, Data3,
and so on.

9.6.8 Colormaps

An Amira colormap consists of a one-dimensional array of RGBA components accompanied by
two numbers min max specifying which data window should be linearly mapped to the RGBA val-
ues. The RGBA array should have 256 elements in order to be able to edit the colormap using the
colormap editor.

Colormaps are encoded in an AmiraMesh file as follows:

AmiraMesh ASCII 1.0

define Lattice 256

Parameters {
ContentType "Colormap",
MinMax 10 180

}

442 Chapter 9: Alphabetic Index of File Formats

Lattice { float[4] Data } = @1

@1
1 0 0 0
1 0.00392157 0 0
1 0.00392157 0 0.00392157
1 0.0117647 0 0.00392157
1 0.0196078 0 0.0196078
1 0.027451 0.00392157 0.0196078
...

The RGBA values are stored in floating point format. A component value of 0 means no intensity
(black), while a component value of 1 means maximum intensity (white). The fourth component
denotes opacity (alpha). Here a value of 0 indicates that the color is completely transparent while a
value of 1 indicates that the color is completely opaque.

9.7 AmiraMesh as LargeDiskData

Image data stored in an uncompressed AmiraMesh file can be loaded as LargeDiskData. Use the
File Dialog’s Popup Menu to force the file format to ”AmiraMesh as LargeDiskData“.

The file is opened readonly. You cannot change the imagedata nor add or modify parameters.

9.8 Analyze 7.5

This format was used by older versions of the Analyze medical imaging software system. Today it has
been widely replaced by the AnalyzeAVW format. The format is used to store 3D medical images.
The actual image data and the header information are stored in two different files. In order to import
the data in amira, you have to select just the header file in the Amira file browser. The header file is
recognized by the extension .hdr. If it has some other extension you have to manually select the file
format via the file browser’s popup menu.

The header file contains the dimensions of the 3D image, the voxel size, and the primitive data type
(8/16/32 bit grayscale, 24 bit color). In addition some other information such as a short data description
or a patient id are contained in the header. This information will be stored in the parameter section of
the generated amira data object.

AmiraMesh as LargeDiskData 443

9.9 AnalyzeAVW

This format is used by newer versions of the Analyze medical imaging software (version 2.5 or higher).
Previous versions used the Analyze 7.5 format, where image data and header information were stored
in different files. The Analyze AVW format can be used to store 2D, 3D, and 4D medical images, but
the 4D time series option is currently not supported in amira. Additional attributes stored in the files
(like patient name or examination time) are stored in the parameter section of the generated amira data
objects. Analyze AVW files are safely recognized by inspecting the file header. The common file name
extension is .avw.

Besides Analyze AVW image files sometimes also so-called Analyze AVW volume files are used, which
contain a list of 2D file names forming a 3D image stack. Such volume files currently cannot be in-
terpreted by amira. However, note that amira provides a very similar concept with the Stacked-Slices
format.

Amira exports scalar and color fields with uniform coordinates to the Analyze AVW format. Other
coordinate types can be written as well, but in these cases the coordinate information will be lost and
no accurate recovery will be possible.

9.10 BMP Image Format

BMP is a standard image format mainly used on the Microsoft Windows platform. Image data is stored
with 8 or 24 bits per pixel without applying any compression. When writing RGBA color fields the
alpha channel will be discarded. When reading BMP images an alpha value of 255 (full opacity) will
be assumed. BMP files are automatically identified by the file name extensions .bmp.

Regarding the import and export of multiple slices the same remarks apply as for the
TIFF image format. When reading BMP images the channel conversion dialog is popped up. This
dialog is also is also described the TIFF section.

9.11 Bio-Rad Confocal Format

The Bio-Rad confocal file format is used to store 3D image data from confocal microscopy. It essen-
tially consists of a 76 byte header section followed by the image data in big endian raw format. amira
recognizes Bio-Rad files automatically by the suffix .pic. In order to load Bio-Rad files from the
command line use load -biorad <filename>.

Since the header section of the format doesn’t contain full information about the voxel size, the bound-
ing box of the 3D image has to be adjusted manually for the resulting uniform scalar field using amira’s
crop editor. Note, that Bio-Rad confocal files can only be read but not be written by amira.

444 Chapter 9: Alphabetic Index of File Formats

9.12 DICOM

The DICOM data format and its predecessor the ACR-NEMA format are widely used to ex-
change medical image data, provided by various modalities. DICOM stands for Digital Imaging in
Communications and Medicine, and it was originally designed as pure transfer format between imag-
ing modalities and image retrieval systems (client/server). The data stream has a so called tagged
format, with a variable amount of tags (DICOM data elements). Each element is defined by a unique
group-element identifier. These group-element pairs are always sorted in ascending order within the
DICOM data stream.

In amira the import of sequences of axis-aligned CT or MRI images stored in DICOM or ACR-NEMA
format is supported. It will be checked whether the spacing between subsequent slices is constant
or not. In the first case an image stack with uniform z-coordinates is created, in the latter one so
called stacked coordinates are used. Nonuniform stacks can be easily converted into uniform stacks
using the arithmetic module. Both, image stacks, either uniform or stacked, can be segmented using
the image segmentation editor. Such labelled data can be converted into polygonal models using the
SurfaceGen module, and furthermore into tetrahedral models using the TetraGen module.

When reading DICOM or ACR-NEMA image stacks, all files of the data volume have to be se-
lected simultaneously within the file browser. This is done by selecting each file with a mouse
click holding the control button down or by clicking the first file and then shift-clicking the last
one. amira automatically identifies files in DICOM or ACR-NEMA format if the file name suf-
fix is .dcm, dc3, .ima or .ani, if the file name matches a DICOM unique instance ID, e.g.,
1.3.12.2.1107.5.1.2.20395.19980429... or if the DICM sequence can be found at byte
position 128 within the data stream. Individual files are automatically uncompressed if they were
compressed using gzip or compress, and if the file name ends with the suffix .gz or .Z.

Figure 9.1: Selecting multiple DICOM files in the file dialog.

After chosing files from the file selection dialog, a list of images is displayed within the DICOM loader
dialog view (see below), which allows you to adjust several parameters for image stack generation.
This intermediate step is necessary because the conversion of sequences of DICOM images into image

DICOM 445

stacks can be ambiguous, although in many cases the standard settings will produce the desired results.
The evolution of the ACR-NEMA/DICOM file format is fast and striking. However, the primary goal
of reading image stacks into amira is the consistency of the entire data volume. The Loader has
to handle retired data elements, different transfer syntaxes, explicit or implicit value representation,
image compression and multi-frame data, to name a few specialities. Furthermore, the availability
of certain tags is not always guaranteed, and so called private data elements can be added at will by
any creating instance. Further information on the DICOM 3.0 data format can be found in NEMA:
Standards Publications PS3.x

The Dicom Load Dialog

After selection of DICOM/ACR-NEMA files from the file selection dialog, all images stored within
these files are listed within the DICOM Loader dialog. The images are initially sorted by location
in ascending order. Images of different studies are grouped into separate image stacks. Each stack
is represented by a stack symbol and the patient’s name if available. Stacks with equally distributed
images are depicted with a uniform stack symbol, and stacks with variable spacing have a non-uniform
stack symbol. Single slices are represented by image icons within the list view. Clicking on a stack or
on one of it’s images will display additional information in the top area of the dialog’s view.

Figure 9.2: The DICOM load dialog.

Sorting order and policy can be modified by clicking on the column headers or by moving columns
from one position to another. The order of the columns’ precedence defines the siginificance of the
sort keys. Clicking on a column’s header toggles the sorting order between ascending and descending,
depicted by an arrow within the column’s header. The leftmost column has the highest priority. Rows
with equal contents, e.g., equal slice locations, can be subsorted depending on the order and contents
of all remaining columns.

446 Chapter 9: Alphabetic Index of File Formats

Figure 9.3: Reordering columns in the load dialog.

Sorted sequences of images are automatically broken into substacks when certain image parameters
do not coincide, i.e. the image/pixel size or the bits/samples per pixel vary. Furthermore there are
stack criteria like patient name, patient id, series instance uid etc. that are supposed to enforce stack
consistency but can be overridden or additionally be set by the user.

Building image stacks for 3D reconstruction requires unique per-slice locations, thus image stacks of
a single study are automatically broken into substacks if duplicate slice locations occur. This is espe-
cially the case, when large areas were scanned in several steps. Such duplicate slices can be removed
by right clicking on the image row, choosing remove image from the popup menu. Remaining im-
ages are automatically combined to one stack if they are not affected by any other stack break criterion.
Stack break criteria can be modified or disabled within the DICOM Load Options dialog, that shows
up after pressing the Options button from the DICOM Loader.

Load options can also be removed completely by choosing the appropriate column, right clicking on
the column’s header and selecting remove column from the popup menu showing up at this point.
Options are disabled when ignore is selected from the Load Options dialog. After any modification
of load options the new settings can be applied to the list of images by either pressing the Apply
button or accepting all options by leaving the dialog with Ok. Any changes are immediately visible
through rearrengement of images and stacks within the list view.

Initially the major stack criteria, like slice location, image number, patient name, patient id, series id
and date as well as the file name and the load index are shown in different columns. If any of the
parameters remain constant for all images (except the slice location), the respective column will not
show up. Columns can be manually removed by clicking on the column’s header with the right mouse
button and chosing remove column from the popup menu. New columns can also be added to the
list view.

DICOM 447

Figure 9.4: Dialog for specifying stack break criteria.

Imagine that you were loading a time series of images showing cardiac motion or the distribution of
nuclear tracers. The location could be the same for all images but there might be any other parameter
of interest describing the order of acquisition. Usually the image number or even the file name will
suffice to represent such an order, but there are other parameters that might be of interest, too. Clicking
on any image row with the right mouse button shows a popup menu where the menu option DICOM
parameters will open up a list of all DICOM data elements for the belonging image series.

Figure 9.5: Dialog listing all DICOM parameters.

The parameter list is sorted by the group-element pairs as described in the DICOM format. It can be
sorted by element description or parameter values as well, for easily finding a certain data element.
Any parameter can be appended as stack criterion by pressing the Add button. Moving this parameter
column to the first position will break sequences of images according to the effective load option, that
can be either constant for alphanumeric values or incrementing for numerical values.

448 Chapter 9: Alphabetic Index of File Formats

If you would like to force all images into one stack of a given sorting order, remove all insignificant
columns, respectively set their load options to ignore. This will only fail if any of the stringent stack
criteria (image size etc.) varies. If the sorting order counteracts to the order of slice locations, or no
slice locations are given at all, you will be prompted for the position of the first image within the list
view and the spacing between two adjacent images. Note that this will always end up in stacks with
uniform image distribution.

The Dicom Save Dialog

amira is able to export 3D images with uniform or stacked coordinates consisting of either 8-bit or
16-bit values in the DICOM 3.0 format. If the data set to be exported originally has been read from
DICOM files, the DICOM attributes (which are stored in the parameter section of a data object) will
be exported too. Othwerwise, default values for the required attributes will be used. The image
dimensions, the voxel size, and the slice location are written correctly in any case.

When writing a 3D image in the DICOM 3.0 format, the Dicom save dialog pops up, allowing you to
define certain attributes of the exported files, such as the image modality.

9.13 DXF

The DXF file format is a general-purpose format used by the AutoCAD (TM) software, The format
is able to store a large variety of 2D and 3D geometries. Currently, amira only exports files in plain
ASCII format containing 3D triangular surfaces and 3D line sets. The information defined in the
parameter section of an amira data object will only be saved in case of 3D trianglar surfaces.

3D line sets can be exported in two different ways: the whole line set in a single file or on a per-slice
basis (DXF slice-by-slice). The latter format can only be selected if the line set contains a special
parameter describing the structure of the individual slices. Groups of lines belonging to the same slice,
i.e., having the same x, y, or z coordinate, are saved in the same DXF file. Line sets of this special type
are produced by the module ComputeContours.

When importing DXF files amira will create an Open Inventor scene graph object. You may use the
module IvToSurface in order to convert the scene graph into an amira surface. Currently, only DXF
files in ASCII format can be read.

DXF files are identified by the file name extension .dxf.

9.14 Encapsulated Postscript

Amira is able to save snapshots as well as individual slices of a 3D image data set in Encapsulated
Postscript format. You may directly send EPS files to a Postscript printer, or you may include these
files in many standard desktop publishing programs. The EPS files produced by amira contain bitmaps
rather than vector information.

DXF 449

The import of EPS files is not supported.

9.15 FIDAP NEUTRAL

The FIDAP NEUTRAL describes 3D simulations on geometries consisting of 3D vertices and a number
of geometry elements based on them. amira can only read FIDAP NEUTRAL files in plain ASCII
format containing 3D triangular/quad surfaces, and tetrahedral grids.

After describing the geometry, the FIDAP NEUTRAL file contains a number of time steps, each time
step specifying the same subset set of data sets defined on the 3D nodes (velocity, pressure, temperature
etc.). amira loads the geometry and then displays a dedicated module called FIDAPControl which
allows the user to select the desired timestep. In this way, the evolution of the data in time can be
followed.

9.16 Fluent / UNS

The Fluent file format is used for storing 2D and 3D geometries, such as unstructured finite-element
grids. The format is quite powerful. Currently, amira only supports Fluent files in plain ASCII format
containing 3D triangular surfaces, tetrahedral or hexahedral grids.

When exporting Fluent files, additional information defined in Amira’s surface or grid structures such
as the material section is saved as well. However, other applications won’t be able to read or interprete
these additional data.

Fluent files are identified automatically by analyzing the file header.

9.17 HTML

HTML files loaded via the amira file dialog are displayed in the online help viewer. The help
viewer supports certain but not all HTML formatting tags. It also is not able to resolve web links.
Only links to local files are resolved. Nevertheless, it is very convenient to describe projects and
to invoke demo scripts from an HTML page displayed in the amira help viewer. Whenever a file
with the extension .hx is linked, this file is interpreted as an amira script. The script is exe-
cuted when the link is clicked. As an example you may look at the demo pages provided with
the online user’s guide, for example share/usersguide/recon.html or other files listed in
share/usersguide/AmiraIndexDemo.html.

9.18 HxSurface

Simplified version. The surface format has been designed to represent
triangular non-manifold surfaces. The triangles of such a surface are grouped in patches. In

450 Chapter 9: Alphabetic Index of File Formats

addition, information about so-called boundary contours and branching points can be stored is a
surface file. However, since this information can be recomputed automatically if required, we discuss
a simplified version of the format first. Here is an example:

HyperSurface ASCII

Parameters {
Info "GMC: 3 colors, case 13"

}

Materials { {
color 0.83562 0.78 0.06,
Name "Yellow" }

{
color 0.21622 0.8 0.16,
name "Green" }

{
color 0.8 0.16 0.596115,
name "Magenta" }

}

Vertices 11
1.000000 0.666667 0.500000
0.666667 0.500000 1.000000
1.000000 0.500000 0.000000
0.500000 1.000000 0.000000
0.000000 0.000000 0.500000
0.000000 1.000000 0.500000
1.000000 1.000000 0.500000
0.500000 0.000000 1.000000
1.000000 0.500000 1.000000
0.500000 1.000000 1.000000
0.523810 0.523809 0.500000

Patches 3
{ InnerRegion Green

OuterRegion Yellow
Triangles 7

3 1 11
4 3 11
6 4 11
5 6 11
8 5 11

HxSurface 451

2 8 11
1 2 11

}
{ InnerRegion Magenta

OuterRegion Yellow
Triangles 1

9 2 1
}
{ InnerRegion Magenta

OuterRegion Green
Triangles 2

2 10 7
7 1 2

}

The first line is required and identifes the surface format. Additional comments starting with a hash-
mark may appear at any point in the file. Next, an optional parameter section and a material section
follow. These sections have the same format as in an AmiraMesh file. The parameter section may con-
tain an arbitrary number of name-value items. The material section contains additional information
about imaginary regions the surface patches are supposed to separate. In contrast to an AmiraMesh
file individual materials need not to have an Id since they are referenced via their names.

The statement Vertices 11 indicates that the x-, y-, and z-coordinates of 11 vertices follow. Like-
wise, the statement Patches 3 indicates that 3 patches follow. The definition of each patch is
enclosed by a pair of brackets { and }. Inside these brackets InnerRegion and OuterRegion
indicate the two regions the patch is supposed to separate. If you don’t want to generate a tetrahedral
grid from your surface you may omit these statements or you may choose both regions to be the same.
Finally, the triangles of a patch are specified by indexing vertices defined in the vertex section. Like in
an AmiraMesh file indices start at 1, not at 0.

Extended version. In its extended version the surface format is able to store additional topological in-
formation of a surface. Before we discuss this in detail let us first make some definitions and introduce
the underlying concepts.

• Region: In finite element applications regions are usually called materials. A region is defined
by its surrounding surface, which may consist of multiple patches. Each region must have a
unique name.

• Surface: A surface is defined by the boundary of a 3D region and therefore must be closed. This
means that for example each edge must be connected to an even number of triangles. In one half
of the triangles the edge is referenced in forward orientation, in the other half in backward
orientation. A surface may consist of multiple pieces, so-called patches. In the file format the
patches of a surface are given by a list of signed indices. A negative index means that the patch

452 Chapter 9: Alphabetic Index of File Formats

has negative orientation in the current surface.

• Patch: A part of a surface which separates exactly two differnt regions. Patches are built from
triangles. The triangles are all oriented in a unique way so that we can define an inner region and
an outer region. The triangle normals point into the outer region. For each patch an InnerRe-
gion and an OuterRegion may be specified in the file format. If one of these specifiers is
missing it is assumed that the patch delimits the exterior space. Otherwise the exterior region
should be called OUTSIDE. Patches may be closed or may be delimited by so-called boundary
curves. Boundary curves are specified by a list of signed integers. The sign denotes the orien-
tation of the curve segment for a particular patch. In addition for each patch inner branching
points may be specified, if necessary.

• BoundaryCurve: At a boundary curve multiple patches join. The curves are defined by a set of
vertex indices. For closed curves the first and the last index must be equal.

• BranchingPoint: A point where multiple regions join. The start and end points of a boundary
curve are branching points. In addition there may be also branching points inside a patch which
are not part of a boundary curve.

• Vertices: These are the points from which the surface triangles are built. In the file format
the vertex coordinates are specified after the indentifier Vertices followed by the number of
vertices. First branching points should be specified, then points on boundary curves, and then
inner points of the patches. In the definition of boundary curves and patches the vertices are
referenced by indices starting from 1, not from 0.

The following example describes the surfaces of three connected tetrahedra which are assigned to
three different regions. Some of the definitions are optional. Really necessary are only the list of
vertex coordinates as well as the definition of the patches. Boundary curves and surfaces may be
reconstructed from this.

HyperSurface ASCII

Vertices 6
0.0 0.0 0.0
0.0 0.0 1.0
0.0 1.0 0.0

-1.0 0.0 0.0
1.0 0.0 0.0
0.0 -1.0 0.0

NBranchingPoints 2
NVerticesOnCurves 2

BoundaryCurves 3
{

Vertices 3

HxSurface 453

1 3 2
} {

Vertices 2
1 2

} {
Vertices 3

1 4 2
}

Patches 5
{

InnerRegion Material1
OuterRegion OUTSIDE
BranchingPoints 0
BoundaryCurves 2

1 -2
Triangles 3

5 1 3
1 5 2
5 3 2

} {
InnerRegion Material2
OuterRegion OUTSIDE
BranchingPoints 0
BoundaryCurves 2

3 -1
Triangles 2

3 1 4
2 3 4

} {
InnerRegion Material3
OuterRegion OUTSIDE
BranchingPoints 0
BoundaryCurves 2

-3 2
Triangles 3

4 1 6
2 4 6
1 2 6

} {
InnerRegion Material1
OuterRegion Material2

454 Chapter 9: Alphabetic Index of File Formats

BranchingPoints 0
BoundaryCurves 2

2 -1
Triangles 1

3 1 2
} {

InnerRegion Material2
OuterRegion Material3
BranchingPoints 0
BoundaryCurves 2

-3 2
Triangles 1

1 2 4
}

Surfaces 3
{
Region Material1
Patches 2

1 4
} {
Region Material2
Patches 3

2 -4 5
} {
Region Material3
Patches 2

3 -5
}

9.19 Hypermesh

The Hypermesh (TM) file format is used by the Altair HyperWorks product family. The format de-
scribes 3D geometries consisting of 3D vertices and a number of cells based on them. amira can only
read Hypermesh files in plain ASCII format containing 3D triangular surfaces, tetrahedral grids or so-
called tria6 components (a special kind of traingles). If tetrahedral components are present the result
of the import is a TetraGrid, else it is a 3D surface.

Tetrahedral grids and 3D surfaces can also be exported in Hypermesh format. Every 3D surface com-
ponent (patch) is saved with its interior-exterior material names, separated by a ”-”. However, it is not
guaranteed that other applications understand this coding. A tetrahedral grid is saved together with

Hypermesh 455

its boundary surface. The patch structure of the boundary surface is retained. In order to separate the
boundary into different patches the boundary condition ids are interpreted. The material ids of every
tetrahedron are also saved.

Amira identifies Hypermesh files by the extensions .hm or .hmascii. The decision whether the file
contains a 3D surface or a tetragrid is made after reading and analysing the content.

9.20 IDEAS universal format

The I-DEAS universal file format is a general format originally used by SRDC’s I-DEAS Master Series
software to encode CAD/CAM models and FEM simulation results. The format is able to store lots of
different data entities and FEM cell types. In amira the following subset of so-called universal dataset
numbers is supported when importing I-DEAS files:

• 15: Nodes with single precision coordinates.

• 781, 2411: Nodes with double precision coordinates.

• 71, 780, 2412: Cell definition. Lines, triangles, quads, tetrahedra, hexahedra, and prisms with
linear shape functions are supported. Quads are decomposed into triangles. Prisms are decom-
posed into triangles as well. Hexahedra are decomposed into tetrahedra if tetrahedra or prisms
appear too (Amira currently is not able to handle meshes with mixed element types or elements
with higher-order shape functions).

• 55, 2414: Data at nodes.

The common file name extension of this format is .unv. For I-DEAS files with some other extension
the file format has to be specified manually via the popup menu of the file dialog. Surfaces, tetrahedral
grids, and hexahedral grids can also be exported into an I-DEAS universal file.

9.21 Icol

This is a simple ASCII file format coming in two variants, indexed and non-indexed, to store col-
ormaps. The Icol file format and the Icol Colormap Editor originate from the Graphics and Visualiza-
tion Lab (GVL) of the Army High Performance Computing Research Center (AHPCRC), Minnesota.
The Colormap Editor in amira shares many ideas with the original AHPCRC tool. The structure of an
Icol format can be immediatly understood by looking at the examples in amira’s demo data directory.

9.22 JPEG Image Format

JPEG is a standard format which can be used to store RGB and greyscale images in a highly com-
pressed form. However, note that the compression algorithm is lossy. The quality of the compression
for file export can be specified by typing the command

456 Chapter 9: Alphabetic Index of File Formats

set AmiraJPEGQuality <quality>

into the Amira console prior to the export, where <quality> ranges from 0 to 100. The default is
90. When writing RGBA color fields the alpha channel will be discarded. When reading RGB images
an alpha value of 255 (full opacity) will be assumed. JPEG files are automatically identified by the file
name extensions .jpg or .jpeg.

Regarding the import and export of multiple slices the same remarks apply as for the
TIFF image format. When reading JPEG images the channel conversion dialog is popped up. This
dialog is also is also described the TIFF section.

9.23 LargeDiskData

This is the native amira fileformat for blockwise access of imagedata stored on disk as described
in LargeDiskData. It supports read/write operations, multiresolution access and saving of changed
parameters. The data are stored in a couple of files, e.g.:

visMaleCT
visMaleCT-SUPR.dat
visMaleCT-0001.dat
visMaleCT-0000.dat
visMaleCT-0002.dat

The first one is recognized by amira as an AmiraMesh file. It contains the paramters and a link to the
other files. It can be loaded into amira with the File Dialog. The other files contain the actual image
data.

You can create such a fileset with the ConvertToDiskData module.

9.24 Leica 3D TIFF

This reader is able to read 3D TIFF files containing a whole stack of 2D images. In particular, the 3D
TIFF format is used by newer Leica laser scanning microscopes.

In addition to the image data itself special parameters like pixel size or slice distances may be stored
in a 3D TIFF file. If such information is found it will be interpreted in order to create a uni-
form scalar field of the proper type. However, if no bounding box information is encountered, the
channel conversion dialog described in the 2D TIFF section will be popped up.

9.25 Leica Binary Format (.lei)

This is the Leica binary file format used by Leica laser scanning microscopes. It consists of an lei
file as well as several TIFF slices. In order to read these files, select only the lei file. Parameters like

LargeDiskData 457

pixelsize or slice distance are read from the lei file.

9.26 Leica Slice Series (.info)

This is the file format used by the older Leica laser scanning microscopes. It consists of an info file as
well as several raw or TIFF slices, which all must reside in the same directory. In order to read these
files, select only the info file. Parameters like pixelsize or slice distance are read from the info file. If
the file contains colormaps, they will be read, too.

9.27 Metamorph STK Format

The MetaMorph Stack (STK) file format is used to encode 3D image data, e.g. from confocal mi-
croscopy. It is a special version of the TIFF file format. Thus, STK files are indicated as TIFF files in
the format column of the file dialog.

STK files can be read just as ordinary 3D TIFF files. The channel conversion dialog is popped up, let-
ting the user decide how to proceed with multiple channel images and letting him define the bounding
box of the 3D image. Note, that size hints stored in the STK file itself are currently not interpreted.
Also note, that amira can only read but not write STK files.

9.28 Open Inventor

The Open Inventor file format is used for storing 3D geometries. The format is very powerful. The
VRML format known from the World Wide Web is very similar to Open Inventor. Since amira is
built on top of Open Inventor, it naturally supports this format. However, amira has added a lot of
special purpose nodes to Open Inventor. Therefore currently some geometries which can be displayed
in amira’s 3D viewer cannot be saved in Open Inventor file format.

When reading an Open Inventor file a data object of type IvData will be created. This data object stores
the Open Inventor scene graph and can be visualized using a IvDisplay module. IvData objects can be
saved again in ASCII or binary Open Inventor format. In addition amira surfaces can be exported in
Open Inventor format.

9.29 PNG Image Format

PNG stands for Portable Network Graphics. The format is mainly used for internet applications.
Usually, image data is stored in compressed form using a lossless compression algorithm. The format
is able to store an alpha channel besides the ordinary color channels. PNG files are automatically
identified by the file name extensions .png.

458 Chapter 9: Alphabetic Index of File Formats

Regarding the import and export of multiple slices the same remarks apply as for the
TIFF image format. When reading PNG images the channel conversion dialog is popped up. This
dialog is also is also described the TIFF section.

9.30 PNM Image Format

This format includes the PPM, PGM and PBM image formats. These formats are used to store RGB
color images, greyscale images, as well as black and white images, respectively. For each of the three
formats there is a binary and an ASCII version. amira is able to read all six of them, but will only
write binary PPM and PGM files. Black and white PBM images can only be read if the image width is
a multiple of eight. PNM files will be automatically identified by their file headers.

Regarding the import and export of multiple slices the same remarks apply as for the
TIFF image format. When reading PNM images the channel conversion dialog is popped up. This
dialog is also is also described the TIFF section.

9.31 PSI format

The PSI format stores a set of 3D points with additional data variables associated to them in a column-
oriented way. In amira PSI files are represented by data objects of type HxCluster.

A PSI file starts with an (optional) header section. This section describes the contents of the file,
i.e., the number and the meaning of the individual data columns. The file syntax is illustrated in the
following example:

PSI Format 1.0
#
column[0] = "x"
column[1] = "y"
column[2] = "z"
column[3] = "Energy"
column[4] = "Grain"
column[5] = "Id"
column[6] = "Coordination Number"
column[7] = "Crystallographic Class"
#
symbol[3] = "E"
symbol[4] = "g"
symbol[6] = "n"
symbol[7] = "c"
#
type[3] = float

PNM Image Format 459

type[4] = byte
type[6] = byte
type[7] = { PFCC, GFCC, PHCP, GHCP, OT12, OTHR }

5 2694 115001
1.00 0.00 0.00
0.00 1.00 0.00
0.00 0.00 1.00

-0.748 -0.748 -0.777 -4.3840 15 327909 12 PFCC
-0.735 -0.739 -0.757 -4.3840 15 327910 12 PFCC
-0.742 -0.784 -0.754 -4.3400 15 328800 12 GFCC
-0.757 -0.769 -0.766 -4.3823 15 328812 12 PFCC
-0.747 -0.762 -0.745 -4.3638 15 328813 12 PFCC

The very first line indicates that this is a PSI file. The statement column[0] = "x" indicates that
the first data column represents the x-coordinates of the points. In this example in total eight data
columns are defined. Note, that the names "x", "y", "z", and "Id" have a special meaning. These
columns are required.

Next, the statement symbol[3] = "E" defines a symbol for the data column labeled "Energy".
This symbol may be used in an arithmetic filter expression as provided for example by the modules
ClusterView and ClusterDiff. Note, that symbol definitions for the four special columns labeled "x",
"y", "z", and "Id" have no effect.

Finally, the statement type[3] = float indicates, that internally energy values should be stored
as 32-bit floating point numbers. Alternatively, data values may be stored as 32-bit integers (int) or
as 8-bit characters (byte). As a special feature, data values may also be represented by textual tokens.
In this case, the set of allowed tokens should be specified in a comma-separated list as shown in the
above example.

The header section may also contain any other user-defined comment, provided the first character of a
comment line is a #. The first non-blank line after the header section specifies the number of points,
as well as two other parameters, wich are ignored by amira. Next, the bounding box of the data set
is specified. However, amira will ignore this definition. Instead, the bounding box will be calculated
from the point coordinates itself.

If a PSI file contains no header section at all, amira assumes that the file contains exactly eight data
columns and that these data columns are arranged like in the example above.

9.32 Plot 3D Single Structured

Plot3D is a simple binary file format, to represent structured curvilinear grids and scalar or vector fields
defined on these grids. This format originates from the Plot3D program developed by Pieter Buning at

460 Chapter 9: Alphabetic Index of File Formats

NASA Ames.

To read data in this format, you have to select a Grid file, and optionally additional scalar, vector, or
solution files. The preferred file name suffix for Plot3D files is .p3d. In order to load Plot3D files
from the command line use load -plot3d.

To write a data object in Plot3D format first create the grid file by choosing Plot3D Grid File in amira’s
file dialog. Then write the data itself by choosing Plot3d Data File. From the command line you may
use save -plot3dgrid and save -plot3ddata, respectively.

In detail Plot3D files must have the following structure (all binary 32-bit big endian format):

Grid File:

3 integers:

[IDIM, JDIM, KDIM]

IDIM x JDIM x KDIM (call this product NPOINTS) floating-point X co-
ordinates (brackets
indicate one record):

[x1,x2,...,xNPOINTS,

NPOINTS floating-point Y coordinates:

y1,y2,...,yNPOINTS,

NPOINTS floating-point Z coordinates:

z1, z2,...,zNPOINTS]

Solution File:

3 integers:

[IDIM, JDIM, KDIM]

4 floating-point conditions:

(free-stream mach number, angle-of-attack, Reynold’s num-
ber, and integration time)

[FSMACH, ALPHA, RE, TIME]

Plot 3D Single Structured 461

IDIM x JDIM x KDIM (call this product NPOINTS) floating-
point Q1 values (brackets indicate
one record):

(Q1 is density (RHO))

[q11, q12,...,q1NPOINTS,

NPOINTS floating-point Q2 values:

(Q2 is x momentum (RHO*U))

q21,q22,...,q2NPOINTS,

NPOINTS floating-point Q3 values:

(Q3 is y momentum (RHO*V))

q31,q32,..., q3NPOINTS,

NPOINTS floating-point Q4 values:

(Q4 is z momentum (RHO*W))

q41,q42,...,q4NPOINTS,

NPOINTS floating-point Q5 values:

(Q5 is total energy per unit volume (E))

q51,q52,...,q5NPOINTS]

Scalar File:

4 integers:

[IDIM, JDIM, KDIM, 1]

IDIM x JDIM x KDIM (call this product NPOINTS) floating-
point F values:

[f1, f2, ..., f1NPOINTS]

462 Chapter 9: Alphabetic Index of File Formats

Vector File:

4 integers:

[IDIM, JDIM, KDIM, 3]

IDIM x JDIM x KDIM (call this product NPOINTS) floating-
point F values:

[fx1,fx2,...,fxNPOINTS,

NPOINTS floating-point FY values:

fy1,fy2,...,fyNPOINTS,

NPOINTS floating-point FZ values:

fz1,fz2,...,fzNPOINTS]

9.33 Ply Format

The Ply format was developed at Stanford University Computer Graphics Lab. It is used for storing
points and geometries. In amira it is possible to read and save surfaces in this format. When writing
amira surfaces in this format additional information such as the material section of the surface will be
written into Ply files as well. However, other application will not be able to interprete this additional
data.

amira identifies a Ply file by its header.

9.34 Raw Data

Sometimes you may want to read data defined on uniform lattices in raw format, i.e. plain three
dimensional arrays of data. Tomographic images might be given in this way, and raw data is often the
easiest format to produce with e.g., custom simulation programs.

To read in raw data, use the Load/Load Data menu, select the file in the file browser and click OK.
Since Amiracan not recognize the file format automatically, a dialog will popup. Within this dialog
choose Raw Data as file format and click OK. Since the raw data file does not contain any information
on how to format the data, some user specifications are required. amira will bring up a dialog:

Now adjust the parameters:

Ply Format 463

Figure 9.6: Amira’s raw data read dialog.

• Data Types. Primitive type of data: byte for 8 bit data, short for 16 bit data, int32 for 32 bit
integer data, float for 32 bit float data, double for 64 bit floating point data.

In addition the number of data values per data point has to specified: 1 for scalar data, 3 for
vector data, 6 for complex vector fields.

• Dimensions. Size of the three dimensional array. If wrong dimensions are specified, the data
will be scrambled.

• Min/Max Coords. The bounding box of the data. These parameters are not as critical as the
other ones. In particular the bounding box can be adjusted afterwards using the crop editor.

• Header. Many file formats consist of a raw data block with a prepended header. If such files are
read with this method, the size of the header can be specified here. The header will then simply
be skipped, when reading the file

• Endianess. The byte order of data types other than byte is system dependend. If you read your
files on the same type of processor as on which they have been produced, the default setting will
be ok. But if you read data produced e.g., under Linux (little Endian), on an SGI (big Endian),
you have to specify the correct byte order of the data to be read (little Endian in this case).

• Index Order. Order in which the data points are read.

The raw data format is a very powerful tool, especially for quick-access/prototyping use. However it
may sometimes be tricky to figure out the parameters. Some tools which may help are vi or od -c
(to examine the header of files).

After loading click on the icon. If the data range is obviously completely wrong, then you have either
specified a wrong data type, or a wrong endianess, or a to short header. If most of the volume looks ok,
but is shifted in x-direction, then you probably have specified a wrong header. If the data range looks
ok, but the data seems scrambled, then you have specified wrong dimensions, or a wrong index order.

464 Chapter 9: Alphabetic Index of File Formats

9.35 Raw Data as LargeDiskData

This file format allows to load subvolumes out of one large raw data block on disk. Use the
File Dialog’s Popup Menu to force the file format to ”Raw Data as LargeDiskData“. The format
of the file and the paramters you have to provide are described in Raw Data. The file will be loaded as
a LargeDiskData objekt.

The file is opened readonly. You cannot change the imagedata nor add or modify parameters.

9.36 SGI-RGB Image Format

This is the SGI file format for RGB and greyscale images. When writing an RGBA color field the
alpha value will be discarded. When reading RGB images full opacity is assumed. 16 bit data val-
ues, even though allowed by the SGI file format specification, are not supported. SGI-RGB files are
automatically identified by the filename extensions .sgi, .rgb, or .bw.

Regarding the import and export of multiple slices the same remarks apply as for the
TIFF image format. When reading SGI-RGB images the channel conversion dialog is popped up. This
dialog is also is also described the TIFF section.

9.37 STL

STL is a CAD format for Rapid Prototyping. It is a faceted surface representation, i.e. a list of
the triangular surfaces with no adjacency information. Currently the ASCII version of the format is
supported for writing Amira objects of type Surface.

9.38 Stacked-Slices

This file format allows to read a stack of individual image files with optional z-values for each slice.
The slice distance need not to be constant. The images must be one-channel images in an image
format supported by Amira (e.g., TIFF). The reader operates on an ASCII description file, which can
be written with any editor. Here is an example of a description file:

Amira Stacked Slices

Directory where image files reside
pathname C:/data/pictures

Pixel size in x- and y-direction
pixelsize 0.1 0.1

Raw Data as LargeDiskData 465

Image list with z-positions
picture1.tif 10.0
picture7.tif 30.0
picture13.tif 60.0
colstars.jpg 330.0
end

Some remarks about the syntax:

• # Amira Stacked Slices is an optional header, which allows Amira to automatically
determine the file format.

• pathname is optional and can be included in case the pictures are not in the same directory as
the description file. A space separates the tag ”pathname” from the actual pathname.

• pixelsize is optional too. The statement specifies the pixel size in x- and y-direction. The
bounding box of the resulting 3D image is set from 0 to pixelsize*(number of pixels-1).

• picture1.tif 10.0 is the name of the slice and its z-value, separated by a blank.

• end indicates the end of the description file.

• Comments are indicated by an hashmark character (#).

9.39 Stacked-Slices as LargeDiskData

Stack of image files can be loaded as LargeDiskData. This file format allows to read a stack of indi-
vidual image files with optional z-values for each slice. The slice distance need not to be constant. The
images must be one-channel images in an image format supported by Amira (e.g., TIFF). The reader
operates on an ASCII description file, which can be written with any editor.

Here is an example of a description file:

Amira Stacked Slices as ExternalData

Directory where image files reside
pathname C:/data/pictures

Pixel size in x- and y-direction
pixelsize 0.1 0.1

Image list with z-positions
picture1.tif 10.0
picture7.tif 30.0
picture13.tif 60.0
colstars.jpg 330.0

466 Chapter 9: Alphabetic Index of File Formats

end

The format of the file and the paramters you have to provide are described in StackedSlices.

The image files are opened readonly. You cannot change the imagedata but you can add or modify
parameters in the description file. The file will be loaded as a LargeDiskData object.

9.40 TIFF Image Format

This is the 2D TIFF file format. It can be used to read and write one or more 2D images. If multiple
images of equal size have been selected in the file dialog they will be combined into a single 3D image
volume, i.e., a uniform scalar field of bytes or an RGBA color field. TIFF files will be automatically
identified by looking at the file header, irrespectively by the actual file name extension.

Likewise, if a 3D image data set is to be saved in TIFF format, in fact for each slice a separate file
will be created. If you choose the 2D TIFF format in the file dialog’s format menu a sequence of
hashmark characters [#] will be automatically inserted into the filename. When saving the images
the hashmark sequence will be replaced by the current slice number (formatted with leading zeros).
For example, if the base filename if image.####.tif the files actually being written will be named
image.0000.tif, image.0001.tif, and so on.

Note, that not all variants of the TIFF format are supported. In particular, the following limitations
apply:

• The number of channels must be 1, 3 or 4.

• The number of bits per pixel must be 8 or 16 (1 channel images only).

• Images defined in YbCbR colorspace can not be read.

• Tiled images can not be read.

• Only scalar fields consisting of bytes can be saved.

The Channel Conversion Dialog

When reading 2D image files a special dialog window will be popped up. This dialog asks the user
to specify how the 2D images should be converted into Amira data objects. In addition, the world
coordinates of the resulting 3D data object can be adjusted. The channel conversion dialog looks as
depicted in Figure 9.7.

First of all, the dialog displays the number of files to be read, the number of 2D slices (in most cases
equal to the number files), the size of a 2D slice in pixels, as well as the number of channels stored in
the files. An option menu lets you select whether a 1-component uniform scalar field should be created
or a 4-component RGBA color field. Depending on the type of input not all options may be active.
The meaning of the individual items is described below.

TIFF Image Format 467

Figure 9.7: Amira’s channel conversion dialog.

• Maximum. The maximum value of the red, green, and blue channel is stored in a uniform scalar
field (3 and 4 channel input only).

• Weighted Average. A grayscale uniform scalar field is created according to the NTSC formula,
I=.3*R+.59*G+.11*B (3 and 4 channel input only).

• Channel 1. The first channel of the input is converted into a uniform scalar field (will always
be active).

• Channel 2. The second channel of the input is converted into a uniform scalar field (3 and 4
channel input only).

• Channel 3. The third channel of the input is converted into a uniform scalar field (3 and 4
channel input only).

• Channel 4. The fourth channel of the input is converted into a uniform scalar field (4 channel
input only).

• Color Field. An RGBA color field is created (4 channel input or 1 channel input with additional
colormap).

If the first image file contains a colormap the map will be loaded as a separate object if Channel 1 is
selected, or it will be used to compute an RGBA color field if Color Field is selected.

Moreover, the dialog allows you to adjust the bounding box of the resulting image data set. The
bounding box specifies the world coordinates of the center of the lower left front voxel (min values)
and the center of the upper right back voxel (max values). For example, if your input is 256 pixels

468 Chapter 9: Alphabetic Index of File Formats

wide and the size of each voxel is 1mm, then you may set xMin to 0 and xMax to 255. The bounding
box of a data object may also be changed later using the ImageCrop Editor.

9.41 VRML

VRML is a file format for storing 3D geometries. The format is especially popular for web or internet
applications.

If you are using an amira version that is linked with the TGS Open Inventor toolkit 2.5 or higher you
may import VRML files as scene graph objects. Use IvToSurface in order to convert the surface parts
of the scene graph into a surface object.

On the other hand, surface objects may be exported into a VRML files using the VRML Export module.
Unlike most other formats VRML Export is implemented as module rather than an export filter. The
reason is that in addition to the surface itself other data objects, e.g., 3D image data, can be included
into the VRML file.

VRML 469

470 Chapter 9: Alphabetic Index of File Formats

Chapter 10

Alphabetic Index of Editors

10.1 CameraPath Editor

The CameraPath Editor allows you to edit camera paths defined by a number of keyframes. To get
started choose CameraPath from the Create menu and click on the editor button of the new camera
path object. The editor will appear and automatically open an additional viewer.

The original viewer (viewer 0) is the camera view, i.e., it shows the same as if you were glancing
through the camera, while the additional viewer will show you all keyframe-cameras from a bird’s eye
view.

In order to start your camera path, choose an appropriate view in the original viewer (see Section 3.1.7
(Viewer Window) to learn how to do that) and click on the add button. Your first keyframe has been
saved. The time slider should contain one red line and it should have advanced to 10. Now change the
view in the original viewer and click on add again. A second keyframe appears and so on.

Figure 10.1: Control panel of the camera path editor. The arrow shape control buttons can be used to play forward and backward,
to jump from keyframe to keyframe or to step frame by frame. When the editor is off the camera path provides a time port.

Once you have played your camera path us-

Figure 10.2: The camera path is shown in an extra viewer. You
can click on a keyframe and modify the camera. The changes
will be displayed in the original viewer simultaneously. The
redish icon represents the current camera. In general this is not
a keyframe but an interpolated camera.

ing the play button, you may continue adding
keyframes, by simply typing the time for the
new keyframe into the text field or by moving
the slider and then clicking add. Note: The orig-
inal view will not be changed, when the slider is
moved, or the text in the text field is changed.

To change the time of a keyframe, jump to this
frame, click on remove, type in the new time,
and click on add again.

If you want to have a constant camera velocity
on its path, push the constv button. Dependend-
ing on the distances between the cameraposi-
tions at the keyframes the keyframe times are
changed in order to get equidistant inbetween
camerapositions.

Caution: Pushing the circular path button will
create a new camera path destroying the old one.
The new camera path lies on a circle around one
of the major axes with the center at the point
the camera in the original window is looking at.
The radius is determined by the distance of the
cameraposition and the point the camera looks
at.

10.2 Color Dialog

The Color Dialog provides an interface for selecting colors. It pops up whenever a single color is to
be changed in amira. The dialog provides serveral different interface components: a menu bar, color
sliders, default color cells, a color picker, and five buttons.

The menu bar allows you to set some options for working with the color dialog. The sliders (and
the corresponding text fields and arrow buttons) let you choose a color by hue, saturation, and value
(HSV), or by the levels of red, green, and blue (RGB). The color picker allows you to pick a color
by sight. Moreover, you can choose a predefined color from a palette of custom colors cells. The
buttons are used to apply or reset changes and to quit the dialog. A detailed description of the interface
components is given below.

Menu Bar: The menu bar holds two pop up menus: the Edit and the Options menu. There are two
items in the Edit menu allowing the user to toggle between different editing modes: the Immediate
Mode and WYSIWYG Mode.

472 Chapter 10: Alphabetic Index of Editors

If Immediate Mode is selected, each modification of the color to be changed is effective immediately,
e.g., if you are changing the background color of the 3D viewer and Immediate Mode is active, the
effect of every slider or picker operation can be observed directly in the viewer.

The WYSIWYG Mode (meaning what you see is

Figure 10.3: Amira color dialog.

what you get) determines the background of the
color sliders. If WYSIWYG Mode is active the
background of a slider shows a color range rep-
resenting how the current color would change
by moving this slider.

The user has the option of displaying and ma-
nipulating two different combinations of slid-
ers: RGB and HSV. The Options menu holds
two items representing these two combinations.
Selecting RGB Sliders provides controls over
RGB color space. Selecting HSV sliders pro-
vides sliders to manipulate the HSV color space.

Color Sliders. The color sliders present the color range in hue, saturation, value (HSV) or red, green,
blue (RGB) color spaces. If the color to be changed has an alpha component an additional slider
is automatically displayed. Each slider controls one color component. The color sliders are visible
depending on the user selection in the Option Menu. Each of the color sliders is accompanied with a
text edit field to view the exact value of the current color component and to set its numerical value.
The component values are always in the range from 0 to 1. Furthermore, two arrow buttons can be
used to move each slider respectively.

On the left side of each slider (except the alpha slider) an additional check button is displayed allowing
the user to select one color component to control the appearance and functionality of the color picker.

Color Cells. The color cells are subdivided into three different groups: One cell named Current Color
displays the color depending on the current settings. Each color manipulation is shown by this cell
immediately. The cell named Old Color displays the original color the dialog has been invoked with.
The old color does not change until current setting are applied by activating the Apply button. The
other cells labeled Custom Colors provide a user defined palette for storing colors. The custom colors
stay resident between successive color dialog pop ups.

The Drag and Drop mechanism is applied to store and restore colors. The colors can be copied arbitrary
between all cells (except that a color could not be stored to the old color cell). To drag and drop a color

1. move your mouse cursor on top of a color cell (source),

2. press down on the left mouse button and keep it pressed,

3. move your mouse cursor on top of another cell (destination),

4. release the mouse button.

Color Dialog 473

Buttons. The four buttons named OK, Apply, Reset and Cancel are for quitting the dialog and applying
the changes to the underlying color (OK), applying the changes without quitting (Apply), resetting the
current color to the old color, i.e. discarding last changes (Reset) and quitting the dialog without
applying the changes (Cancel). The fifth button named Help is for displaying this documentation in
the amira help window.

Color Picker. The Color Picker provides visual selection of a color. Depending on the selected color
component (done by the toggle button on the left side of each slider) the two other components of
the color can be set with the picker. One component corresponds with the vertical extent of the color
picker and the other with the horizontal. The selected component can not be changed with the picker.
To select a color using the color picker

1. Move your mouse cursor on top of the color picker.

2. Press down on the left mouse button and move your mouse. While moving the mouse around
the current color is set to the color at the mouse position.

3. Release the mouse when you are done.

10.3 Colormap Editor

To modify existing colormaps push the edit button (pencil icon) which is visible when the col-
ormap is selected. The colormap editor pops up. As you can see there is a menu bar near the top border
of the window with the sub menus Edit, Mode and Brush, which help you to control the behavior of
the colormap editor and to change components of the chosen colormap.

Below the menu bar a so-called ”color chart” is displayed. The red, green and blue lines are the graphs
of the color channel components of the colormap, the underlying color model is RGB (at startup). The
axes are not shown directly, the x-axis ranges from the lowest to the highest colormap index and the
y-axis from 0.0 to 1.0 according to the RGB model. Thus, a point on a color line indicates the amount
of color for the corresponding color channel and color index. You can manipulate the course of a line
by setting a brush onto any of its points and moving it up or down. A brush is set by pressing a mouse
button, the left one for the red line, the middle one for the green line and the right one for the blue line.

Below the color chart a ”color bar” is displayed which is a larger version of the one used for display in
the colormap port. Its only function is to show you the actual appearance of the modified colormap in
a smoother way by linearly interpolating the colors between the indices.

The largest area of the editor window is occupied by the ”color buttons” which represent the color in
every position (index) of the chosen colormap, each position is called a ”color cell”. You can set the
focus which is the target index of modifications applicable by the color sliders (see below), and it is
also possible to modify the colormap by dragging a color cell. The index of the focus color cell is
shown below the color buttons.

In the lower area of the window there are some ”color sliders”, one for each color channel by which
you can modify color channel values with respect to the focus cell. This means that the values of

474 Chapter 10: Alphabetic Index of Editors

neighboring cells are affected as well as you can see in the color chart. The sliders are manipulated by
dragging the small triangles, alternatively values in fix-point format may be entered directly into the
text fields to the right of the sliders.

The last three buttons named OK, Apply, and Cancel are

Figure 10.4: Amira colormap editor.

for quitting the editor, applying your changes to the un-
derlying Colormap data object, and quitting the editor
without applying your changes.

Interactive editing of a colormap is facilitated by two
user interface elements, the focus and colormap knots.

Focus. The focus marks the active color cell which can
be edited using the color sliders. It is represented by a
black-and-white box drawn around the active color cell
and by a black vertical line in the color chart.

You set the focus by clicking with the left mouse button
on a colormap entry in the color button panel. A focus
cell also gets a knot marker (see below); clicking again
on a focus cell removes the knot and places the focus
on to the leftmost color cell, just setting the focus to a
different cell does not remove a knot.

Knots. Knots are fixed points in the colormap, i.e., they
retain their values while the colormap is being manipu-
lated by snapping (see ”Menu bar” - ”Edit” - ”Snap”) or
by dragging the focus. Knots are represented by a small
black box with a white surrounding in a color cell and a
white vertical line in the color chart.

You set a knot by setting the focus and remove a knot
(with the focus) by clicking another time on a color cell
with the focus. The knots on the first and last cells of the
colormap cannot be removed.

10.3.1 Description of the user interface elements

A. Menu Bar
The menu bar consists of the three sub menus ”Edit”, ”Mode” and ”Brush”.

a) Edit Menu
This sub menu offers two opportunities for editing the colormap. The first group deals with the undoing
and the opposite - redoing - changes you made in the colormap. The second group ”snaps” one or more
channels like tightening a rope between the left and right neighboring knots of the focus.

Colormap Editor 475

1. Undo. If you think that your last changes to the colormap have been a mistake this entry lets
you take back your last changes. You can easily go back to a point of editing when you were
content with the colormap and start editing again. The colormap editor memorizes up to 50 of
your last changes.

2. Redo. If you took back too much this entry undoes the last undo, i.e. redoes the undone changes.
This is the reverse function of ”Undo”. You may undo/redo your changes as often you wish but
if you modify the colormap by another function (not ”Undo”/”Redo”) you lose the opportunity
to redo the last undos. ”Redo” is only activated if your last action was invoking ”Undo”.

3. Snap All. By selecting this entry all colormap entries will be tightened like a rope (”snapped”)
between their left and right neighboring knots leaving the knots itself untouched. This means
that lines are drawn between all pairs of successive knots for each color channel. This function
manipulates all color channels simultaneously.

4. Snap. This operation behaves much like a local ”Snap All”, i.e., snapping occurs only between
the left and the right neighboring knots of the focus by tightening all color channels as if they
were ropes between the knots.

5. Snap Red or Hue. Depending on the chosen color model (see ”Mode”) the first color channel
”Red” or ”Hue” is snapped between the left and right neighboring knots of the focus leaving the
other color channels untouched. See ”Snap” for an explanation of snapping.

6. Snap Green or Saturation. Like in ”Snap Red” this entry manipulates the second color channel
between the left and the right knot leaving the other color channels untouched.

7. Snap Blue or Value. Like in ”Snap Red” this entry manipulates the third color channel between
the left and the right knot leaving the other color channels untouched.

8. Snap Alpha. This entry is only shown if ”Show Alpha” (see ”Mode”) has been activated. By
selecting it the alpha channel will be locally snapped as described in ”Snap” between the left
and the right neighbouring knots of the focus leaving the other color channels untouched.

b) Mode Menu
This menu allows you to select the color model used to modify the colormap. RGB Sliders chooses the
RGB model where colors are represented by a red, green, and blue component. HSV Sliders chooses
the HSV model where colors are represented by a hue, saturation, and value (intensity) component. In
addition, an Immediate Mode toggle is provided. If this toggle is active all changes are immediately
applied to the colormap and downstream modules are immediatly fired so that they can update their
display.

c) Brush Menu
This has only relevance for the color chart. Here you can set the brush type used for editing a color
channel curve. Four different brushes are supported. Their shapes are visually represented by corre-
sponding icons.

d) Extra Menu
This menu allows you to replace the whole colormap by a set of predefined map. Currently four
such predefined maps are available, a Gray ramp ranging from black to white, a Hue ramp ranging

476 Chapter 10: Alphabetic Index of Editors

from blue over green and yellow to red, a Hot iron map ranging from red over yellow to white, and
a Glow map ranging from black over red and yellow to white. This last map is frequently used in
epi-fluorescence microscopy. Two additional options are provided to subdivide the current colormap
into a discrete set of colors (Make steps) and to define an alpha curve with a predefined gamma value
(Alpha curve). If one of these options is chosen an additional dialog window pops up, allowing you
to performs the appropriate operations.

B. Color Chart
The color chart shows the graphs of the colormap’s colorchannel components. The red curve shows
the first color channel (red or hue), the green curve shows the second channel (green or saturation),
the blue curve shows the third channel (blue or value), and the black curve shows the foirth channel
(alpha). The knots and the focus are represented by white and black vertical lines, respectively. The
left edge of the color chart shows the values of the leftmost index of the colormap and the right edge
those of the rightmost index.

C. Color Bar
Like in the colormap port this color bar displays a continuous form of the chosen colormap by linearly
interpolating the colors between the colormap entries. If Show Alpha is enabled alpha values are
represented by a certain amount of transparency in the colors, i.e., you see the colors translucent over
a white and black chequer. For an alpha value of 0.0 you see no color information but only the white
and black chequer, for a value of 1.0 you do not see a chequer because the colormap entry is not
translucent.

D. Color Buttons
An entry of the color button panel is also called a color cell. Each color cell shows the color associated
to a color index without the alpha value. The indices are counted from left to right and from top to
botom. Thus the color cell in the upper left corner shows the color of the leftmost colormap entry and
the color cell in the lower right corner shows the color of the rightmost colormap entry. The index
of the focus cell is displayed below the color button panel. Just after the index the data value which
corresponds to the focus cell is shown in brackets. The data value depends on the current range of the
colormap.

E. Color Sliders
In the lower area of the Colormap Editor window there are four color sliders allowing you to modify
the values of the focus cell. Depending of the current color model the first three sliders are associated
to red, green, and blue or to hue, saturation, and value, respectively. The fourth slider always modifies
the alpha value. In front of each color slider there is a toggle button. If the toggle is activated the
corresponding color can be edited using the left mouse button in the color chart (see below).

F. Control Buttons
These three buttons let you choose whether the changes to the colormap should be kept or not. By
pressing the ”OK” button the changes made with the editor are written back to the colormap object
that you are working on. This action also causes the editor to exit. If you just want to write back the
changes without exiting, e.g., if you want to see how your changes take effect, just press the Apply
button. If Apply is done in the Immediate mode however, the previous state of the colormap cannot be

Colormap Editor 477

restored by Cancel.

If you think that your manipulations have gone totally wrong you can always decide to keep the old
colormap and throw away your changes. This is done by pressing the Cancel button which also closes
the editor window. Cancel restores the colormap to the last state when the Apply button was pressed,
or to the initial, if Apply was left untouched.

10.3.2 How to modify a colormap

This section describes how to modify a colormap in various ways. For the effects of invoking the
various menu items see Menu bar.

A. Using the color chart
A color channel can be edited by modifying the corresponding curve with a brush. Values are increased
by approaching the curve from the bottom side with a brush while holding down the left mouse button,
and vice versa. Only one curve can be edited at a time. The curve to be edited is determined by the
toggle button in front of the four color sliders. For example, if you want to modify the alpha curve you
first have to select the toggle button in front of the alpha slider.

Four different brushes can be chosen in the Brush menu, namely a small square, a bigger square,
a circle, and a diamond. The shape of the brush determines how a curve will be modified when
approaching it with the mouse. When the brush touches the curve it moves the color channel up or
down (depending from which side it comes) to the first pixel outside the brush’s area. Colors are
clamped to the channel’s minimum and maximum allowed values.

The new colors are displayed instantaneously in the color bar and in the color buttons. If you modify
the focus cell the color slider corresponding to the cuve being edited will also be updated.

B. Using the color buttons
This item offers you the most opportunities to modify the colormap. You can set the focus, set / unset
a knot or modify a certain region of the colormap by dragging the focus cell. Due to the fact that a
focus always exists a special operation for unsetting the focus is not necessary because you unset a
focus simply be setting a new one.

1. Setting the focus
You simply select a focus by clicking once in a non-focus cell. The new focus cell will be
surrounded by a black and white border while the border of the old focus cell disappers. The
other displays will be refreshed, i.e. the color index displayed below the color buttons will
be set to the focus cell’s index, the color chart will display a black vertical line in a position
corresponding to the new focus cell and the color sliders will show the color channels’ values in
the focus cell. As mentioned above you simply unset a focus by setting a new one.

2. Setting a knot
Because every focus cell must have a knot you set a knot simply by setting the focus, i.e. by
clicking once in a non-focus cell without a knot. The knot appears as a small black box with
a white surrounding in the middle of the new focus cell. The color chart displays it with the

478 Chapter 10: Alphabetic Index of Editors

focus as a black vertical line. If you change the focus the knot still remains in the color cell but
without the focus it is displayed in the color chart as a white vertical line.

3. Unsetting a knot
You unset a knot by clicking another time into a focus cell. This does two things: First the knot
is removed from the color buttons and the color chart. Second the focus is set to the first color
cell, i.e. to the upper left corner of the color button panel and to the left edge in the color chart.
The displays are refreshed, i.e. no small black box in the color cell and no vertical line at the
corresponding position in the color chart will be shown.

4. Dragging the focus cell
When you click the first time in a non-focus cell, you can hold the mouse button (be careful:
a click in a focus cell unsets a knot) and drag the focus cell over the color buttons. The cor-
responding color values will be temporarily copied to its new position and the color channels
between the next knots to the left and to the right from the actual position will be snapped i.e. the
color channels will be tightened like a rope between the focus and the left or right knot. When
you move in a new region between two knots the old region will be restored and the new region
will be affected by snapping. When you release the button the focus cell’s color values (the one
which you dragged) will be copied to its last position and the colormap remains in this state, i.e.,
with the copied color values in the focus cell and the snapped color values between the focus
and the left or right knot. While moving the mouse the color chart is updated appropriately. The
color sliders stay the same because the focus cell values remain the same (remember: you drag
the focus and copy its cell’s values).

C. Using the color sliders
The color sliders offer you three ways to modify the values associated to the focus cell, either by setting
the value explicitly in the text field, by dragging the small triangle or by clicking somewhere into the
slider area.

All modifications have effect on the surrounding colormap entries between the next knots to the left
and to the right of the focus cell. A modification of a value changes the surrounding colormap entries
relative to their distances to the focus. This is similar to raising / lowering a rubber band between
the left and right knot in the focus position. You can clearly see the effect by looking at the curves
displayed in the color chart. The values and displays are refreshed in the same way as described in the
previous sections.

10.4 Digital Image Filters

This editor provides digital image filters for 3D image data sets, such as smoothing, unsharp
masking, or morphological operations. Some filters operate in 3D while others are applied to two-
dimensional slices. In the latter case, the orientation of the 2D slices can be selected via an option
menu. Currently, the following filters are supported:

• Minimum Filter

Digital Image Filters 479

Figure 10.5: Editor for applying digital image filters.

• Maximum Filter

• Unsharp Masking

• Laplacian Zero-Crossing Filter

• Median Filter

• Gauss Filter

• Sobel Filter

• Histogram Filter

• Edge-Preserving Filter

• Lanczos Filter

• Sigmoid Filter

• Brightness/Contrast Filter

• Moments Filter

Ports

Filter
Specifies the filter and its domain. It allows you select whether the filter should be applied to the
XY, XZ, or YZ slices or to the entire three-dimensional image.

Action
Pressing button Apply starts the computation. The Undo button allows to undo the last filter opera-
tion.

480 Chapter 10: Alphabetic Index of Editors

10.4.1 Minimum Filter

The minimum filter replaces the value of a pixel by the smallest value of neighboring pixels covered
by a NxN mask. The size of the mask can be adjusted via the input field kernel size. A value of 3
denotes a 3x3 mask (respectively 3x3x3 in 3D). If applied to a binary label field the minimum filter
implements a so-called erosion operation. It reduces the size of a segmented region by removing pixels
from its boundary.

10.4.2 Maximum Filter

The maximum filter replaces the value of a pixel by the largest value of neighboring pixels covered
by a NxN mask. The size of the mask can be adjusted via the input field kernel size. A value of 3
denotes a 3x3 mask (respectively 3x3x3 in 3D). If applied to a binary label field the maximum filter
implements a so-called dilation operation. It enlarges the size of a segmented region by adding pixels
to its boundary.

10.4.3 Unsharp Masking

This filter sharpens an image using an unsharp mask. The unsharp mask is computed by a Gaussian
filter of size kernel size.

Then, the smoothed image is subtracted from the original image such that only high contrast remains.
The weighted difference of the original image (weight: c

2c−1
) and the blurred image (weight: 1−c

2c−1
)

is calculated afterwards using the sharpness parameter c. It determines the relation between original
and blurred image effectively controlling the amount of sharpness. c can be adjusted via a text input
field and should be in the range of 0.6 to 0.8. A value of 1 leaves the image unchanged.

10.4.4 Laplacian Zero-Crossing Filter

The Laplacian filter is a rotation invariant edge detection filter. The algorithm finds zero crossings of
the second derivation, i.e. changes of the sign of the first derivation of the ”image function” which
may indicate an edge.

10.4.5 Median Filter

The median filter is a simple edge-preserving smoothing filter. It may be applied prior to segmentation
in order to reduce the amount of noise in an image. The filter works by sorting pixels covered by a
NxN mask according to their grey value. The center pixel is then replaced by the median of these
pixels, i.e., the middle entry of the sorted list. The size of the pixel mask may be adjusted via the text
field labeled kernel size. A value of 3 denotes a 3x3 or mask (respectively 3x3x3 in 3D). An odd value
is required.

Digital Image Filters 481

10.4.6 Gauss Filter

The Gauss filter smooths or blurs an image by performing a convolution operation with a Gaussian
filter kernel. The text fields labeled kernel size allow to change the size of the convolution kernel in
each dimension. A value of 3 denotes a 3x3 kernel (respectively 3x3x3 in 3D). Odd values are required.
The text fields labeled sigma allow to adjust the width of the Gauss function relative to the kernel size.

10.4.7 Sobel Filter

The Sobel-Filter is a rotation variant edge detection filter. It convolutes the image with 4 different filter
kernels representing horizontal, vertical and two diagonal orientations. Each kernel is constituted of a
combination of gaussian smoothing and the differentiation in the proper orientation.

10.4.8 Histogram Filter

This filter performs a so-called contrast limited adaptive histogram equalization (CLAHE) on the data
set. The CLAHE algorithm partitions the images into contextual regions and applies the histogram
equalization to each one. This evens out the distribution of used grey values and thus makes hidden
features of the image more visible. Parameter Clip Limit determines the contrast limit for the CLAHE
algorithm.

10.4.9 Edge-Preserving Smoothing

This is a smoothing filter that models the physical process of diffusion. Similarly to the Gaussian filter,
it smooths out the difference between grey levels of neighbouring voxels. This can be interpreted as
a diffusion process, in which energy between voxels of high and low energy (grey value) is leveled.
In contrary to the Gaussian filter, it does not smear out the edges because the diffusion is reduced or
stopped in the vicinity of edges. Thus, edges are preserved.

Note that in the 3D modus the computation can take rather long time if the data is large. A faster
preview is always possible by switching to the 2D mode.

The stop time determines how long the diffusion runs. The longer it runs, the smoother the image
becomes. The time step determines how accurately this process is sampled.

The contrast parameter determines how much the diffusion process depends on the image gradient,
i.e., how much the smoothing is stopped near edges. A value of 0 makes the diffusion independent
of the image gradient and smooths out the edges, a large value prevents smoothing in all edge-like
regions.

In order to make the diffusion process more stable, the image is prefiltered by a Gaussian filter with
parameter sigma. All features of size sigma are removed. This allows to remove noise from the image.
But a too large value may also remove relevant features.

482 Chapter 10: Alphabetic Index of Editors

10.4.10 Lanczos Filter

The Lanczos filter can be used to sharpen images. It performs a convolution with a Lanczos kernel:

f(x) =
sin(πx) sin(2πx)

2π2x2
, |x| < 2

The kernel size in each dimension can be adjusted using the parameter inputs kernel size. A value of 3
denotes a 3x3x3 kernel. Odd values are required.

Parameter Sigma determines the effective size of the Lanczos function. For large values of Sigma the
effect of the filter will be a smoothing rather than a sharpening.

10.4.11 Sigmoid Filter

This filter operates on single voxels (kernel size 1) and is used to raise a specific intensity range. This
us useful as preprocessing step in image segmentation. The intensity range is described by its center β
and it width α. The target image range is given by the interval [min, max].

f(z) = (max − min) · (1 + exp(−z − β

α
))−1 + min

10.4.12 Brightness and Contrast Filter

Modifies the the image brightness and contrast.

10.4.13 Moments Filter

This filter calculates the n-th centralized moment of the data in a gliding window. The centralized
moments of order n are defined by:

f(x) =
1

N − 1

N
∑

i=0

(xi − x̄)n.

The second moment (n = 2) is therefore the local variance in the data. For some data sets this can be
used to mask out noisy regions or to detect edges.

Because of the n-th power involved the computation you may want to use CastField to do a conversion
of your data set to floats or doubles first.

Digital Image Filters 483

Figure 10.6: Grid editor for improving the quality of tetrahedral grids.

10.5 Grid Editor

The Grid Editor allows you to analyze the quality of a tetrahedral grid according to different
quality measures and to semi-automatically improve the grid quality.

To do this push the edit button of a selected tetrahedral grid (see the icon above). Then a user interface
composed of different button controls (Figure 10.6) will appear in amira’s Working Area. In case
you select some other Selector or Modifier other ports might be shown. The editor works in conjunc-
tion with the GridVolume module. If such a module is not already active, an instance of it will be
automatically created when the editor is invoked.

Tetrahedra can be distorted in different ways (see Figure 10.7):

• Slivers contain four nearly coplanar vertices forming a quadrangle.

• Caps consist of a triangle and a fourth vertex ’just above’ it.

• Needles consist of a triangle and a fourth vertex ’far away’.

• Wedges are characterized by one sharp edge.

Using the tools of the Select menu

At the menu of port Selector you can choose one of several selection criteria. At the next port you can
enter an expression which will be evaluated for each tetrahedron or edge. When you press the Select
button, the number of selected tetrahedra or edges is shown in the Console Window, and the selected
tetrahedra are shown by the GridVolume module.

• Index Selector
This tool selects tetrahedra according to their index (i). This is mainly for debugging puprposes.

• Tetra Quality Selector

484 Chapter 10: Alphabetic Index of Editors

Figure 10.7: Four examples of distorted tetrahedra.

This tool selects tetrahedra according to different quality measures.

’d’ is the determinant of the matrix composed of the vectors pointing from vertex 0 to the vertices
1, 2, and 3. The tetrahedron volume is 1/6 of the absolute value of d. d approaches zero if the
four vertices are nearly coplanar. d ¡ 0 detects tetrahedra with an inverted orientation, which
should normally not occur.

’R’ is the ratio of the radii of an inscribed and a circumsribed sphere. R reaches its optimal
(maximal) value 1/3 for an equilateral tetrahedron. All types of distorted tetrahedra are detected
by a small value of R. Therefore R is taken as the quality measure for all modifiers of the Grid
Editor (see below). R shouldn’t be smaller than approximately 1/10 of the optimal value.

’r1’ is the ratio of the smallest to the largest edge length. r1 reaches its optimal (maximal) value
1 for an equilateral tetrahedron. Needles and wedges are detected by a small value of r1.

’r2’ is the tetrahedron volume divided by the third power of the largest edge length, normalized
to an optimal (maximal) value 1 for an equilateral tetrahedron. All types of distorted tetrahedra
are detected by a small value of r2.

• Dihed/Solid Angle Selector
This tool selects tetrahedra according to their minimal and maximal dihedral angles (d,D) or
solid angles (s,S). For each edge of a tetrahedron the dihedral angle is defined as the angle
between its adjacent faces. The solid angles are related to the tetrahedron vertices; they measure
the part of the unit sphere which is occupied by the tetrahedron. The solid angle at a tetrahedron
vertex can be maximally 2π, or 360 deg. For an equilateral tetrahedron all dihedral angles are
approx. 70 deg, all solid angles are approx. 30 deg.

You can combine different selections, e.g., the selection (d<10) && (D>140) detects sliv-
ers, and the selection S>180 detects caps.

• Edge Quality
This tool primarily selects edges, and then shows all tetrahedra adjacent to that edges. Edges are
selected according to their length (e) or to the ’edge quality’ q, which is computed as follows:
for each tetrahedron adjacent to the edge the length l of the opposite edge and the dihedral angle
d at the opposite edge are determined. The contribution of the tetrahedron is l cot(d). q is the
sum of those contributions over all adjacent tetrahedra. qi refers to the inner edges, qb to the
boundary edges of the tetrahedral grid.

Grid Editor 485

For an ’ideal’ grid, all qi and qb should be positive. Such a grid would be well suited for a
numerical simulation, because the Finite Element stiffness matrix (probably for the Laplacian
operator) is an M-matrix if q is positive for all edges.

Using the tools of the Modify menu

At the menu of port Modifier you can choose one of several modifiers. When you press the Modify
button, the grid modification will start. Some informations will be given at the Console Window.

There is a certain inconsistency between the tetra quality selector and the modifiers of the Grid Editor,
because the tetrahedron quality criterion for all modifiers is the inverse of the radius ratio R as defined
above. In applying the modifiers, keep in mind that the optimal (minimal) value of 1/R is 3 and
distorted tetrahedra are detected by large values of 1/R.

The modifiers Laplace Smoothing, Optimization Smoothing and Flip Edges and Faces are mainly
for debugging purposes, because the Combined Smoothing modifier is a combination of them which
should give the best results in most cases. The modifiers Repair Bad Tetras and Bisect Inner Edges are
still in an experimental state. We recommend to apply the Remove Inner Vertices and the Combined
Smoothing modifiers.

• Laplace Smoothing
This tool improves mesh quality by moving inner vertices. For each inner vertex the center of
mass of the adjacent vertices is calculated. The vertex is moved to that location if this improves
the quality 1/R of the adjacent tetrahedra. Otherwise the midpoint between the old location
and the center of mass is examined. Parameter nLoops defines the number of smoothing loops
(maximally 10). Laplace smoothing will in general improve the mesh quality 1/R, but in most
cases an Optimization Smoothing will be superior.

• Optimization Smoothing
This tool improves mesh quality by moving inner vertices. For each inner vertex a new location
is determined that optimizes the quality 1/R of the adjacent tetrahedra. Parameter nLoops defines
the number of smoothing loops (maximally 10), parameter threshold defines a threshold for
tetrahedron quality which is applied starting with the second loop. If all adjacent tetrahedra
have a quality better than threshold, the vertex position is not changed. The default value 12
(quadruple of the optimal value) leaves tetrahedra unchanged which should be acceptable in
most cases. Selecting a smaller value will induce opimization of more vertex locations.

• Flip Edges and Faces
This tool improves mesh quality by flipping edges and faces. For each inner (triangular) face
the adjacent tetrahedra are determined. It is examined whether the face is a boundary face and
whether the adjacent tetrahedra form a convex polyhedron. Depending on this classification
a suitable type of edge or face flipping is selected. The flip operation is only performed if it
improves the quality 1/R of the tetrahedra involved. Parameter threshold defines a threshold for
tetrahedron quality. If all adjacent tetrahedra have a quality better than threshold, a face is not
examined for flipping. If parameter save boundary triangles is set to 1, the edges and faces of
the exterior grid boundary and the interior boundaries between different materials will not be

486 Chapter 10: Alphabetic Index of Editors

flipped.

• Repair Bad Tetras
This tool tries to repair slivers and caps. For a sliver, two opposite edges with obtuse dihedral
angles are bisected. If the distance between the new vertices is small compared to the sliver’s
mean edge length, the edge connecting them is collapsed. For a cap, the triangle opposite to
the vertex with largest solid angle is determined. If that triangle is part of the outer boundary,
the tetrahedron is removed. Otherwise, it is examined if the cap can be removed by a face
flip. Parameter threshold defines a threshold for tetrahedron quality 1/R. Only tetrahedra with a
quality worse than the given threshold will be examined for repair.

• Remove Inner Vertices
This tool improves mesh quality by removing inner vertices. In a tetrahedral grid, the mean
number of tetrahedra incident on an inner vertex is 24. If a vertex is incident on less than 10
tetrahedra, it is very likely that the mesh quality can be improved by removing that vertex and
reconnecting the hole.

All inner vertices incident on a number of tetrahedra less or equal the value of parameter max
num neighbours are inspected for removal. They will be removed, if this improves tetrahedral
quality 1/R. If a value ¿ 0 is set for parameter max edge length, this defines an upper bound for
the edge length. An inner vertex will not be removed, if this would imply creation of a longer
edge.

• Bisect Inner Edges
This tool improves mesh quality by bisection of inner edges. An inner edge is bisected if for its
vertices different boundary conditions are defined. After bisection, apply Optimization smooth-
ing to improve the position of the new vertices.

• Combined Smoothing
This tool combines edge and face flipping and optimization smoothing. Parameter nLoops de-
fines the number of ’large loops’ (maximally 10), the other parameters define thresholds for
tetrahedron quality 1/R which are applied in the first loop and the other loops, respectively. Set-
ting the first threshold to 3 means that all edges and faces will be inspected for flipping and
all vertices for optimization in the first loop. If parameter save boundary triangles is set to 1,
the edges and faces of the exterior grid boundary and the interior boundaries between different
materials will not be flipped.

• Flip/Bisect Long Edges
This tool tries to remove inner edges depending on their length or edge quality q as defined
above. Parameter max edge length defines the maximal allowed edge length and parameter min
edge quality the minimal allowed edge quality, which must be less or equal to zero. Setting a
minimal quality of zero means that edge quality is ignored in edge selection. Parameter threshold
sets an upper limit for tetrahedron quality 1/R. The selected edges are removed, preferably by
an edge flip, or by an edge bisection, if all newly generated tetrahedra will have a quality below
that threshold.

This tool should be applied repeatedly, until the number of flips as reported in the Console
Window goes down to 0, and applying an Optimization smoothing in between may improve the

Grid Editor 487

results.

10.6 ImageCrop Editor

This editor works on 3D fields with an arbitrary number of compo-

Figure 10.8: The ImageCrop editor al-
lows you a crop a 3D image and to
modify its bounding box or voxel size.

nents defined on a regular grid, e.g., 3D images or 3D vector fields
with uniform, stacked, rectilinear, or curvilinear coordinates. It al-
lows you crop such a field, i.e., to discard all voxels lying outside of
a specified subvolume in index space. Alternatively, you may adjust
the physical size of the field by changing its bounding box. Note
that this does not mean resampling, i.e., the number of voxels will
not be changed.

Each node of a regular grid can be addressed by an index triple (i,j,k).
Each index ranges from zero to the number of slices minus one in
that direction. This editor also allows you to add new slices on every
side in every dimension. Last but not least you can flip and rotate
the slices with respect to the global x-, y-, or z-direction.

When activating the crop editor the dialog shown in Figure 10.8 pops
up. If the editor is activated for a field with uniform, stacked, or rec-
tilinear coordinates in addition a tab box dragger is displayed in the
viewer window. The dragger allows you to specify the subvolume
to be cropped interactively in 3D. When resizing the dragger the in-
dex bounds of the current subvolume are permanently updated in the
corresponding fields in the dialog window.

The Auto crop button automatically adjusts the subvolume to be
cropped by taking into account the value of the threshold field.

Slices at the boundaries of the original data volume are cropped if they contain only data values smaller
than the specified threshold. In this way it is easy to isolate a bright object in a 3D image with a large
dark background.

In order to add slices you have to set the indices in the text fields beyond the limits of the total data
volume. When slices are added, on default the values of the last slice in that direction are replicated.
If you switch off the replicate toggle the text field pixel value becomes active. You can then specify a
data value which is used to initialize the new slices.

In order to manipulate the bounding box of the data object new values have to be entered in the
corresponding text fields. For data objects with uniform coordinates two modes are available, bounding
box and voxel size. See section below for details.

All changes take effect if you press the OK or Apply buttons. They are discarded by activating the

488 Chapter 10: Alphabetic Index of Editors

Cancel button. As usual the editor is closed by pressing OK or Cancel, Apply will leave it open,
Cancel restores the previous state.

10.6.1 Cropping an image by dragging and moving the box

Some experience with manipulating draggers is assumed. Using the draggers you can reduce or en-
large the data volume you want to preserve, enlarging is, of course, possible only up to the size of the
bounding box. The size of the dragging box can be manipulated intuitively in every direction of the
three axes, i.e. along the x-, the y- or the z-axis. The values in the text fields of the editor change ac-
cording to your manipulations. A certain minimum thickness is preserved while reducing a dimension
of the box, for further reductions the text fields have to be used.

Using the draggers you control the size of the subset of the data volume which has to be preserved, but
the location of it in the total data volume is set by moving the box around to the desired location.

10.6.2 Cropping an image by setting values explicitly in the text fields

The text fields in the cropping area of the editor show the indices of the slices that have to be preserved
for every dimension. You can easily define a subset by setting a range of indices explicitly in the text
fields of an axis - this defines the size as well as the location of the data subset. Notice that a slice
index refers to an axis that is perpendicular to the slice.

10.6.3 Adding new slices

Adding new slices is only possible by setting an index that does not fall into the range given by the
minimum and maximum presently shown in the Image Crop panel, thus a negative index must be
specified if the minimum is zero. Use the Min or Max text field for the required axis text field to enter
a new slice index.

A warning dialog pops up whether you really want to add new slices, and the slices are added on
your confirmation to the volume at the specific end and according to the axis selected. The new slices
contain the data of the last slice in this direction, e.g., if you add two slices before the slice with index
0 along the x-axis, they contain exactly the same data as the slice with index 0.

10.6.4 Changing the size of the bounding box

You change the size of the bounding box by setting new values explicitly in the bounding box fields.
This does not affect the stored data, but its representation as displayed by a viewing module, e.g.,
OrthoSlice, by way of a different scaling for the specified dimensions.

The boundig box of a data set with uniform coordinates specifies the world coordinates of the center of
the lower left front voxel (min values) and the center of the upper right back voxel (max values). For

ImageCrop Editor 489

Figure 10.9: User interface of the landmark editor.

example, if your input is 256 pixels wide and the size of each voxel is 1mm, then you may set xMin to
0 and xMax to 255.

If a data set with uniform coordiantes is being edited, instead of the bounding box also the voxel size
can be modified. You can switch between the two modes and see how bounding box and voxel size
influence each other.

10.6.5 Flipping slices in one dimension

Invoke one of the three flip buttons to revert the order of slices in the corresponding dimension, e.g.,
click on FlipX to flip the slices in the x-dimension.

10.6.6 Exchanging two dimensions

Invoke one of the three exchange buttons to interchange the corresponding dimensions, e.g., click on
X-Y to interchange the x- and y-dimension. CAUTION: The exchange operations are not rotations;
they change the spatial orientation of the dataset.

10.7 LandmarkEditor

This component allows you to edit landmark sets. It operates by directly interacting with the 3D
geometry in the viewer window, cf. Section 3.1.7. In order to do so the viewer has to be switched to
interaction mode, e.g., by hitting ESC as described in its documentation.

The editor has different Edit modes, which are described in the following:

• Add. In this mode new landmarks are added by clicking onto a 3D geometry (e.g., an Isosurface
or an OrthoSlice). Multiple clicks are required, if the landmark set contains more than one point
set.

• Move. Markers can be moved in this mode by first clicking on the marker (selecting it) and then
clicking to a new position.

490 Chapter 10: Alphabetic Index of Editors

• Transform. In this mode, markers can be moved using a dragger. Click on one of the markers,
then use the dragger to manipulate it.

• Flip. Flip geometry of marker. Only makes sense, if the marker type is not Point.

• Remove. The marker you click on will be removed. If more than one point set is present the
marker will be removed from all sets.

• Query. After clicking on a marker its type and its xyz-position are shown. The marker type
can be changed via an option menu. The default marker type is a Point, represented by a little
sphere. In addition, a number of predefined medical marker types can be selected. In contrast to
point-type markers, medical markers have fixed predefined sizes (world coordinates assumed to
be given in centimeters).

See also documentation for Landmark Set.

10.8 LineSet Editor

This component allows you to edit linesets. It operates by directly interacting with the 3D geometry
in the viewer window, cf. Section 3.1.7. In order to do so the viewer has to be switched to interaction
mode, e.g., by hitting ESC as described in its documentation. Points and lines can be selected by
clicking on them in the viewer. Selected points or lines will be highlighted in red. Multiple actions can
be performed by pushing one of the buttons in the Action port. They are described below.

The Selected port informs you how many points and lines are selected at the moment.

In the Display port you may choose in which way the lineset is displayed. By clicking on the toggles
optionally all points, endpoints and lines will be displayed in the viewer. Only displayed geometry is
selectable. Default is endpoints and lines.

The Select port provides the following selection modes:

• All. Clicking this button all lines will be selected.

• By Length. Clicking this button an additional dialog pops up where you can enter the minimal
and maximal numbers of points in lines that are to be selected. Pushing the OK buttons actually
selects the requested lines.

• Clear. Pushing this button the current selection will be cleared.

The Action port provides the following actions:

• Connect. Pushing this button two lines can be connected. In order to do this exactly two points
have to be selected, otherwise this button will not be active.

• Delete. Selected points and lines will be deleted from the lineset.

• Stretch. Pushing this button all selected lines will be smoothed.

• Split Pushing this button all lines will be splitted at selected points.

LineSet Editor 491

10.9 Parameter Editor

The Parameter Editor lets you view and modify the parameter list associated with a data object. A
parameter is a name/value pair which contains some extra information related to the data. Some
parameters have a special meaning within amira, see Section 3.2.7 of the user’s guide.

To change the value or name of an existing parameter, click on the respective line and change the
name/value in the text fields. To add a new parameter right click on the root of the parameter tree,
labeled Parameters and select New Parameter. Then select the new parameter to change its name and
value.

Note, that there are many standard file formats which do not support parameter information to be
written. If in doubt, use amira’s native AmiraMesh format. This format does write parameters.

10.10 Plot Tool

The Plot Tool is a special-purpose viewer designed to display 1-dimensional data, e.g., function curves.
Instead of being a separate amira module the Plot Tool will be invoked implicitely by certain modules
such as the data probing modules or the LabelVoxel module. Each of these modules generates 1-
dimensional data such as a function plot along a line or a histogram. While the data-generating modules
control the initial settings of the plot window the user can freely adjust these settings afterwards.

Figure 10.10: User interface of amira’s parameter editor.

492 Chapter 10: Alphabetic Index of Editors

10.10.1 Plot basics

The layout of the plot is determined by objects and groups of objects. These entities are processed by
a plot engine. In particular, there are objects for

• Curves

• Cartesian Axes

• Polar Axes

• Plot Areas

• Legends

• Annotations

• Markerlines

• Lattices

• Colormaps

Figure 10.11: Amira’s plot window.

The plot engine processes the ob-
jects top to bottom (see Figure be-
low). The sequence of objects de-
termine their behavior. Objects of
type PlotArea define the area within
the plot window where objects are
placed. This area is given in normal-
ized coordinates with the origin at
the lower left corner. Besides this a
PlotArea object also acts as a group-
ing object. An axis is placed in such an area and establishes together with the preceding PlotArea a
window-viewport (world coordinates to normalized coordinates) transformation. Notice that the ob-
jects have to be kept in the following sequence: 1. PlotArea, 2. Axis, 3. Curves and Markerlines.
Legends display all succeeding curves in the sequence and can be placed whereever needed. It is
possible to have more than one plot area or axis in a plot setup.

Every object is identified by a unique name. You need to know these names if you want to change
certain object attributes via the command interface of the Plot Tool.

10.10.2 Editing parameters

In order to change the parameters of a plot object select the Edit Objects... item from the Edit pulldown
menu of the Plot Tool. A window appears with the list of names of all objects currently in use. By
selecting one of these objects the parameters of that object are displayed and can be changed. The
is active toggle near the lower left corner of the window can be used to switch the processing of the
selected object on or off. If the processing of an object is switched off which has group functionality
(Plot Areas, Plot Groups), all objects within that group are also not processed.

Plot Tool 493

Figure 10.12: Dialog for editing plot objects. On the right hand side the controls for editing axis parameters are shown.

In the following sections all not self-describing parameters are documented.

10.10.2.1 Editing axis parameters

To choose the x- or y-component of an axis just click on the appropriate tab. If you want to change the
range you have to set off the Auto toggle. Now the range fields are sensitive. The Nice Num toggle sets
the range to the next ’good looking’ boundaries. A tick delta can be typed in after the number of ticks
are set to -1.

It is possible to zoom interactively into your data using the mouse. For this purpose drag a rectangle
within the plot area by pressing the shift key and the left mouse button while moving the mouse. To
go back to the automatic ranges click into the plot area with the left mouse button while the alt-key is
pressed at the same time.

Every axis object has a hidden grid child object which is not active by default. To show the grid just
open the grid child and select it. Then set the is active toggle to on.

10.10.2.2 Editing annotation parameters

To position an annotion on your plot you can switch between world coordinates or normalized coordi-
nates. The usage of world coordinates is useful if you like to annotate a certain feature e.g., an extrema
of a curve. In this case you have to insert the annotion after that curve object. You can also position an
annotation in the plot window interactivly by pressing the left mouse button on the annotation, move
the mouse and release it at the new position.

494 Chapter 10: Alphabetic Index of Editors

10.10.2.3 Editing legend parameters

There are three types of legends possible: A

Figure 10.14: Editable legend parameters.

Legend Block displays an entry for each curve
together with a short line depicting the appear-
ance of the curves. A Name Block is just a list
of the curve names. The position and orienta-
tion for both types can be manipulated easily
in the editor window. The position denotes the
coordinates of the first legend item. Positions
of legends are always normalized coordinates.
The delta parameter applies only to the verti-
cal (y) coordinate. You can also position a legend in the plot window interactivly by pressing the left
mouse button on one of the names in the legend, move the mouse and release it at the desired position.
The third legend type (Name List) displays a list of curve names, too. But in contrast to the latter type
you can move around every name separately in the same way like annotations (see above).

10.10.2.4 Editing markerline parameters

The position of a markerline has to be given in

Figure 10.15: Editable markerline parameters.

world coordinates. Also be sure that the mark-
erline is inserted after the appropriate axis.
You can shift a markerline horizontally resp.
vertically in the plot window by pressing the
left mouse button on the markerline, move
the mouse and release it at the new position.
Markerlines can be used to probe those curves
which belong to the same group (PlotArea)
as the markerline. You can display the value
where the markerline intersects the selected curve the first time. This intersection can also be indicated
with a marker symbol.

10.10.2.5 Editing lattice parameters

A lattice is a two-dimensional field which is rendered as an image by default. If both dimensions are
less or equal than 32 a lattice can also be rendered as colored dots in a grid (Gridded) or as dots of
different sizes (Spot) to represent the values. For lattices rendered as images a gamma value can be set
to enhance the image. Lattices have a colormap (Default: black to white) which can be set through the
appropriate amira modules. Global colormaps are not supported within the amira context.

10.10.2.6 Editing colormap parameters
Colormaps have only a few editable parameters: The minimum and maximum values can be given or
taken from the axis if there is one. Furthermore the colormap can be reversed. The colors itself can
only be changed with the amira colormap editor.

Plot Tool 495

Figure 10.17: Editable colormap parameters.

10.10.2.7 Editing (analytical) curve parameters

Figure 10.18: Editable (analytical) curve parameters.

Besides the more or less self-describing parameters of both curve and analytical curve (AnCurve)
parameters there are a few things to mention regarding AnCurves only. The Function text widget
contains the formula which is computed on every plot update. The default formula is x which produces
a transversal line where x runs from -1 to 1. It is possible to use the name of another curve as a variable
in the function. In this case the x-values of the first curve in the formula are taken to evaluate the y-
values of all variables in use. These y-values are then used for the computation. You can restrict the
range of the computation by activating the Explicit Range toggle and entering the appropriate range
values. There are a lot of built-in functions such as sin, cos, tan, sqrt, exp, ... which can be used in
formulas.

10.10.3 Working with plot objects

Furthermore you can copy or delete plot objects. e.g., it may be useful for comparison purposes to
copy a curve before the data of the original curve will be changed. To do so you have to select the
object in the list and then choose the Edit->Copy pulldown menu. After that choose Paste or Append
in the menu and the object will be inserted at the current position (= position of the selected object)
resp. the object will be placed behind the selected object.

496 Chapter 10: Alphabetic Index of Editors

With the New pulldown menu you can create new objects which will be inserted at the appropriate
positions in the list of objects.

10.10.4 Printing

The File pulldown menu of the main plot window provides a Snapshot item where you can send the
plot directly to the default printer or save it as an image file. It is also possible to generate a vectorbased
PostScript file of the plot by using the print command (see below).

10.10.5 Saving data

The Save Data... item under the File menu lets you save the data of all curves in a file. The file dialog
presents a list of formats suitable for saving the data.

10.10.5.1 Data formats

The Amira-Plot-Format is a propriatary format which should be used if you want to plot the data later
on within the amira plot facilities. Use the Gnuplot-Format if you plan to use Gnuplot to plot the data
outside of amira. If you need to import the plot data into a spreadsheet program like Microsofts’s
Excel use the CSV-Format (CSV = Comma Separated Values). The Amira-Spreadsheet-Format can be
loaded and processed by Amira.

10.10.6 Saving the plot state

If you changed your plot setup a lot you can save this setup in a similar fashion like the Save Network
functionality. I.e. first save the amira network and then save the plot state into a second file. To
resume an amira session invoke amira and load the two script files (1. amira network, 2. Plot state).
Note, that the size and the position of a plot window is saved automatically if it is opened by an amira
module and the Save Network menu item is invoked.

Commands
In the amira environment Plot Tool commands have the following structure

$thePlot command [parameters]

or if the command applies to a plot object:

$thePlot objectname command [parameters]

The following general commands are available:

getSize
Returns the size of the plot window.

Plot Tool 497

setSize <width> <height>

Sets the size of the plot window.

getPosition

Returns the size of the plot window.

setPosition <x> <y>

Sets the position of the plot window relative to the upper left corner of the screen.

setBackgroundColor <r> <g>

This command sets the color of the background to a specific value. The color may be specified
either as a triple of integer RGB values in the range 0...255, as a triple of rational RGB values in the
range 0.0...1.0, or simply as plain text, e.g., white, where the list of allowed color names is defined
in /usr/lib/X11/rgb.txt.

hide

Hides the plot window.

show

Shows the plot window if it is hidden.

getObjects
Displays a list of all plot objects currently in use.

update
Processes the plot object and updates the display.

snapshot <filename>
Takes a snapshot and saves it under the given name. The suffix of the filename determines the raster
format used. Available formats are: TIFF (.tif,.tiff), SGI-RGB (.rgb,.sgi,.bw), JPEG
(.jpg,.jpeg), PNM (.pgm,.ppm), BMP (.bmp), PNG (.png), and Encapsulated PostScript
(.eps)

print [options] <filename>
Prints the plot window into a PostScript file (vector based) with the following options:
-a4: generates a4 landscape output (Default).
-a5: generates a5 portrait output.
-auto: switches autoscaling on (Default).
-bw: generates black and white output.
-color: generates color output (Default).
-eps: generates encapsulated PostScript.
-fillbg: fills the background according to the plot window.
-frame: draws a frame around the plot.
-landscape: prints in landscape format.
-noauto: switches autoscaling off.

498 Chapter 10: Alphabetic Index of Editors

-portrait: prints in portrait format.
-windowsize: generates output of window size.

saveData <filename>

Saves the data of all data based plot objects in a propriatary format.

saveState <filename>

Saves the current plot state into a script file useful to restore the plot setup in a future amira session.

load <filename>
Loads data from the filename and stores it in a curve plot object.

The following commands apply to plot objects:

getMinMax
Returns the minimum and maximum values of objects of type: Curve, Cartesian Axis, Polaraxis.

setMinMax <minX> <maxX> <minY> <maxY>

Sets the range of Cartesian Axis, Polaraxis.

getArea
Returns the plotting area of PlotArea objects.

setArea <lowerleftX> <lowerleftY> <upperrightX> <upperrightY>

Sets the plotting area of a PlotArea object.

getXValues
Returns the x-values of a Curve.

getYValues

Returns the y-values of a Curve.

set[X|Y|Phi|R]TickValues <1. tick> <2. tick> ... <n. tick>
Sets the position of the ticks along an axis. It is available for objects of type: Cartesian Axis,
Polaraxis.

set[X|Y|Phi|R]TickLabels <1. label> <2. label> ... <n.
label>

Sets the labels of the ticks along an axis. It is available for objects of type: Cartesian Axis,
Polaraxis. If there are fewer labels than ticks the remaining ticks will be unlabelled.

10.11 Segmentation Editor

Segmentation Editor 499

The Segmentation Editor is a tool for interactively segmenting 3D image data. Image segmentation is
the process of dividing an image into different subregions (also called segments). In the bio-medical
context these segments can be for example different organs or tissue types. In Amira segmentation is
done by first selecting voxels and then assigning these voxels to a particular material. The labels are
stored in a Label Field. The Segmentation Editor lets you edit such a label field. From the final label
field polygonal surfaces can be reconstructed using the SurfaceGen module. The documentaton of the
Segmentation Editor is separated into the following parts:

• Overview of the segmentation editor

• Manipulating the material list

• Working in 4 viewer mode

• Edit buttons

• Segmentation tools

• Selection filters

• Label filters

• Key bindings

10.11.1 Overview of the segmentation editor

In order to activate the segmentation editor push the pencil-shaped edit button of a selected Label Field.
Then an instance of the editor will be created and a new window as shown in Figure 10.19 pops up.
The major parts of this new window are:

• Material List: In the upper left corner of the editor window a list of materials is presented.
Here you can add, remove, and rename materials, and you can select the current material.

• Tool box: Below the material list several tools for interactive manipulation of the segmentation
can be selected. Depending on the currently selected tool additional widgets show up in the
options frame.

• Info Area: Below the tool box some basic information like the current cursor position or the
material under the cursor is displayed.

• Menu Bar: From the menu bar additional tools and filters can be accessed. Menu entries with
dots (...) behind the name open an additional dialog window.

• Image Viewer(s): The biggest part of the window is covered by one or four image viewers,
displaying the labels and the current selection in differently oriented slices.

Basic principle of interactive segmentation

The basic idea of interaction in the segmentation editor is a to first select some voxels and then to
assign them to the active material. The simplest way of selecting pixels is to simply draw with the
mouse when the Brush or the Lasso tool is active (see below for details). Selected pixels are displayed
in red.

500 Chapter 10: Alphabetic Index of Editors

Figure 10.19: The Image Segmentation Editor.

To add selected pixels to the active material, click the ”+” button. The active material is the material,
which is currently selected in the material list. New materials can be added using the right-mouse
popup menu in the material list. Every pixel can only be assigned to one material.

Note that even with the advanced tools provided in Amira, image segmentation can be a time-
consuming process! Due to limited main-memory and for performance reasons, there is only a limited
undo space for 2D interaction and most 3D operations cannot be undone. Therefore it is highly rec-
ommended to frequently save the label field during the process of segmentation.

To get started it might be a good idea, to choose the image segmentation demo from the Users Guide’s
demo section and start by modifying an existing label field.

The menu bar

Segmentation Editor 501

The menu bar of the segmentation editor window has four submenus. The buttons of the Selection and
Labels are described in separate sections below.

• Edit: This menu provides an undo entry that undoes the last operation. Successive invocation
of undo is possible, allowing you to undo several operations. Note that for memory and per-
formance reasons, 3D operations can not be undone. Therefore it is highly recommended to
frequently save the label field.
The Data window... entry brings up an additional dialog, in which you can control the data
window and the opacity of the selection.

• View: This menu lets you change the Layout of the image viewer area. You can choose between
either one single viewer, or four viewers (three slice viewers, one 3D viewer). Details on these
two arrangements are described below.
In the single viewer layout, you can choose the Orientation of the viewer.
The Info line toggle lets you switch off the on-line information displayed in the lower left part
of the window.

• Selection: This menu provides a number of filters and operators, which modify the current
selection. They are described below. Menu entries with dots (...) behind their name open an
additional dialog.

• LabelFilter: These filters and operators directly modify the label field, and not the selection.

10.11.2 Manipulating the material list

In the material list the current material can be selected with the left mouse button. The current material
is the material which is assigned to selected voxels if the ”+” button is pressed. A special behavior
is obtained if one of the Shift, Control, or Alt keys on the keyboard is held down, while selecting the
material:

• If Shift is held down, all voxels which are already assigned to the selected material are added to
the current selection (either in the current slice or in the whole volume, depending on the value
of the 3D toggle described below).

• If Control is held down, all voxels assigned to the selected material will be deselected (either
in the current slice or in the whole volume, depending on the value of the 3D toggle described
below).

• Holding down the Alt key does the same as Shift except that the selection is cleared before new
voxels are selected.

Additional options of the material list can be accessed via a popup menu, which shows up when the
right mouse button is pressed on a particular material entry. The following menu entries are provided:

• Draw Style: A submenu offers different styles how pixels belonging to a particular material are
rendered in the image viewer. The possible appearances are:

502 Chapter 10: Alphabetic Index of Editors

• Invisible: The material is not visible.

• Contour: The segments are enclosed by lines.

• Hatched: The segments are enclosed by lines and shown hatched.

• Dotted: The segments are enclosed by lines and filled with dots.

• Light Dots: The segments are enclosed by lines and filled with less dots.

• Locate: This command sets all viewers to the slice with the largest region of this material. This
is especially useful to navigate in large data sets with many materials.

• Delete: If you choose Delete the material you have clicked on will be deleted. Voxels belonging
to that material will be assigned to the first material in the list (typically the background).

• Rename: With this option you can change the name of a material. A text cursor appears and
lets you edit the name as easily as any other text field. If the new name is equal to the name of
an existing material you are asked if the these two materials should be merged. It is not possible
to have to different materials with the same name.

• Edit color: This command brings up a color editor in which you can easily change the color of
this material.

• Lock/Unlock Material: You can lock a material with this option. A key will be displayed on
the right hand side of each locked material. If a material is locked, no voxels can be subtracted
from this region, neither explicitly, nor implicitly by adding them to another material.

• New Material: By selecting this option from the popup menu a new entry is added to the
material list with a randomly chosen color and a default name, e.g., ”NewMaterial”. These
properties can be changed as described above.

10.11.3 Working in 4 viewer mode

Initially, in the central part of the image segmentation editor the current slice with colored contours
surrounding the different segments is shown. Near the top border you find a slider to control which
slice of the 3D volume is currently displayed. The orientation of the slice can be changed via the menu
entry View Orientation in the menu bar. In medical notation XZ denotes an axial slice, XZ a frontal
slice, and YZ a sagittal slice.

In addition to the standard single viewer layout Amira also provides a 4 viewer display. You can switch
between the two layouts using the View Layout menu. If the 4 viewer mode is active, three 2D viewers
with different orientations and an additional 3D viewer are displayed. The orientation menu is disabled
in this mode. You can arbitrarily switch between the viewers when segmenting images. One of the
viewers is the active viewer. It is decorated with a red frame. A viewer can be made the active viewer
by clicking on its title bar (where the slice slider is located), or into the viewer itself. In the latter case
be careful when clicking into the image in 3D mode. If the Pick tool or the Magic Wand tool is active
the resulting selection operation may take some time to compute. All 2D operations like the ”+” or ”-”
are always performed in the active viewer, i.e., the slice and orientation of the active viewer will be
considered.

Segmentation Editor 503

The 3D viewer

In the 4 viewer mode the upper-left viewer is a standard Amira 3D viewer. All modules will display in
this viewer too (depending on the modules’ viewer masks, as usual). In addition there is some special
3D support for segmentation, which is controlled by the buttons in the line just above the 3D viewer
and by an additional dialog.

By default the current selection will be displayed in the 3D viewer as a point cloud. After each change
of the current selection (i.e. after each brush stroke), the display will be updated. On smaller computers
or for very large data sets, this may become too slow. In this case the Auto toggle can be switched off.
Then the 3D scene will only be updated after explicitly hitting the Update button.

The Draw button allows to modify the selection in 3D. After hitting the button a curve can be drawn
in the 3D viewer (similar to the lasso tool). Then all 3D points which ly inside the surrounded region
will be cropped away (i.e. deselected). If the Shift key is pressed when starting to draw the contour
the surrounded region will be selected. If the Shift and Control keys are pressed simultaneously when
starting to draw the contour the inverse of the surrounded region will be selected. The draw mode can
also be activated by pressing the d key in the viewer window.

Using the zoom buttons

The zoom buttons control the size of the image. An info line on the right hand side of the buttons shows
the current zoom factor. For example a zoom of 2:1 means that 2 pixels on the screen correspond to
one pixel of the original data set (magnification), while 1:4 would mean, that four pixel of the data set
correspond to one pixel on the screen. If the pixel-size is not the same in all dimensions, the zoom
factor belongs to the horizontal direction only, to maintain the correct aspect ratio of the voxels.

10.11.4 Edit buttons

The basic principle of the segmentation editor is to first select voxels and then to assign selected voxels
to the current material. This assignment is done using the ”+” button. Besides the ”+” button there are
some other buttons which can be used to perform edit operations. These are the following:

• 3D toggle: If the 3D toggle is activated other edit operations or tools operate in 3D mode. For
example, the Clear button clears the whole 3D selection, not only the current slice. Currently,
in 3D mode no undo is available. Therefore, be careful when activating the 3D toggle. Usually,
it is advisable to disable the toggle again after completing a particular 3D operation.

• Picker: This tool can be used to mark a connected area belonging to one material. It is described
in more detail in the tools section.

• Clear (C): This button lets you clear the current selection. If the 3D toggle is activated the
selection is cleared in all slices.

• Replace (R): This button tries to replace a selected region. Assume you want to modify the
contours of some region. As long as the new contours fully enclose the previous ones this
can be easily achieved using the ”+” button. However, if the new region is smaller things are

504 Chapter 10: Alphabetic Index of Editors

more complicated. The replace button looks for connected regions under the current selection
belonging to the current material. Pixels which belong to such a region but which are not selected
are automatically assigned to some other neighbouring material. Selected pixels are assigned to
the current material. In this way a replacement is performed.

• Add (+): This button adds all selected voxels to the material currently selected in the material
list. Voxels assigned to a locked material are not affected. If the Shift key is held down while
clicking the button, the voxels remain selected. Otherwise the selection is cleared afterwards.

• Subtract (-): This button lets you subtract all selected voxels belonging to the current material
from that material, provided the current material is not locked. The pixels are automatically
assigned to some neighbouring material which is interpreted as a local background.

10.11.5 Segmentation tools

Several segmentation tools are provided allowing you to select areas in the current slice for subsequent
edit operations. A tool is activated by clicking on its icon with the left mouse button. On default,
selected areas are drawn in transparent red color. The opacity of the red color can be modified using
a dialog under the Edit Data Window... menu. Alternatively, selected areas can be visualized using
the same draw styles as ordinary labels. The different draw styles are listed under the View Selection
submenu. However, in most cases the default transparent display is best suited, because then selected
areas cannot be mistaken for labeled regions.

Once a segmentation tool is activated certain actions can be performed in one of the viewer windows
using the mouse. The operation of most of the tools can be modified by pressing the Ctrl or the Shift
key. Ctrl typically deselects voxels instead of selecting them, while Shift adds voxels to the selection
instead of replacing it. The description of the individual tools mentions more details.

Pick & Move

This tools does two things. First, it lets you select a connected region assigned to one particular
material by clicking onto an image voxel with the left mouse button. If the select all toggle is active
all voxels belonging to the same material as the clicked voxel will be selected, either in 3D or in the
current slice only, depending on the value of the 3D toggle. If the Ctrl key is held down voxels will be
deselected.

If the mouse is over an already selected pixel the mouse cursor takes on the shape of a hand. Then
the tool lets you translate the current selection. By pressing down the Shift key the current selection
can also be rotated. However, note that this might give strange results for pixels with an aspect ratio
different from one (for example in frontal or sagittal slices in a label field with stacked coordinates).

Brush

If this tool is activated, you can select regions by painting voxels with the left mouse held down. The
size of the brush can be modified via a slider in the tool’s control panel. For common smaller sizes
dedicated push buttons are provided. Note that the size is specified in screen pixels, not in image

Segmentation Editor 505

pixels. If the center of an image pixel is covered by the brush that pixel is selected. If the Ctrl key is
held down or if the middle mouse button is used, pixels are deselected instead of being selected.

The right mouse button is a flood fill tool. For example, you may surround a region in the image by
drawing along its border and then click into the middle of the currently unselected interior part, to fill
it. Again the Ctrl key inverts the operation, i.e., it deselects connected parts of the selection.

Lasso

The Lasso lets you define an area by generating a closed contour curve. Usually, you draw such a
curve freehand with the the left mouse button pressed, but it is also possible to fence an area with line
segments by pressing Alt, and clicking successively to points with the left mouse button (holding down
the Alt key all the time). Successive points will be connected with straight line segments. To finish
interaction release the Alt key and click a last time. The contour is then closed and filled automatically.

When the auto trace option is enabled (this is the default) the line segments are automatically fitted
to image edges. Click with the left mouse button to define a starting point. Dragging the mouse after
releasing the button a contour curve automatically fitted to the closest image edge is drawn. Further
mouse clicks mark fixed points on the contour. Contour parts drawn before the latest mouse click
remain in place. Close the contour by clicking with the middle mouse button.

The underlying algorithm called intelligent scissors works by finding the shortest path in a cost matrix
which is computed from the image’s gradient image. If the option trace edges is switched off then
the image itself is interpreted as a cost matrix. Disabling this option is useful for images where object
boundaries already appear as isolated bright lines.

Magic Wand

This tool performs a so-called region growing either in 2D or in 3D, depending on whether the 3D
toggle is activated or not. Clicking with the left mouse button on a voxel selects the largest connected
area that contains the voxel itself and all voxels with gray values lying inside a user-defined range.
The range can be specified via two spin boxes shown in the tool’s control panel. The values of the
spin boxes either define absolute gray values or values relative to the gray value of the seed pixel,
depending on whether the absolute values toggle is activated or not. If necessary, the range will be
automatically modified so that it the contains the seed voxel. It is possible to modify the range even
after the seed voxel has been selected. For convenience, the lower threshold can be quickly modified
by clicking the middle mouse button (or shift-clicking the right mouse button) and moving the mouse
horizontally. Likewise, the upper threshold can be quickly modified by clicking the right mouse button
and moving the mouse horizontally (virtual slider mode). However, note that in 3D mode the selection
is not updated on-the-fly while modifying the thresholds. Instead, it is updated once after releasing the
mouse.

The same material only toggle restricts the search to voxels which are assigned to the same material as
the seed voxel. For example, if the seed voxel belongs to Exterior, voxels which are already assigned
to different materials will not be selected. This is useful to restrict the selection to certain parts of the
image. Paths out of a region of interest might be obstructed using a blocker region.

506 Chapter 10: Alphabetic Index of Editors

If the fill interior toggle is set, holes inside the selected region will be filled automatically. This has the
same effect as pressing the f key afterwards, which also fills the current selection. Automatic filling is
only done in 2D mode, but not in 3D mode.

Finally, the draw limit line button lets you specify additional barriers for 2D region growing. After
pressing this button you can draw arbitrary polylines in the viewer window. Voxels covered by such a
limit line will not be considered for region growing. Instead of pressing the limit line button you can
also press the Ctrl key to temporarily enter the limit line mode. Existing limit lines can be deleted by
clicking on them with the Ctrl key being pressed.

Note, that all seed points together with the corresponding range values and limit lines are stored in the
parameter section of the label field. This makes it possible to easily correct a selection at a later time.

PropagatingContour

This tool is a fast Active Contour. From a number of specified seed points a boundary front evolves.
It computes the position of the front at all times up to the stop time. A slider and a text box allow
the user select the appropriate front after pressing the initialization button. There are three buttons:
Menu pops up the parameter menu, Clear removes the current seed points (hot-key T), and Init starts
the computation (hot-key B).

Blowtool

By clicking with the left mouse button on a voxel and dragging the mouse without releasing the button
an initially circle-formed contour blows up. The greater the distance to the initial position of the mouse
click gets the more the contour grows. The contour is designed to grow in areas with homogeneous
grey values and to stop where grey values change abruptly, i.e. at image edges.

The tolerance slider in the option panel controls how sharp the image edge has to be in order to stop
the contour from growing at each contour point. The smaller the tolerance the sharper the image edge
has to be. If the tolerance is large, the contour will even stop at weak edges. After releasing the mouse
button the area within the contour will be marked.

Before the computation the image is smoothed using a Gaussian smoothing filter. You can change the
width of the filter within ranges of 1 (no smoothing) to 8 (very broad smoothing). The default value is
4.

Crosshair

The crosshair tool is only active in 4 viewer mode. It simply displays a crosshair in all three orthogonal
viewers. The colors denote the different directions (red=x-axis, green=y-axis, blue=z-axis). Clicking
into one of the viewers moves the crosshair and simultaneously updates the two other viewers so that
the crosshair’s center is visible in all three viewers.

Segmentation Editor 507

10.11.6 Selection Filters

Under the Selection button of the menu bar several filters for modifying the current selection are
provided. These include simple morphological operations, smoothing filters, and interpolation tools.

• Grow: This filter performs a morphological dilatation of the current selection, i.e., the selection
is made bigger by one pixel in every direction. The filter can be applied to the current slice only
(short cut is Ctrl +), to all slices (orientation is defined by the active viewer), or to the whole
volume.

• Shrink: This filter performs a morphological erosion of the current selection, i.e., the selection
is made smaller by one pixel in every direction. The filter can be applied to the current slice
only (short cut is Ctrl -), to all slices (orientation is defined by the active viewer), or to the whole
volume.

• Fill: This filter fills the current selection, i.e., it closes all holes in it. The filter can be applied
to the current slice only (short cut is key F), or to all slices (orientation is defined by the active
viewer).

• Smooth: This filter smooths the current selection. Smoothing works by applying a Gauss filter
to the binary selection image and then reselecting all pixels with an intensity bigger than 0.5.
Usually the filter is applied to a selection computed by the threshold filter or by the magic wand
tool. The short cut for this filter is Ctrl M.

• Invert: This filter inverts the current selection, i.e., selected voxels are deselected, while unse-
lected voxels are selected. The filter can be applied in the current slice only (short cut is key I),
or in the whole volume.

• Active Contour...: This filter belongs to a family of powerful tools for semi-automatic seg-
mentation called Active Contour. From a user defined initial selection the contour propagates
automatically according to ’forces’ within the image. Use the STOP button of the amira main
window to stop the process when the desired selection has been computed.

• Snakes...: This filter automatically fits the contour of a selected region to the edges of the image.
Edges are regions with a high contrast.

An additional dialog is opened, which allows you to copy the selection from the current slice
into the next or previous slice (up and down arrows). After copying the snakes algorithm tries
to adjust the contour to the grey values in the new slice.

Clicking on Adjust runs the same algorithm on the current selection in the current slice. This is
especially useful to readjust after a manual correction.

If Extrapolate is switched on, the selection is not only copied to the next slice but extrapolated
by taking into account selections in the two previous slices.

If 3DInfo is switched on, a modified snakes algorithm is used which gives better results in the
case of relatively equal voxel sizes in all three directions.

508 Chapter 10: Alphabetic Index of Editors

Relax smooths the contour of the current selection.

• Threshold...: Select voxels by threshold segmentation. In the additional dialog, a minimal and a
maximal image intensity can be specified. By clicking Apply, all voxels falling into the interval
are selected. If the current material only option is activated, only voxels assigned to the current
material are selected. If the 3D option is active, the operation is performed in the whole volume,
otherwise it is done in the current slice of the active viewer.

• Make Ellipse: Pressing this button causes the selected area to be replaced by an ellipse that fits
the original selection as good as possible. The filter operates in the current slice of the active
viewer.

• Interpol: This button interpolates the selection between all slices where areas have been se-
lected manually. Pressing the button again after performing corrections in certain slices will
interpolate the selections between all slices where changes have been made. For example, sup-
pose you have selected an object in slice 1 and in slice 10. Pressing the Interpolate button
automatically computes a selection in slices 2...9. You may then modify the selection in slice
5, e.g., using the Brush tool. Pressing Interpolate again now interpolates the selection in slices
2...4 and 6...9. The short cut for this filter is Ctrl I.

• Wrap: This filter also interpolates the selection. However, a different algorithm based on scat-
tered data interpolation with radial basis functions is applied. The filter always operates in 3D.
In contrast to the previous filter it is possible to start from slices with different orientations, e.g.,
after selecting slices in each spatial direction (xy, xz, yz) this tool can be used to compute an
interpolating selection which wraps up the object whose skeleton is given by the slices.

Note: Initially no two successive slices with the same orientation must be labeled. Otherwise,
an error message is displayed. The tool may take a few seconds to complete its operation. The
short cut for this filter is Ctrl W.

10.11.6.1 Active Contours

Active contour models are powerful tools for semi-automatic segmentation. An initial contour moves
automatically according to image forces such that it separates two different materials.

The movement is governed by parameters that the user must adjust to suit his image data.

There exist two different Active Contour tools. The ”Propagating Contour” tool computes the shape
of the contour at all times up to the Stop Time value. The contour starts evolving from one or more
seed points and stops at edges found in the image. After the computation the user can choose any time
parameter in the range the separates the materials best.

The Active Contour filter takes any initial shape (which may only be a single seed point) and expands
this shape until a material boundary is found, where the contour stops. Additionally, this tool takes
into account the curvature to generate smoother shapes and avoid leaking through small wholes.

The velocity of the active contour is computed from the original image data as well as from the gradient
image. While the image data provides the image intensity values, the gradient image contains the edge

Segmentation Editor 509

information. In the View menu of the Segmentation Editor, the user can choose a gradient image. By
default, the Segmentation Editor computes a gradient image from the currently chosen gray image.
Alternatively, the user can provide the gradient image and select it in the View menu.

If the active contour does not advance, you have to change the parameters. In particular, lower
the values for edge and image sensitivity.

Note that often the results can be improved by preprocessing the image data, for instance by pre-
smoothing. Furthermore, better results are achieved for isotropic data, i.e., large slice distances can be
disadvantageous.

Ports

StopTime

The Stop Time limits the movement of the active contour to a certain range. If the region has not
been fully segmented, this parameter must be increased.

Edge Sensitivity

The Edge Sensitivity value governs the dependence on the the gradient image,i.e., when the contour
stops. If this value is too small, the algorithm might run over edges. If it is too large, there might be
no movement at all. If the contour does not move at all, this value should be decreased.

Image Intensity

The advancement of the contour can also depend on the image intensity (grey value). This parameter
controls how strong the dependence is. The speed function is multiplied by a Gaussian function.
The width of this Gaussian is the reciprocal of the value of this port (such that a value of 0 means
no influence at all) and the mean intensity value if computed as the average over all seed point or
over the average of the selection, respectively. Hence, the more different the image intensity of a
voxel is from the starting points or region, the slower the progress is.

Curvature

The curvature parameter controls the regularity of the contour. A value close to 1 leads to a smooth
contour. Set to 1, the algorithm works as a filter that refines an existing selection in order to snap to
edges in the image. If this parameter is set to 0, the algorithm is merely expanding until stopped by
an edge without enforcing any smoothness. Setting the curvature to a value different from 1 can be
used to make a small seed selection expand until stopped by an edge. The curvature regularization
is not available for the propagating contour tool.

Attractor

510 Chapter 10: Alphabetic Index of Editors

The attractor force parameter specifies the strength of the edge attraction. It allows the tool to be
used as a filter that refines an initial approximation because it attracts the contour to the nearest
edges in the image. Mostly, a value of 1 works best. To switch off the edge attraction, set the value
to 0.

Practical hints:

• In all cases, apply these tools to smoothed data only. No smoothing is built in to allow the user to
choose the smoothing filter. For instance, Gaussian smoothing is an appropriate preprocessing.

• It is recommendable to use the fast PropagatingContour Tool first and then refine the selection
with the ActiveContour Filter.

• In cases where not all the targeted region is selected by the active contour or it leaks out before,
the user can proceed step by step. First select a partial region and then segment the remaining
region starting from another seed point or selection.

• At the beginning, certainly a bit of probing is necessary until you find the best set of parameters
for your kind of data.

10.11.7 Label Filters

Under the Labels button of the menu bar several filters for modifying the current labelling are provided.
These filters directly operate on the labels. They do not take the current selection into account.

• Fill holes: This filter removes islands of arbitrary size in the current material, i.e., all pixels
completely surrounded by the current material are also assigned to this material (short cut is
Shift-H for the current slice). Suppose you have segmented a CT image using thresholding as
provided by the LabelVoxel module. You then want to assign the dark marrow of the bones to
the material Bone as well. In order to do this, select Bone in the material list so that it becomes
the current material and then call the fill holes filter. The filter can be applied to the current slice
in the active viewer, or to all slices.

• Remove Islands...: This filter removes islands in or between regions, depending on the size
and percentage values that are set in the filters dialog. An island is a connected area of voxels
containing a number of voxels less than or equal to the size value specified in the dialog.

If an island is encountered the percentages of the surrounding regions with respect to the total
number of voxels adjacent to the island are calculated and compared with the percentage thresh-
old. The island is assigned to the region with the highest percentage value greater than or equal
to percentage. If no region exceeds the percentage threshold, the island remains untouched.
Note that the percentage value must be between 0.0 and 1.0.

With the mode buttons you can control whether the filter works in the current slice, in all slices
or in the 3D volume. The difference between the two latter cases is, that in 3D mode the filter
searches for true 3D connected regions. Note that a long thin structure, like a blood vessel can
be a very small region in each slice, but has a rather large volume in 3D.

Segmentation Editor 511

This filter is invoked by pressing the Remove button. Pressing the Select button performs the
same computations as before. However, the islands are not yet removed but are only selected.
This is useful in order to preview the effect of the filter and to find optimal size and percentage
values.

• Smooth...: This is a modified Gauss filter, which smoothes the region boundaries, and therefore
slightly changes the labeling. In 3D mode, additionally probabilities of voxels belonging to
regions are computed and assigned to voxels. The probability is one for voxels in the interior
of a region and decreases towards the region boundary. Voxels near region boundaries are also
assigned probabilities with respect to neighboring regions. The probability information is used
in other modules - in particular in the SurfaceGen module - in order to make region boundaries
appear smooth, otherwise these may be displayed as zigzag lines.

The size option allows you to enter the size of the filter mask which is a square with size x size
pixels. The smoothing effect increases with the mask size, but computation time is higher for
bigger masks.

The 2D button lets you start the smoothing operation on the present slice, the 3D button lets you
start a 3D smoothing on the whole data volume.

• Remove Skin...: This filter is only active if the Tcl-variable giRemoveSkinFilter is set
to 1. Its purpose is to remove thin prolate regions of muscle or fat (skin) on the boundary to
exterior.

The filter removes the currently chosen material on the boundary to exterior. No other material
than muscle or fat can be removed.

The Layers option is for entering the number of layers (in units of pixels) outside of exterior
(i.e. inside the body) where the filter looks for possible appearances of the chosen material. The
larger the number of layers the more of the skin region will be removed.

The filter can be applied to the current slice in the active viewer, or to all slices.

10.11.8 Key bindings

Important tools of the image segmentation editor can be accessed via hot keys. These hot keys are
summarized below:

• Changing the current slice
Space or CursorDown - Go to next slice
Backspace or CursorUp - Go to previous slice
PageDown - Go forth over the next five slices
PageUp - Go back over the previous five slices
Home - Go to the first slice
End - Go to the last slice

By holding down the Shift key while pressing one of these keys the current selection is copied
to the target slice. By holding down the Control key, the user can move only between slices that

512 Chapter 10: Alphabetic Index of Editors

contain a selection.

• Selection
A or + - Add the selection to the current material
S or - - Subtract the selection from the current material
R - Replace current material under the selection
C - Clear the selection
E - Extrapolate the selection
F - Fill the selection
I - Invert the selection
Ctrl-+ - Grow selection in current slice
Ctrl– - Shrink selection in current slice
Ctrl-M - Smooth selection in current slice
Ctrl-I - Interpolate selection between multiple slices
Ctrl-W - Wrap selection using radial basis functions
Shift-S - Save label field to disk
RETURN - Redraw .

• Tools
1 - Brush tool
2 - Lasso tool
3 - Magic Wand tool (region growing)
4 - Blow tool
5 - Crosshair tool
6 - Pick, move, and rotate tool

• Others U - Undo
Q - Toggle 3D button
V - Toggle 1 and 4 viewer mode
. - Select next material in the list
, - Select previous material in the list
Z - Decrease zoom factor
Shift-Z - Increase zoom factor
D - Toggle draw styles for all materials
Shift-D - Toggle draw style for region under cursor

10.12 Simplification Editor

This editor can be used to reduce the number of triangles of a surface. In particular, the output of
the SurfaceGen module has to be processed in this way before a tetrahedral patient model can be
generated. Surface simplification is done by means of an edge collapsing algorithm. Edges of the
original surface are sucessively reduced to points. The shape of the original surface is preserved by

Simplification Editor 513

minimizing a certain error criterium. Special care is taken to prevent the triangles of the simplified
surface from intersecting each other. However, in some cases intersections can still occur. Therefore,
the resulting surface should be checked for intersections using the surface editor.

Figure 10.20: User interface of surface simplification editor.

Ports

Simplify This port provides three text fields for controlling some parameters of the simplification

process. Field faces determines the desired number of triangles of the simplified surface. You may
simplify the surface in multiple steps. However, somewhat more accurate results are obtained if the
simplification is performed in a single step. When the simplification process is finished a check is
made whether the surface contains duplicated triangles. Such triangles are removed automatically.
Therefore the total number of triangles of the reduced surface will usually be somewhat less than
the value specified in faces.

The second field max dist defines a maximum edge length for the triangles of the simplified surface.
Usually, the default value of 3 cm should be suitable, but you can try to modify this value if the
reduced surface still contains intersections.

The third field min dist defines a minimum edge length. Shorter edges are contracted if button
Contract Edges is pressed (see below).

Options If the toggle preserve slice structure is set, edges of exterior triangles of the surface are

treated in a special way, so that the slice structure of the original voxel grid is preserved.

If toggle fast is set, a less extensive intersection test strategy is selected. Surface simplification will
run faster, but there is a higher probability that intersecting triangles will occur (see explanation of
command setIntersectionTestStrategy below).

Action Button Simplify starts surface simplification. The simplification process will take several

minutes. You may interrupt it by hitting the stop button of the progress bar.

Button Flip Edges automatically flips some edges of a surface if this improves the triangle quality.
The Quality is defined as the ratio of the circumscribed circle and the inscribed circle of a triangle.
The smaller this ratio the higher the quality. Again, duplicated triangles are removed automatically
after this operation.

514 Chapter 10: Alphabetic Index of Editors

Button Contract Edges contracts all edges shorter than the value defined at field min dist (see above).

Commands

Simplifier setRadiusRatio <value>

This command defines a quality threshold for the edge flipping algorithm. Edges are flipped only if
the radius ratio of a triangle exceeds the given value. By default a radius ratio of 20 is used.

Simplifier smooth <nSteps> <lambda>
This commands shifts the vertices of the surface so that it gets smoother. The value for lambda
should be in the range of 0...1. This option is experimental and should not be used for routine work.

Simplifier setIntersectionTestStrategy <mode>

This command lets you choose between different intersection test strategies. mode is a three-digit
number, for example 100. The digits specifiy the strategy used for testing modified triangles against
existing edges, for testing modified edges against existing triangles, and for testing planar intersec-
tions. The allowed values are 0-3 for the first, 0-2 for the second, and 0-1 for the last digit. Larger
values correspond to more extensive tests which of course also require more computing time. By
default a value of 211 is used. Modes 111 or 101 are faster but more likely to produce intersecting
triangles.

Simplifier setFactError <value>
In surface simplification the maximal edge length and the maximal error (estimated distance be-
tween original and simplified surface) can be controlled separately. The maximal error is computed
by multiplying the maximal edge length by a certain factor factError. The value of factError can
be set using command setFactError. The default value is 1.

Simplifier getFactError
This command returns the current value of factError.

10.13 Surface Editor

Figure 10.16: Editable lattice parameters.

The surface editor allows you to modify a triangular surface in several ways, e.g., to remove or refine
triangles, to flip edges or move points, or to set boundary ids for individual triangles. It also allows
you to check a surface for intersecting triangles or for falsely oriented patches.

In contrast to other editors in amira the surface editor places its GUI controls directly into the main
3D viewer window. This makes interactive surface editing very comfortable. In particular, the editor
provides a central menu bar as well as several tool bars. The user interface of the editor is depicted
in Figure 10.21. Note that, only one surface editor can be active at a time. Activating a second editor
causes the first one to be closed.

Surface Editor 515

Figure 10.21: User interface of the surface editor.

516 Chapter 10: Alphabetic Index of Editors

The surface editor works in conjunction with a SurfaceView module. If such a module is not already
connected to the surface, an instance of it will be created automatically when the editor is activated.
However, most settings of the SurfaceView module can be controlled directly via menu entries of the
editor itself. Therefore there is no need to have the SurfaceView module permanently selected.

A basic concept of the surface editor are the notions of visible and highlighted triangles respectively.
Highlighted triangles are drawn in red wireframe. Many tools operate not on the surface as a whole,
but only on highlighted triangles. For example, if you want to refine parts of the surface you’ll first
have to highlight the involved triangles before choosing Refine faces from the Edit menu. Besides the
highlight buffer there is another buffer determining which triangles will actually be drawn. This allows
you to cut away parts of a complex surface. Highlighted triangles can be added to the visible buffer or
removed from it, just as in an ordinary SurfaceView module. Note that hiding a triangle doesn’t mean
to delete it.

Triangles can be highlighted in a number of ways. On the one hand there are interactive tools allowing
you to select triangles using some kind of mouse interaction. For example, triangles can be picked
individually or a contour can be drawn in the 3D viewer. Buttons representing the different mouse tools
are listed in a tool bar. Clicking on a button causes the corresponding tool to be activated. On the other
hand triangles can be highlighted using automatic selectors. Selectors are listed in the leftmost combo
box of the surface editor’s selector tool bar. There are selectors for highlighting triangles depending
on their inner and outer region, for highlighting triangles with a certain boundary id or belonging to
certain patch, and many more.

In the following different elements of the surface editor will be described in detail, namely

• menu entries

• selectors including surface tests

• mouse tools for selecting triangles and editing the surface

10.13.1 Menu Entries

This section describes the entries of the surface editor’s main menu which is displayed inside the 3D
viewer window while the editor is active.

10.13.1.1 File Menu

• Save: Saves the surface under the same file name as it has been saved under before. This option
allows you to quickly save intermediate results during complex edit tasks.

• Save As...: Pops up the file dialog and saves the surface under a user-chosen file name.

• Close: Terminates the surface editor.

Surface Editor 517

10.13.1.2 Edit Menu

• Undo: Undoes the last edit operation (edge flip, edge collapse, edge bisection, vertex move-
ment). Selection and highlight changes can be undone as well. The size of the undo buffer is
limited to up to 100 entries.

• Delete highlighted faces: Permanently removes the highlighted triangles from the surface.

• Remove coplanar faces: Permanently removes coplanar triangles, i.e., triangles with the same
three vertices, from the surface. The inner region and outer region id of the remaining triangle
is updated appropriately.

• Recompute connectivity: Recomputes the surface’s connectivity information, i.e., contours and
branching points. Connectivity information is optional. If it is present, contours can be displayed
using the ContourView module. In addition, recompute connectivity causes unused points of the
surface to be deleted.

• Refine faces: Subdivides all highlighted triangles by bisecting their edges. Each refined triangle
is replaced by four new ones. In addition, adjacent non-highlighted triangles are split in two in
order to avoid dangling nodes.

• Flip edges...: Pops up a dialog allowing you to flip certain edges inside the highlighted part of
the surface. The edge flips are performed in order to improve the aspect ratio of the involved
triangles. An edge flip is only attempted if the aspect ratio of one of the two involved triangles
is worse than a user-specified value.

• Reorder patches...: Pops up a dialog allowing you to rearrange the internal order of the surface
patches. Two different patches can be selected and then swapped. This operation is useful for
certain applications where two different surfaces are required to have the same patch structure.

• Set boundary ids...: Pops up a dialog allowing you to edit the surface’s boundary ids. The dialog
permits you to define new boundary ids or to change existing ones (including the preferred
colors). Highlighted triangles can be assigned a new boundary id using the dialog’s set button.

• Magic wand settings...: This menu entry pops up a dialog alowing you to change parameters of
the magic wand tool. Details for that are described below.

10.13.1.3 View Menu

This menu allows you to change certain settings of the SurfaceView module used by the surface editor.
The settings affect the draw style and the color mode used for rendering the surface. Possible draw
styles are outlined, shaded, lines, points, and transparent. Possible color modes are normal, mixed,
twisted, and boundary ids. In the first three modes colors are chosen according to the material ids as-
signed to the surface’s patches. In the last mode colors are chosen according to the triangles’ boundary
ids.

518 Chapter 10: Alphabetic Index of Editors

10.13.1.4 Buffer Menu

This menu contains several entries for modifying the editor’s highlight and view buffers. The buffers
determine whether a triangle is highlighted or whether it is visible in a normal fashion. Both buffers
are independent from each other. They can be stored in an internal backup buffer using the menu
entries copy highlights and copy buffer respectively. Once one of the buffers has been copied it can be
restored using paste highlights or paste buffer.

10.13.1.5 Tests Menu

This menu lists certain test operations which can be performed in order to check the quality and consis-
tency of the surface. Internally, the tests are considered as selectors because they cause certain triangles
of the surface to be highlighted. Therefore, the test are described in detail in the selectors section.

10.13.2 Selectors

This section describes tools for automatically highlighting certain parts of the surface. The selectors
are listed in a combo box on the very left just beneath the main menu. Most selectors provide some
additional controls which are displayed right beside this combo box.

• Materials: Just as in a SurfaceView module this selector allows you to highlight parts of the
surface separating two particular regions from each other. The two regions are specified in two
additional combo boxes which are shown once the selector is activated.

• Boundary ids: Highlights all triangles with a particular boundary id. The boundary ids defined
in the surface are listed in a separate combo box. Boundary ids can be modified using the Set
boundary ids... option of the Edit menu.

• Patches: Highlights all triangles belonging to a particular patch of the surface. The different
patches can be selected using a slider displayed right beside the selector combo box. A patch is
a group of triangles separating the same two regions and having the same boundary id.

• Intersections: Performs an intersection test and highlights intersecting triangles. The compute
button actually initiates the test, while the back and forward buttons allow you to cycle through
the list of intersecting faces. The total number of intersections is printed in the console window.
Intersections can be repaired using the edit tools described below (edge flip, edge collapse, edge
bisection, vertex movement).

• Orientation: Performs an orientation test and highlights falsely oriented triangles. You should
have removed all intersections before applying this check. For simple configurations the wrong
triangles are removed automatically. The number of inconsistently oriented triangles and the
number of removed triangles are printed in the console window. If the automatic method could
not remove all incorrect orientations, you can proceed as in the case of intersections and try
to repair them manually. Important: A prerequisite for the orientation test is that the outer

Surface Editor 519

triangles of the surface are assigned to material Exterior. If the surface does not contain such
a material or if the assignment to Exterior is not correct the test will falsely report orientation
errors.

• Aspect Ratio, Dihedral Angle, and Tetra Quality sort all surface triangles according to different
quality measures. The aspect ratio is the ratio of the radii of the circumcircle and the incircle
of a triangle. The largest aspect ratio should be below 20 (better 10). The dihedral angle is the
angle between two adjacent triangles at their common edge. The smallest dihedral angle should
be above 5 degrees (better 10). Tetra quality may be useful if you want to create a tetrahedral
volume mesh from the surface. For each surface triangle the aspect ratios of the tetrahedra
which will probably be created for that triangle are calculated. The largest tetrahedral aspect
ratio should be below 50 (better 25).

The worst triangle according to the selected quality measure is displayed, and the worst quality
is printed in the console window. Using the back and forward buttons right beside the selector
combo box you can cycle through all other triangles and edit the surface if necessary.

10.13.3 Tools

This section describes interactive tools for selecting triangles and for performing simple edit opera-
tions. Only one such tool can be active at a time. The active tool determines which effect left mouse
button clicks have. For each tool there is a separate button contained in the editor’s tool bar. Indepen-
dently from the active mouse tool, edges and triangles can be picked using the middle mouse button.
This causes the ids of the picked triangles, edges, and points to be printed on the screen.

• Pick tool [P]: A single triangle can be highlighted using a simple mouse click or unhighlighted
using a shift-click. If in addition the Ctrl key is held down a group of neighbouring triangles
will be highlighted or unhighlighted (with the shift key held down too).

• Magic wand [M]: Allows to select a connected group of triangles. Unless the shift key is held
down the highlight buffer will be cleared before new triangles are highlighted. Control-click
causes all selected triangles to be unhighlighted. The behaviour of the magic wand tool can be
modified using the dialog Magic wand settings... which can be activated from the Edit menu.
This dialog lets you define what triangles are considered to be a connected group. In particular,
a crease angle smaller than 180 degrees can be chosen. In this case only triangles with roughly
the same direction as the clicked triangle will be highlighted. Regardless of these settings a
connected group of highlighted triangles will always be unhighlighted if a highlighted triangle
is Ctrl-clicked.

• Draw tool [D]: This tool allows you to highlight triangles by drawing a contour in the viewer
window. Usually the left mouse button must be held down while the contour is drawn. However,
you may hold down the Alt key and release the left mouse button. In this case straight line
segments can be defined. Currently the tool selects all triangles inside the contour, i.e., hidden
triangles are highlighted too. However, with the magic wand tool backward facing parts of the
surface can be easily deselected again using a Ctrl-click.

520 Chapter 10: Alphabetic Index of Editors

• Flip tool [F]: Flips an edge of the surface. Only edges with two adjacent triangles can be flipped,
but no boundary edges. Flipping the edge once again restores the original state.

• Collapse tool [C]: Contracts an edge, i.e., moves one vertex of an edge onto the other. For
non-boundary edges the operation will reduce the number of triangles by two. The vertex of the
edge located more closely to the mouse position will be retained.

• Bisect tool [B]: Subdivides an edge of the surface. A new vertex is inserted at the edge midpoint.
Each triangle adjacent to the edge is bisected into two triangles.

• Translate tool [T]: Allows to pick a vertex of the surface and to translate it. At the picked vertex
a point dragger will be shown. The dragger can then be picked and translated. Alternatively
another point on the surface can be shift-clicked while the point dragger is shown. This moves
the dragger to the new position.

10.14 Transform Editor

This editor allows you to add a transformation to a data set or modify an existing one. A transformation
may be a translation, rotation and scaling or a combination thereof. The transformation can be edited
interactively in the 3D viewer using different Open Inventor draggers.

The Transform Editor also lets you enter transformations numerically. This can be done by pressing
the Dialog... button which pops up the dialog shown in Figure 10.22.

The dialog provides text fields to specifiy the translation, rotation, and scaling of the object indi-
vidually. Instead of specifying absolute values the object can also be translated, rotated, or scaled
incrementally. This is done by activating the tab panels Relative Local or Relative Global instead
of the default Absolute. The local and global tabs differ in the way how the translation, rotation, or
scaling is applied, namely after an existing transformation (local) or before it (global). An alternative
way to modify the transformation of a data object is to use the Tcl commands provided by SpatialData
objects.

Display modules connected to a transformed data set will take the transformation into account au-
tomatically. Also many, but not all (!), compute modules interprete transformations. If you find a
module that does not operate as expected for a transformed data obejct, try to apply the tranformation
first using the Apply transform button.

Most data file formats do not support transformations. Therefore, transformations are stored in amira
network scripts only. Keep this in mind when working with transformed data objects. It is always
possible to query and reapply a transformation using the Tcl commands getTransform and set-
transform.

Transform Editor 521

Figure 10.22: Dialog opened by the transform editor.

Ports

Manipulator

Lets you choose the Open Inventor dragger used to define the transformation in 3D. Make sure to
switch the viewer to interaction mode when using the draggers (press the arrow button in the upper
right corner of the viewer, or toggle between viewing mode and interaction mode using the ESC
key). Details of how to interact with the draggers can be found in the Open Inventor documentation.
The Dialog... button pops up the transfrom dialog described above.

Reset

This port allows you to reset the transformation matrix, or its translational, rotational, or scaling
components.

Action

This port allows you to undo the last change of the transformation matrix, or to redo the last undone
operation. In addition, transformations can be copied into an internal buffer, and afterwards pasted
into the editor again. This provides a convienient way to copy a transformation from one object to
another.

If the editor is invoked for an object derived from VertexSet, a button Apply Transform is shown.
This button allows you to apply the transformation to the vertices of the data object, and to reset the

522 Chapter 10: Alphabetic Index of Editors

object’s transformation matrix. This operation does not change the visual appearance of the object,
but it is required for example to export the transformed object into a file.

Transform Editor 523

524 Chapter 10: Alphabetic Index of Editors

Part III

amira Programmer’s Manual

Chapter 11

Introduction

The developer version of amira allows you to add new components such as file read or write routines,
modules for visualizing data or modules for processing data. New module classes and new data classes
can be defined as subclasses of existing ones.

Note that it is not possible (or possible only to a very limited extent) to change or modify existing
modules or parts of amira’s graphical user interface.

In the following sections we

• present an overview of the amira developer version,

• discuss the system requirements for the different platforms,

• outline the structure of the amira file tree,

• show how to compile the demo package in a quick start tutorial,

• provide additional hints on compiling and debugging,

• and mention how to upgrade and maintain existing code.

11.1 Overview of the amira Developer Version

The amira developer version is a superset of the ordinary amira binary version. In addition to the files
contained in the binary version, the developer version essentially provides all C++ header files needed
to compile custom extensions.

11.1.1 Packages and Shared Objects

amira is an object-oriented software system. Besides the core components like the graphical user
interface or the 3D viewers, it contains a large number of data objects, modules, readers and writers.

Data objects and modules are C++ classes, readers and writers are C++ functions.

Instead of being compiled into a single static executable, these components are grouped into packages.
A package is a shared object (usually called .so or .sl on Unix or .dll on Windows) which can be
dynamically loaded by amira at run time when needed. This concept has two advantages. On the one
hand, the program remains small since only those packages are loaded which are actually needed by
the user. On the other hand it provides almost unlimited extensibility since new packages can be added
any time without recompiling the main program.

Therefore, in order to add custom components to the amira developer version, new packages or shared
objects must be created and compiled. A package may contain an arbitrary number of modules and it
is left up to the developer whether he wants to organize his modules into several packages or just in
one.

11.1.2 Package Resource Files

Along with each package a resource file is stored. This file contains information about the components
being defined in a particular package. When amira starts, it first scans the resource files of all available
packages and thus knows about all the components which may be used at run-time.

The resource files of the standard amira packages are located under share/resources in the
directory where amira is installed. Details about registering read and write routines or different kinds
of modules in a resource file are provided in Chapters 13 and 14.

11.1.3 The Local amira Directory

Usually amira will be installed by the system administrator at a location where ordinary users are not
allowed to create or modify files. Therefore it is recommended that every user creates new packages in
his own personal local amira directory. The local amira directory has essentially the same structure
as the directory where amira is installed. A new local amira directory can most easily be created by
using the Development Wizard, a special-purpose dialog box described in detail in Section 12.

Once a local amira directory has been set up, resource files located in it will also be scanned by amira
when started. In this way new components can be added or existing ones redefined.

11.1.4 External Libraries

amira is based on a number of industry standard libraries. The most important ones are Open Inventor,
OpenGL, Qt, and Tcl.

amira’s 3D graphics is based on OpenGL and Open Inventor. OpenGL is the industry standard for
professional 3D graphics. Open Inventor is a C++ library using OpenGL which provides an object-
oriented scene description layer. Writing new visualization modules for amira essentially means cre-
ating an Open Inventor scene from the input data. If you already have code doing this, it will be

528 Chapter 11: Introduction

straightforward to turn it into an amira module. While the Open Inventor headers are included in the
amira developer version, OpenGL must already be installed on your system.

Qt is a platform-independent C++ library for building graphical user interfaces (GUIs). amira is built
with Qt. However, the user interface elements used in standard amira modules are encapsulated by
special amira classes called ports. Therefore you can develop your own modules without knowing
Qt and without having Qt installed (Qt headers are not included in the amira developer version). You
only need Qt if you plan to add completely new user interface components such as special purpose
dialogs. Note also, that in this case you need to install the correct version of the Qt header files. amira
3.1 is linked against Qt 3.2.0.

Finally, Tcl is a C library providing an extensible scripting language used by amira. All required
header files are included in the developer version. amira programmers usually need not know details
of the Tcl API but merely derive their code from existing examples.

11.2 System Requirements

In order to develop new amira components as described in this document you need the developer
version of amira (called amiraDev) as well as a C++ development environment. C++ compilers,
however, are generally not compatible, therefore the compilers and compiler versions listed below
should be used. Other compiler versions may work too, but this is not guaranteed. In particular, it is
not possible to use the GNU gcc compiler except on Linux.

On all Unix platforms the GNU make utility (gmake) is needed in order to use the GNUmakefiles
provided with amiraDev. gmake is included in the bin subdirectory of amiraDev. To proceed you
either should include this directory in your path, or create a link in a directory already listed in your
path, e.g., in /usr/bin.

In the following text more specific system requirements are listed for each platform. More gen-
eral hardware requirements such as installed memory or special graphics adapters are listed in the
amiraUser’s Guide. On all systems an OpenGL library together with the OpenGL header files must
be installed.

11.2.1 SGI IRIX

Operating system: IRIX 6.5.15 or higher
Compiler: MIPSpro C/C++ version 7.3.1.2 or higher

Use CC -version to find out the version of the MIPSpro compiler.

System Requirements 529

11.2.2 HP-UX

Operating system: HP-UX 11.00
Compiler: ANSI C/C++ version 3.27 or higher (aCC)

Note that the HP standard C++ compiler (CC) will not work. Use aCC -V to find out the version of the
ANSI compiler. Versions earlier than 1.21 may produce errors, especially when compiling optimized
code.

11.2.3 Sun Solaris

Operating system: SunOS 5.8 (Solaris 8) or higher
Compiler: Sun WorkShop 6 update 2 or higher (C++ 5.3)

Note that older versions of the compiler will not work. Use CC -V to find out the version of the
WorkShop compiler.

11.2.4 Linux

Operating system: RedHat 8.0
Compiler: GNU gcc 3.2.x

Linux distributions other than RedHat 8.0 which are also based on glibc 2.2 might work too, but
this is not guaranteed. In order to get amira running on other Linux distributions there is a ”patch”
provided on http://www.amiravis.com, which contains the correct versions of all required
system libraries. This patch also works for amiraDev, provided you are using the correct compiler.

11.2.5 Windows

Operating system: Windows 98/ME/2000/XP
Compiler: Microsoft Visual Studio C++ 6.0, Service Pack 4 or higher

The latest Service Pack for Microsoft Visual Studio can be downloaded from
http://msdn.microsoft.com/vstudio/sp. We recommend to use Windows 2000 or
Windows XP.

As an alternative development platform also an amiraDev version for Microsoft Visual Studio Studio
.NET 2003 (VC++ 7.1) is provided. You cannot mix this with code compiled using the old Visual
Studio because different run-time libraries are required. Note, that the initial version of Microsoft
Visual Studio .NET (VC++ 7.0) is not supported by amira.

530 Chapter 11: Introduction

11.3 Structure of the amira File Tree

Like the ordinary version the developer version of amira is installed in a single directory called the
amira root directory. This directory contains all the binaries, shared objects, and resource files required
to run amira, as well as all the C++ header files required to compile new components. New components
themselves are stored independently in a local amira directory. Every user may define his/her own
local amira directory. The local amira directory has a structure very similar to the amira root directory.
In the following two sections the structure of these two directories is described in more detail.

11.3.1 The amira Root Directory

The contents of the amira root directory may differ slightly from platform to platform. For example,
on Windows there will be no subdirectory lib. Instead, the compiled shared objects are located under
bin/arch-Win32-Optimize. The following list gives a general overview.

Amira-3.1/ amira root directory, actual name may differ
bin/start amira start script (Unix)
bin/arch-Win32-Optimize/amiramain.exeExecutable (Windows)
data/ contains amira demo data sets
include/ contains all required C++ header files
lib/arch-*-Optimize/ compiled shared objects (Unix)
make/ make environment for Unix systems
share/resources/ resource files of all standard packages
share/devref/ online documentation of amira C++ classes
share/doc/ online version of amira documentation

11.3.2 The Local amira Directory

The local amira directory contains the source code and object files of custom modules, the resource
files of custom packages, and the compiled custom packages themselves. The packages can be com-
piled either in a debug version or in an optimized version. The corresponding object files and compiled
shared objects reside in different subdirectories called arch-*-Debug and arch-*-Optimize,
respectively. Here the asterisk denotes the particular architecture, e.g., Win32 for Windows systems
or IRIX for SGI Unix platforms.

In order to create a new local amira directory the Development Wizard should be used. For
details please refer to Section 12. Subdirectories like AmiraLocal/lib or AmiraLo-
cal/share/resources are created automatically the first time a custom package is compiled.
Again, the contents of the local amira directory may differ slightly from platform to platform. For
example, on Windows compiled shared objects are located under bin instead of lib.

AmiraLocal/ e.g., located in the user’s home directory
AmiraLocal.dsw Visual Studio workspace file (Windows)

Structure of the amira File Tree 531

GNUmakefile global makefile (Unix)
src/ contains source code of custom packages
mypackage/ source code of one particular package
Package used to generate GNUmakefile and project files
GNUmakefile Unix makefile (generated automatically)
mypackage.dsp Visual Studio project file (generated automatically)
mypackageAPI.h Windows storage-class specification
MyModule.h header file of a custom module
MyModule.cpp implementation of a custom module
MyReader.cpp implementation of a custom read routine
... any number of additional components
share/resource/mypackage.rc package resource file
... any number of additional packages
obj/arch-*-Debug/ object files on Unix (debug version)
obj/arch-*-Optimize/ object files on Unix (optimized)
lib/arch-*-Debug/ compiled shared objects (debug version)
lib/arch-*-Optimize/ compiled shared objects (optimized)
share/resources/ package resource files are copied here

11.4 Quick Start Tutorial

This section contains a short tutorial on how to compile and execute the demo package provided with
amiraDev. The demo package contains the source code of the example modules and IO routines de-
scribed elsewhere in this manual. At this point you should just get a rough idea about the basic process
required to develop your own modules and IO routines. Details will be discussed in the following
chapters.

For the development of custom amira packages a dedicated directory, the local amira directory, is
required. Initially, this directory should be created using the Development Wizard. Lets see how this
is done:

• Start amira and choose the Development Wizard from the Help menu of the amira main win-
dow.

• Make sure that the item Set local amira directory is selected in the wizard’s dialog window.

• Press the Next button.

You can now enter a directory name for the local amira directory. For example you may choose
AmiraLocal in your home directory. The directory must be different from directory where amira
has been installed.

• Enter the name for the local amira directory.

532 Chapter 11: Introduction

• Select the button copy demo package.

• Press the OK button.

If the directory did not yet exist, amira asks you if it should be created. The name of the directory is
stored in the Windows registry or in the .AmiraRegistry file in the Unix home directory, so that
the next time amira is started all modules or IO routines defined in this directory will be available.

The next step is to create the Visual Studio project files for Windows or the GNUmakefiles for Unix.
These files will be generated from a Package file which must be present in each custom package
directory. The syntax of the Package file is described in Chapter 12.10. The demo package already
contains a Package file, so there is no need to create one here.

• Select Create build system on the main page of the Development Wizard.

• Press the Next button.

• Choose all local packages as target.

• Choose which kind of build system you want to create.

• Press the OK button.

The files for the selected build system will now be created automatically. The advantage of the auto-
matic generation is that the include and library paths are always set correctly. Also, any dependencies
between local packages are taken into account.

Once the build system has been created you can close the Development Wizard and exit amira. We
are now ready to compile the demo package. This is different for each platform:

Windows Visual Studio C++ 6

• Start Visual Studio C++ 6 and load the workspace AmiraLocal.dsw from the local amira
directory. If your local amira directory is not called AmiraLocal the workspace file also has
some other name.

• Build the workspace in debug mode by pressing F7 or by choosing Build from the Build menu.

Windows Visual Studio C++ .NET 2003

• Start Visual Studio C++ .NET 2003 and load the solution file AmiraLocal.sln from the
local amira directory. If your local amira directory is not called AmiraLocal the solution file
also has some other name.

• Build all local packages in debug mode by pressing F7 or by choosing Build Solution from the
Build menu.

Unix GNUmakefile system

• Change into the local amira directory in a shell.

Quick Start Tutorial 533

• Type in gmake to build all local packages is debug mode. If gmake is not already installed on
your system you can find it in the subdirectory bin in the amira root directory. Either add this
directory in your path variable or create a link in a directory already listed in your path, e.g.,
/usr/bin.

We are now ready to start amira in order to test the demo package. However, because we have com-
piled the demo package in debug mode, we need to start amira with the command line option -debug.
Otherwise, amira would not find the correct DLLs or shared libraries. For convenience, on Windows
a link Amira -debug is available in the start menu.

In order to check if the demo package has been successfully compiled and can be loaded by amira,
you can for example choose the entry DynamicColormap from the Create Data menu of the amira
main window. Then a new colormap object should be created. You can find the source code of this
new object in the local amira directory under src/mypackage/MyDynamicColormap.cpp. In
the same directory there is also the header file for this class.

If you want to compile the demo package in release mode, you have to change the active configuration
in Visual Studio and recompile the code. On Unix, you have to call gmake MAKE CFG=Optimize.
You can also define MAKE CFG as an environment variable.

11.5 Compiling and Debugging

This section provides additional information not covered by the quick start guide on how to compile
and debug custom amira packages. You may skip it the first time you are reading this manual. The
information will not become relevant until you are actually developing your own code.

It has already been mentioned that the development of custom amira packages should take place in
a local amira directory. Initially, such a directory should be created using the Development Wizard
described in Chapter 12. The name of the local amira directory is stored in the Windows registry or
in the file .AmiraRegistry in your Unix home directory. On both Windows and Unix, the name
of the local amira directory can be overridden by defining the environment variable AMIRA LOCAL.
This might be useful if you want to switch between different local amira directories. However, in
general it is recommended not to set this variable.

For each local package there is a resource file stored in the subdirectory share/resources in the
local amira directory. This file contains information about all modules and IO routines provided by that
package. A local package can be compiled in debug mode suitable for debugging or in release mode
with compiler optimization turned on. In the first case the DLLs or shared libraries are stored under
bin/arch-*-Debug on Windows and lib/arch-*-Debug on Unix. In the second case they
are stored under bin/arch-*-Optimize or lib/arch-*-Optimize. Here the ’*’ indicates
the actual architecture name. In the following it will be described how to compile local packages in
both modes on the different platforms and how to debug the code using a debugger.

534 Chapter 11: Introduction

Figure 11.1: Specifying the name of the executable in Visual Studio.

11.5.1 Windows Visual Studio 6

For Visual Studio 6 Service Pack 4 or higher is required. Code generated with Visual Studio 6 cannot
be mixed with code generated with Visual Studio .NET 2003 because different run-time libraries are
required.

The workspace and project files for Visual Studio 6 are generated automatically from the amira Pack-
age files by the Development Wizard. There should be no need to change the project settings manually.

On default, Visual Studio 6 will compile in debug mode. In order to generate optimized code, you
need to change the active configuration. This is done by choosing Set Active Configuration... from the
Build menu.

In order to execute the debug mode version of your local packages you have to start amira with the
command line option -debug. For convenience, a link Amira -debug is provided in the start menu.
However, if you want to debug your code you need to start amira from Visual Studio. Thus you need
to specify the correct executable in the project settings dialog.

You can bring up the project settings dialog by pressing Alt-F7 or by choosing Settings... from
the Build menu. Select the Debug tab. In the field Executable for debug session choose the file
bin/arch-Win32-Optimize/amiramain.exe located in the amira root directory. In the field
Program arguments type in -debug (compare Figure 11.1).

You can now start amira from Visual Studio by pressing F5 or by choosing Start Debug Go from the
Build menu. In order to debug your code you may set breakpoints at arbitrary locations in your code.
For example, if you want to debug a read routine, set a breakpoint at the beginning of the routine,
execute amira and invoke the read routine by loading some file.

Compiling and Debugging 535

11.5.2 Unix

In order to compile a local package under Unix you need to change into the package directory and
execute gmake in a shell. The gmake utility is provided in the bin subdirectory of the amira root
directory. Either add this directory to your path or create a link in a directory already listed in your
path, e.g., in /usr/bin.

The required GNUmakefiles will be generated automatically from the amira Package files by the
Development Wizard. There should be no need to edit the GNUmakefiles manually. Depending on
the contents of the Package file all source files in a package directory will be compiled, or a subset
only. On default all files will be compiled. The Development Wizard will put the name of the amira
root directory into the file GNUmakefile.setroot. You may overwrite the name by defining the
environment variable AMIRA ROOT. For example, this might be useful when working simultaneously
with two different amira versions.

By default gmake will compile debug code. In order to compile optimized code, invoke gmake
MAKE CFG=Optimize. Alternatively, you may set the environment variable MAKE CFG to Opti-
mize.

If you have a multi-processor machine you may compile multiple files at once by invoking gmake
with the option PARALLELFLAGS=-j<n>. Here <n> denotes the number of compile jobs to be run
in parallel. Usually twice the number of processors is a good choice.

If you have compiled debug code, you must invoke amira with the command line option -debug.
Otherwise, the optimized version will be executed. If no such version exists an error occurs. Instead
of specifying -debug at the command line you may also set the environment variable MAKE CFG to
Debug.

In order to run amira in a debugger, invoke the amira start script with one of the following command
line options:

• -cvd on IRIX

• -dde on HP-UX

• -workshop on SunOS

• -gdb or -ddd on Linux

Note that usually you cannot set a breakpoint in a local package right after starting the debugger.
This is because the package’s shared object file will not be linked to amira until the first mod-
ule or read or write routine defined in the package is invoked. In order to force the shared ob-
ject to be loaded without invoking any module or read or write routine, you may use the command
dso open lib<name>.so, where <name> denotes the name of the local package. Once the
shared object has been successfully loaded, breakpoints may be set. It depends on the debugger
whether these breakpoints are still active when the program is started the next time.

536 Chapter 11: Introduction

11.6 Maintaining Existing Code

This section is directed to programmers who have already developed custom modules using a previous
version of amiraDev. In particular, we describe

• how to upgrade to amiraDev 3.1, and

• how to rename an existing package.

11.6.1 Upgrading to amiraDev 3.1

In amiraDev 3.1 the structure of the local amira directory has been slightly changed. In order to
recompile existing packages it is recommended to create a complete copy of the local amira directory
and to adapt this copy as described below. amiraDev 3.1 and earlier versions store the path of the local
amira directory under different names in the Windows registry or in the Unix .AmiraRegistry file.
This means that both versions can be used in parallel. The following changes are required to adjust an
existing local amira directory so that it can be used with amiraDev 3.1:

• The subdirectory packages must be renamed to src.

• In each package directory a Package file must be created. This file contains the package name,
the name of dependent packages, and optionally an explicit list of all source and header files
belonging to the package. From the Package file a Visual Studio project file or a GNUmakefile
for Unix can be generated automatically.

• Instead of modifying and reusing the old Visual Studio project files or GNUmakefiles these files
should be created from scratch using the amira development wizard.

Modules, data classes and IO routines developed for amiraDev 3.0 should compile without changes
with amiraDev 3.1 (with the possible exception of calls to the C++ standard library, see below). The
API of existing classes has been extended in several cases, but no incompatible changes have been
introduced. For details about the interface of particular classes please refer to the online reference
guide. In addition, the following things have changed:

• C++ standard library: On all platforms except of Linux IA64 (which is built on RedHat Ad-
vanced Workstation 2.1 with gcc 2.96) and IRIX new-style C++ standard libraries are being
used now. In amiraDev 3.0 only on Windows the new-style interface was used.

In contrast to the old-style headers the new-style headers do not contain the suffix .h, e.g.,
you need to include iostream instead of iostream.h. In addition, all symbols are defined
inside the std namespace, i.e., you need to write for example std::cout instead of just
cout, unless you specifically write using namespace std; in your code.

On most platforms the new-style and the old-style C++ standard library cannot be used together.
This means that you may need to switch to the new-style interface, if you have used the old-style
interface before.

Maintaining Existing Code 537

• Open Inventor and Qt: amira 3.1 uses Open Inventor 4.0.4 and Qt 3.1.2. As in previous ver-
sions the Open Inventor headers are completely provided with amiraDev, but the Qt headers
are not. Moreover, instead of the SoWin and SoXt classes (which are not fully platform inde-
pendent) in amira now the new SoQt interface is used. This means that the amira viewer is
now derived from SoQtExaminerViewer instead of SoWinExaminerViewer or SoX-
tExaminerViewer, respectively. However, because we didn’t want the class HxViewer
to depend on any Qt headers, the actual amira viewer has been renamed to QxViewer, while
HxViewer now is a pure wrapper class. This change should not affect existing code unless
platform-dependent methods of the former SoWin or SoXt base classes were used.

11.6.2 Renaming an Existing Package

Sometimes you may want to rename an existing amira package, for example when using an existing
package as a template for a new custom package. In order to do so the following changes are required:

• Rename the package directory:
AmiraLocal/src/oldname becomes AmiraLocal/src/newname

• Rename the following files in the package directory:
oldnameAPI.h becomes newnameAPI.h
share/resources/oldname.rc becomes share/resources/newname.rc

• In the package resource file share/resources/newname.rc and in the Package file
replace oldname by newname.

• In the file newnameAPI.h replace OLDNAME API by NEWNAME API.

• In all header and source files of the package, adjust the include directives if necessary, i.e.,
instead of
#include <oldname/SomeClass.h>
now write #include <newname/SomeClass.h>

All replacements can be performed using an arbitrary text editor. After all files have been modified as
necessary a new Visual Studio project file or a new GNUmakefile should be created using the amira
development wizard.

538 Chapter 11: Introduction

Chapter 12

The Development Wizard

The development wizard is a special tool which helps you to set up a local amira directory tree so that
you can write custom extensions for amira. In addition, the development wizard can be used to create
templates of amira modules or of read or write routines. The details of developing such components
are treated in other chapters. At this point we want to give a short overview about the functionality of
the development wizard.

In particular, we discuss

• how to invoke the development wizard

• how to set or create the local amira directory

• how to add a package to the local amira directory

• how to add components to an existing package

• how to create the files for the build system

Finally, a section describing the Package file syntax is provided.

12.1 Starting the Development Wizard

In order to invoke the development wizard, first start amira. Then select Development Wizard from the
main window’s Help menu. Note that this menu option will only be available if you are running the
developer version of amira.

The layout of the development wizard is shown in Figure 12.1. Initially, the wizard informs you about
the local amira directory currently being used. If no local amira directory is defined, this is indicated
too. Furthermore, the wizard lets you select between four different tasks to be performed. These are

Figure 12.1: Initial layout of the amira development wizard.

• setting the local amira directory (or creating a new one)

• adding a new package to the local amira directory

• adding a component to an existing package

• creating the files for the build system

The first option is always available. A new package can only be added if a valid local amira directory
has been specified. For the local amira directory to be valid, among others, it must contain a subdi-
rectory called src. If at least one package exists in the src directory of the local amira directory,
a new component, i.e., a module or a read or write routine, can be added to a package. Finally, the
last option allows you to create all files required by the build system, i.e., Visual Studio project files or
GNUmakefiles for Unix platforms.

12.2 Setting Up the Local amira Directory

The local amira directory contains the source code and the binaries of all custom extensions developed
by a user. The name of this directory can be most easily specified using the development wizard (see
Figure 12.2). Since potentially every user can write his/her own extensions for amira it is usually
recommended that the local amira directory is created in the user’s home directory.

If the specified directory does not exist the development wizard asks you whether it should be created.

540 Chapter 12: The Development Wizard

Figure 12.2: Setting the local amira directory.

If you confirm, the directory itself together with some subdirectories will be created. You may also
specify an existing empty directory in the text field. Then the subdirectories will be created in there.

Finally, you may choose an existing directory which has been created by the development wizard
before. In this case a simple check is performed to determine whether the specified directory is valid.
If you want to use a directory created with amira 3.0 or an earlier version, please first refer to Section
11.6 (upgrading existing code).

In order to unset the local amira directory you should clear the text field and press OK. The directory
will not be deleted, but the next time amira is started modules and IO routines defined in the local
amira directory will not be available anymore.

Once you have set up the local amira directory, the name of the directory is stored permanently, so
the next time amira is started the .rc-files located in the subdirectory share/resources of the
local amira directory can be read. In this way custom components are made known to amira. On
Windows the name of the local amira directory is stored in the Windows registry. On Unix systems it
is stored in the file .AmiraRegistry in the user’s home directory. In both cases, these setting can
be overridden by defining the environment variable AMIRA LOCAL.

The development wizard also provides a toggle for copying a demo package to the local amira direc-
tory. You will get a warning if this button is activated and an existing local amira directory already
containing the demo package has been specified. The demo package is copied to the subdirectory
src/mypackage in the local amira directory. It contains all read and write routines and modules

Setting Up the Local amira Directory 541

Figure 12.3: Adding a new package to the local amira directory.

presented as examples in this guide.

12.3 Adding a New Package

All amira components are organized in packages. Each package will be compiled into a separate
shared object (or DLL file on Windows). Therefore, before any components can be defined at least
one package must be created in the local amira directory. In order to do so, choose add package to
local amira directory on the first page of the wizard and press Next. On the next page you can enter
the name of the new package (see Figure 12.3).

The name of a package must not contain any white spaces or punctuation characters. When a package
is added, a subdirectory of the same name is created under src in the local amira directory. In this
directory the source code and header files of all the modules and IO routines of the package are stored.
In addition in each package directory there must be a Package file from which the build system files
can be generated.

Initially, a default Package file will be copied into a new package directory. This default file adds the
most common amira libraries for linking. It also selects all C++ source files in the package directory
to be compiled. In order to generate the build system from the Package file, please refer to Section
12.9.

In addition to the Package file also the files version.cpp and packageAPI.hwill be copied into

542 Chapter 12: The Development Wizard

a new package directory. The first file allows you to put version information into your package, which
can later be viewed in the amira system information dialog. The second file contains a macro required
for putting symbols in a DLL on Windows. Finally, also an empty file package.rc will be copied
into share/resources. In this file later modules and IO routines will be registered.

12.4 Adding a New Component

If you choose the add component option on the first page of the development wizard, you will be asked
what kind of component should be added to which package. Remember that the add component option
will only be available if a valid local amira directory with at least one existing package is found. In
particular, templates

• of an ordinary module,

• of a compute module,

• of a read routine,

• or of a write routine

may be created (see Figure 12.4). The option menu in the lower part of the dialog box lets you specify
the package to which the component should be added. After you press the Next button, you will be
asked to enter more specific information about the particular component you want to add. Up to this
point no real operation has been performed, i.e., no files have been created or modified.

12.5 Adding an Ordinary Module

An ordinary module in amira usually directly visualizes the data object it is attached to. For example,
the Isosurface module, the Voltex module, and the SurfaceView module are of this type. Such modules,
sometimes also called display modules, are represented by yellow icons in the object pool.

In order to create the template for an ordinary module using the development wizard, you must enter
the C++ class name of the module, the name to be shown in the pop-up menu of possible input data
objects, the C++ class name of possible input data objects, and finally the package where the input
class is defined (see Figure 12.5).

Once you press OK, two files are created in the package directory, namely a header file and a source
code file for the new module. In addition, a new module statement is added to the package resource
file located under share/resources in the package directory.

After you have added a new module to a package you need to recreate the build system files before
you can compile the module. Details are described in Section 12.9.

Adding a New Component 543

Figure 12.4: Adding a new component to an existing package.

Figure 12.5: Creating the template of a custom module.

544 Chapter 12: The Development Wizard

Figure 12.6: Creating the template of a read routine.

12.6 Adding a Compute Module

A compute module in amira usually takes one or more input data objects, performs some kind of
computation, and puts back a resulting data object in the object pool. Compute modules are represented
by red icons in the object pool.

The only difference between an ordinary module and a compute module is that the former is directly
derived from HxModulewhile the latter is derived from HxCompModule. When creating a template
for a compute module using the development wizard, the same input fields must be filled in as for an
ordinary module. The meaning of these input fields is described in Section 12.5.

12.7 Adding a Read Routine

As will be explained in more detail in Section 13.2, read routines are global C++ functions used to
create one or more amira data objects from the contents of a file stored in a certain file format. To
create the template of a new read routine, first the name of the routine must be specified (see Figure
12.6). The name must be a valid C++ name. It must not contain blanks or any other special characters.

Moreover, the name of the file format and the preferred file name extension must be specified. The
extension will be used by the file browser in order to identify the file format. The format name will be

Adding a Compute Module 545

displayed next to any matching file.

Finally, a toggle can be set in order to create the template of a read routine supporting the input of
multiple files. Such a routine will have a slightly different signature. It allows you to create a single
data object from multiple input files. For example, multiple 2D image files can be combined in a single
3D image volume. Details are provided in Section 13.2.3.

After you press OK a new file <name>.cpp will be created in the package directory, where <name>
denotes the name of the read routine. In addition, the read routine will be registered in the package
resource file. Some file formats can be identified by a unique file header, not just by the file name
extension. In such a case you may want to modify the resource file entry as described in Section
13.2.1.

Remember, that after you have added a new read routine to a package you need to recreate the build
system files before you can compile it. Details are described in Section 12.9.

12.8 Adding a Write Routine

A write routine is a global C++ function which takes a pointer to some data object and writes the
data to a file in a certain file format. The details are explained in Section 13.3. In order to create the
template of a new write routine, the name of the routine must first be specified (see Figure 12.7). The
name must be a valid C++ name. It must not contain blanks or any other special characters.

In addition, the name of the file format and the preferred file name extension must be specified. Before
saving a data object, both the name and the extension will be displayed in the file format menu of the
amira file browser.

Finally, the C++ class name of the data object to be saved must be chosen as well as the package
this class is defined in. Some important data objects such as a HxUniformScalarField3 or a
HxSurface are already listed in the corresponding combo box. However, any other class, including
custom classes, may be specified here. Instead of the name of a data class, even the name of an
interface class such as HxLattice3 may be used (see Section 15.2.1).

After you press OK, a new file <name>.cppwill be created in the package directory, where <name>
denotes the name of the write routine. In addition, the write routine will be registered in the package
resource file.

Remember, that after you have added a new write routine to a package you need to recreate the build
system files before you can compile it. Details are described in Section 12.9.

12.9 Creating the Build System Files

Before you can actually compile your own packages you need to create project files for Visual Studio
on Windows or GNUmakefiles for Unix. These files contain information such as the source code files
to be compiled, or the correct include and library paths. Since it is not trivial to set up and edit these

546 Chapter 12: The Development Wizard

Figure 12.7: Creating the template of a write routine.

files manually, amira provides a mechanism to create them automatically. In order to do this, a so-
called Package file must exist in each package. The Package files contains the name of the package and
a list of dependent packages. It may also contain additional tags to customize the build process. The
syntax of the package file is described in Section 12.10. However, usually there is no need to modify
the default Package file created by the development wizard.

While the automatic generation of the build system files is a very helpful feature it also means that you
better do not modify the resulting project or GNUmakefiles manually, because they might be easily
overwritten by amira.

If you select Create build system on the main page of the development wizard and then press the Next
button, the controls shown in Figure 12.8 will be activated. You can choose if you want to create the
build system files for all local packages or just for a particular one. Depending on the selected build
system the following files will be created:

GNUmakefiles

share/src/mypackage/GNUmakefile: A GNUmakefile for building mypackage. If all local
packages is selected such a file will be created in every subdirectory containing a Package file.

In order to compile all local packages at once, you can type gmake in the local amira directory. In this
directory there is a standard GNUmakefile which calls gmake in all package directories.

Visual Studio 6

Creating the Build System Files 547

Figure 12.8: Creating the build system files.

AmiraLocal.dsw: A workspace containing projects for all local packages. This file will only be
written if all local packages is selected in the development wizard.

allAmiraLocal.dsp: A project file which depends on all other projects. Choose this project as
active project in Visual Studio if you want to compile all local packages.

docAmiraLocal.dsp: A project for creating the documentation for all local packages. This file
will only be written if all local packages is selected in the development wizard.

share/src/mypackage/mypackage.dsp: A project for building mypackage. If all local pack-
ages is selected such a file will be created in every subdirectory containing a Package file.

Visual Studio .NET 2003

AmiraLocal.sln: A solution file containing projects for all local packages. This file will only be
written if all local packages is selected in the development wizard.

allAmiraLocal.vcproj: A project file which depends on all other projects. Building this
projects causes all other local packages to be build.

docAmiraLocal.vcproj: A project for creating the documentation for all local packages. This
file will only be written if all local packages is selected in the development wizard.

share/src/mypackage/mypackage.vcproj: A project for building mypackage. If all local
packages is selected such a file will be created in every subdirectory containing a Package file.

The syntax of the Package file is described in the following section.

548 Chapter 12: The Development Wizard

12.10 The Package File Syntax

The Package file contains information about a local package. From this file Visual Studio project files
or GNUmakefiles can be generated. The Package file is a Tcl file. It defines a set of Tcl variables
indicating things like the name of the package, dependent libraries, or additional files to be copied
when building the package. The default Package file created by the Development Wizard looks as
follows:

set PACKAGE {mypackage}

set LIBS {
hxplot hxtime hxsurface hxcolor hxfield
Amira amiramesh mclib oiv tcl

}

set SHARE {
share/resources/mypackage.rc

}

In most cases the default file works well and need not to be modified. However, in order to accomplish
special tasks the default values of the variables can be changed or additional variables can be defined.
Here is a detailed list describing the meaning of the different variables:

PACKAGE

The variable PACKAGE indicates the name of the package. This should be the same as the name of the
package directory. The package name must not contain any characters other than letters or digits.

LIBS

Lists all libraries the package depends on. On default, the most common amira packages are inserted
here. You can modify this list as needed. For example, if you want to link against a library called
foo.lib on Windows or libfoo.so on Unix, you should add foo to LIBS.

In addition to a real library name you may use the following aliases in the LIBS variable:

oiv - for the Open Inventor libraries
tcl - for the Tcl library
opengl - for the OpenGL library
qt - for the Qt library (not included in amiraDev)

If you want to link against a library only on a particular platform, you can set a dedicated variable
LIBS-arch, where arch denotes the platform. You may further distinguish between the debug and
release version of the code. Here is an example:

The Package File Syntax 549

set LIBS {mclib amiramesh schedule hxz qt oiv opengl tcl}
set LIBS-Unix {hxgfxinit}
set LIBS-Win32 {hxgfxinit}
set LIBS-Win32-Debug {msvcrtd mpr}
set LIBS-Win32-Optimize {msvcrt mpr}

SHARE

Lists all files which should be copied from the package directory into the local amira directory. On
default, only the package resource file will be copied. However, you may add additional files here
if necessary. Instead of explicit file names you may use wildcards. These will be resolved using the
standard Tcl command glob. For example, if you have some demo scripts in your package you could
copy them in the following way:

set SHARE {
share/resources/mypackage.rc
share/demo/mydemos/*.hx

}

As for the LIBS variable you may append an arch string here, i.e., SHARE-arch. The files then will
only be copied on the specified platforms.

INCLUDES

This variable may contain a list of additional include paths. These paths are used by the com-
piler to locate header files. On default, the include path is set to $AMIRA ROOT/include,
$AMIRA ROOT/include/oiv, $AMIRA LOCAL/src, and the local package directory.

COPY

This may contain a list of files which are copied from a location other than the local package directory.
You need to specify the name of the target file followed by the name of the destination file relative to
the local amira directory. For example, you may want to copy certain data files from some archive
into the amira directory. This can be achieved in the following way.

set COPY {
D:/depot/data/28523763.dcm data/test
D:/depot/data/28578320.dcm data/test
D:/depot/data/28590591.dcm data/test

}

550 Chapter 12: The Development Wizard

As for the LIBS variable you may append an arch string here, i.e., COPY-arch. The files then will
only be copied on the specified platforms. A common application is to copy external libraries required
on a particular platform into the amira directory.

SRC

This variable specifies the source code files to be compiled for the package. The default value of this
variable is

set SRC {*.cpp *.c}

This means, that on default all .cpp and .c files in the local package directory will be compiled. Some-
times you may want to replace this default by an explicit list of source files.

Again, you may append an arch string to the SRC variable, so that certain files will only be compiled
on a particular platform.

INCSRC

This variable specifies the header files to be included into the package project file. The default value
of this variable is

set INCSRC {*.h *.hpp}

This means, that on default all .h and .hpp files in the local package directory will be considered.

Again, you may append an arch string to the INCSRC variable, so that certain header files will only be
considered on a particular platform.

The Package File Syntax 551

552 Chapter 12: The Development Wizard

Chapter 13

File I/O

This chapter describes how user-defined read and write routines can be added to amira. The purpose
of custom read and write routines is to add support for file formats not available in amira.

First, some general hints on file formats are given. Then we discuss how read routines are expected
to look in amira. Write routines are treated subsequently. Finally, the AmiraMesh API is discussed.
Using this API, file I/O for new custom data objects can be implemented rather easily.

13.1 On file formats

Before going into detail, let us clarify some general concepts. In amira, all data loaded into the system
are encapsulated in C++ data classes. Chapter 15 provides more information about the standard data
classes. For example, there is a class to represent tetrahedral grids (HxTetraGrid), a separate one for
scalar fields defined on tetrahedral grids (HxTetraScalarField), and another one for 3D image data
(HxUniformScalarField3). Every instance of a data class is represented by a green icon in the amira
object pool.

The way in which data are stored in a disk file is called a file format. Although there is a relationship
between data classes and file formats, these are two different things. It is especially important to
understand that there is no one-to-one correspondence between them.

Typically, a specific data class (like 3D image data) can be stored in many different file formats (3D
TIFF, DICOM, a set of 2D JPEG files, and so on). On the other hand, a specific file format does not
necessarily correspond to exactly one data class. For example, a data file in Fluent UNS format can
either contain hexahedral grids (HxHexaGrid) or tetrahedral grids (HxTetraGrid).

Note that there is also no one-to-one correspondence between the instance of a data class (a green icon
in amira) and the instance of a file format (the actual file). Often multiple files correspond to a single
data object, for example 2D images forming a single 3D image volume. On the other hand, a single file

can contain the data of multiple data objects. For example, an AVS UCD file can contain a tetrahedral
grid as well as multiple scalar fields defined on it.

Finally, note that information may get lost when saving a data object to a file in a specific format. For
example, when saving a 3D image volume to a set of 2D JPEG images, the bounding box information
will be lost. Likewise, there are user-defined parameters or attributes in amira that cannot be encoded
in most standard file formats. On the other hand a file reader often does not interpret all information
provided by a specific file format.

13.2 Read Routines

As already mentioned in the previous section, a read routine is a C++ function that reads a disk file,
interprets the data, creates an instance of an amira data class, and fills that instance with the data read
from the file.

In order to write a read routine, obviously two things are needed, namely a specification of the file
format to be read as well as the information which of amira’s data classes is able to represent the data
and how this class is used. More information about the standard amira data classes is given in Chapter
15. The C++ interface of these classes is described in the online reference documentation.

A read routine may either be a static member function of a class or a global function. In addition to
the function itself, an entry in the package resource file is needed. In this way amira is informed about
the existence of the read routine and about the type of files that can be handled by the reader.

In the following discussion the implementation of a user-defined read routine will be
illustrated by two concrete examples, namely a simple read routine for scalar fields and
a read routine for surfaces and surface fields. Some more details about read routines will be dis-
cussed subsequently.

554 Chapter 13: File I/O

13.2.1 A Reader for Scalar Fields

In this section we present a simple read routine designed for reading image volumes, i.e., 3D scalar
fields, from a very simple file format, which we have invented for this example. The file format is
called PPM3D (because it is similar to the ppm 2D image format). The PPM3D format will be an
ASCII file format containing a header, three integer numbers specifying the size of the 3D image
volume, and the pixel data as integer numbers in the range 0 to 255. An example file could look like
this:

PPM3D
4 4 3
43 44 213 9 23 234 3 3 3 44 213 9 23 234 36 63
44 213 9 23 234 35 3 5 44 213 9 23 234 31 13 12
44 213 9 23 234 35 3 5 44 213 9 23 234 31 13 12

The full source code of the read routine is contained in the demo package provided with the amira
developer version. In order to follow the example below, first create a local amira directory us-
ing the Development Wizard. Be sure that the toggle copy demo package is activated, as described
in Section 12.2. The read routine can then be found in the local amira directory under pack-
ages/mypackage/readppm3d.cpp.

Let us first take a look at the commented source code of the reader. Some general remarks follow
below.

///
//
// Sample read routine for the PPM3D file format
//
///

#include <Amira/HxMessage.h>
#include <hxfield/HxUniformScalarField3.h>
#include <mypackage/mypackageAPI.h>

MYPACKAGE_API int readppm3d(const char* filename)
{

FILE* f = fopen(filename, "r"); // open the file

if (!f) {
theMsg->ioError(filename);
return 0; // indicate error

}

// Skip header (first line). We could do some checking here:
char buf[80];
fgets(buf, 80, f);

// Read size of volume:
int dims[3];
dims[0] = dims[1] = dims[2] = 0;

Read Routines 555

fscanf(f, "%d %d %d", &dims[0], &dims[1], &dims[2]);

// Do some consistency checking.
if (dims[0]*dims[1]*dims[2] <= 0) {

theMsg->printf("Error in file %s.", filename);
fclose(f);
return 0;

}

// Now create 3D image data object. The constructor takes
// the dimensions and the primary data type. In this case
// we create a field containing unsigned bytes (8 bit).
HxUniformScalarField3* field =

new HxUniformScalarField3(dims, McPrimType::mc_uint8);

// The HxUniformScalarField3 stores its data in a member
// variable called lattice. We know that the data is unsigned
// 8 bit because we specified this in the constructor.
unsigned char* data =

(unsigned char*) field->lattice.dataPtr();

// Now we must read dims[0]*dims[1]*dims[2] data values
for (int i=0; i<dims[0]*dims[1]*dims[2]; i++) {

int val=0;
fscanf(f,"%d",&val);
data[i] = (unsigned char) val;

}

// We are done with reading, close the file.
fclose(f);

// Register the data object to make it visible in the
// object pool. The name for the new object is automatically
// generated from the filename.
HxData::registerData(field, filename);

return 1; // Indicate success
}

The source file starts with some includes. First, the file HxMessage.h is included. This header file
provides the global pointer theMsg which allows us to print out text messages in the amira console
window. In our read routine we use theMsg to print out error messages if a read error occurred.

Next, the header file containing the declaration of the data class to be created is included, i.e., HxUni-
formScalarField3.h. As a general rule, every class in amira is declared in a separate header file. The
name of the header file is identical to the name of the C++ class.

Finally, the file mypackageAPI.h is included. This file provides import and export storage-class speci-
fiers for Windows systems. These are encoded in the macro MYPACKAGE API. On Unix systems this
macro is empty and can be omitted.

The read routine itself takes one argument, the name of the data file to be read. It should return 1 on

556 Chapter 13: File I/O

success, or 0 if an error occurred and no data object could be created. The body of the read routine
is rather straightforward. The file is opened for reading. The size of the image volume is read. A
new data object of type HxUniformScalarField3 is created and the rest of the data is written into the
data object. Finally, the file is closed again and the data object is put into the object pool by calling
HxData::registerData. In principle, all read routines look like this example. Of course, the
type of data object being created and the way that this object is initialized may differ.

In order to make the new read routine known to amira, an entry must be added to the package resource
file, i.e., to the file mypackage/share/resources/mypackage.rc. In our case this entry
looks as follows:

dataFile -name "PPM3D Demo Format" \
-header "PPM3D" \
-load "readppm3d" \
-package "mypackage"

The dataFile command registers a new file format called PPM3D Demo Format. The option -
header specifies a regular expression which is used for automatic file format detection. If the first
64 bytes of a file match this expression, the file will be automatically loaded using this read routine.
Of course, some data formats do not have a unique file header. In this case, the format may also be
detected from a standard file name extension. Such an extension may be specified using the -ext
option of the dataFile command. Multiple extensions can be specified as a comma-separated list.
The actual C++ name of the read routine is specified via -load. Finally, the package containing the
read routine must be specified using the -package option.

If you have compiled the example in the mypackage demo package, you can try to load the demo file
mypackage/data/test.ppm3d. As you will see, the file browser automatically detects the file
format and displays PPM3D Demo Format in its file list.

Read Routines 557

13.2.2 A Reader for Surfaces and Surface Fields

Now that you know what a read routine looks like in principle, let us consider a more complex example.
In this section we discuss a read routine which creates more than one data object. In particular, we
want to read a triangular surface mesh from a file. In addition to the surface description, the file may
also contain data values for each vertex of the surface. Data defined on a surface mesh are represented
by separate classes in amira. Therefore, the reader must first create a data object representing the
surface only. Then appropriate data objects must be created for each surface field.

Again, the file format is quite simple and has been invented for the purpose of this example. We call it
the Trimesh format. It is a simple ASCII format without any header. The first line contains the number
of points and the number of triangles. Then the x-, y-, and z-coordinates of the points are listed. This
section is followed by triangle specifications consisting of three point indices for each triangle, point
count starts at one. The next section is for vertex data, starting with a line that contains an arbitrary
number of integers. Each integer indicates that there is a data field with a certain number of variables
defined on the surface’s vertices, e.g., 1 for a scalar field or 3 for a vector field. The data values for
each vertex follow in separate lines. Here is a small example containing a single scalar surface field:

4 2
0.0 0.0 0.0
1.0 0.0 0.0
0.0 1.0 0.0
1.0 1.0 0.0
1 2 4
1 4 3
1
0.0
0.0
1.0
1.0

You can find the full source code of the reader in the local amira directory under pack-
ages/mypackage/readtrimesh.cpp. Remember that the demo package must have been
copied into the local amira directory before compiling. For details, refer to Section 12.2. Let us
now look at the complete read routine before discussing the details:

///
//
// Read routine for the Trimesh file format
//
///

#include <McStringTokenizer.h>
#include <Amira/HxMessage.h>
#include <hxsurface/HxSurface.h>
#include <hxsurface/HxSurfaceField.h>
#include <mypackage/mypackageAPI.h>

558 Chapter 13: File I/O

MYPACKAGE_API int readtrimesh(const char* filename)
{

FILE* fp = fopen(filename, "r");

if (!fp) {
theMsg->ioError(filename);
return 0;

}

// 1. Read the surface itself

char buffer[256];
fgets(buffer,256,fp); // read first line

int i, j, k, nPoints=0, nTriangles=0;
// Get number of points and triangles
sscanf(buffer, "%d %d", &nPoints, &nTriangles);

if (nPoints<0 || nTriangles<0) {
theMsg->printf("Illegal number of points or triangles.");
fclose(fp);
return 0;

}

HxSurface* surface = new HxSurface; // create new surface
surface->addMaterial("Inside",0); // add some materials
surface->addMaterial("Outside",1);

HxSurface::Patch* patch = new HxSurface::Patch;
surface->patches.append(patch); // add patch to surface
patch->innerRegion = 0;
patch->outerRegion = 1;

surface->points.resize(nPoints);
surface->triangles.resize(nTriangles);

for (i=0; i<nPoints; i++) { // read point coordinates
McVec3f& p = surface->points[i];
fgets(buffer,256,fp);
sscanf(buffer, "%g %g %g", &p[0], &p[1], &p[2]);

}

for (i=0; i<nTriangles; i++) { // read triangles
int idx[3];
fgets(buffer,256,fp);
sscanf(buffer, "%d %d %d", &idx[0], &idx[1], &idx[2]);

Surface::Triangle& tri = surface->triangles[i];
tri.points[0] = idx[0]-1; // indices should start at zero
tri.points[1] = idx[1]-1;
tri.points[2] = idx[2]-1;
tri.patch = 0;

}

Read Routines 559

// Add all triangles to the patch
patch->triangles.resize(nTriangles);
for (i=0; i<nTriangles; i++)

patch->triangles[i] = i;

// Add surface to object pool
HxData::registerData(surface,filename);

// 2. Check if file also contains data fields

fgets(buffer,256,fp);
McStringTokenizer tk(buffer);
McDArray<HxSurfaceField*> fields;

while (tk.hasMoreTokens()) { // are there any numbers here ?
int n = atoi(tk.nextToken());
// Create field with desired number of components
HxSurfaceField* field = HxSurfaceField::create(surface,

HxSurfaceField::OnNodes, n);
fields.append(field);

}

if (fields.size()) {
// Read data values for all fields
for (i=0; i<nPoints; i++) {

fgets(buffer,256,fp);
tk = buffer;
for (j=0; j<fields.size(); j++) {

int n = fields[j]->nDataVar();
float* v = &fields[j]->dataPtr()[i*n];
for (k=0; k<n; k++)

v[k] = atof(tk.nextToken());
}

}

// Add all fields to object pool
for (i=0; i<fields.size(); i++) {

HxData::registerData(fields[i], NULL);
fields[i]->composeLabel(surface->getName(),"data");

}
}

fclose(fp); // close file and return ok
return 1;

}

The first part of the read routine is very similar to the PPM3D reader outlined in the previous section.
Required header files are included, the file is opened, the number of points and triangles are read, and
a consistency check is performed.

Then an amira surface object of type HxSurface is created. The class HxSurface has been devised to
represent an arbitrary set of triangles. The triangles are organized into patches. A patch can be thought

560 Chapter 13: File I/O

of as the boundary between two volumetric regions, an “inner” and an “outer” region. Therefore, for
each patch an inner region and an outer region should be defined. In our case, all triangles will be
inserted into a single patch. After this patch has been created and initialized, the number of points and
triangles is set, i.e., the dynamic arrays points and triangles are resized appropriately.

Next, the point coordinates and the triangles are read. Each triangle is defined by the three points it
consists of. The point indices start at one in the file but should start at zero in the HxSurface class.
Therefore all indices are decremented by one. Once all triangles have been read, they are inserted into
the patch we have created before. The surface is now fully initialized and can be added to the object
pool by calling HxData::registerData.

The second part of the read routine is reading the data values. First, we check how many data fields
are defined and how many data variables each field has. In order to parse this information, we use the
utility class McStringTokenizer. This class returns blank-separated parts of a string one after the other.
For more information about this and other utility classes refer to the online reference documentation
of the amira developer version.

For each group of data variables, a corresponding surface field is created. The fields are temporarily
stored in the dynamic array fields. Instead of directly calling the constructor of the class HxSur-
faceField, the static method HxSurfaceField::create is used. This method checks the number of data
variables and automatically creates an instance of a subclass such as HxSurfaceScalarField or Hx-
SurfaceVectorField, if this is possible. In principle, surface fields may store data on a per-node or a
per-triangle basis. Here we are dealing with vertex data, so we specify the encoding to be HxSurface-
Field::OnNodes in HxSurfaceField::create.

Finally, the data values are read into the surface fields created before. Afterwards, all the fields are
added to the object pool by calling HxData::registerData again. In order to define a useful name for
the surface fields, we call the method composeLabel. This method takes a reference name, in this
case the name of the surface, and replaces the suffix by some other string, in this case ”data”. amira
automatically modifies the name so that it is unique. Therefore we can perform the same replacement
for all surface fields.

Like any other read routine, our Trimesh reader must be registered in the package re-
source file before it can be used. This is done by the following statement in mypack-
age/share/resources/mypackage.rc:

dataFile -name "Trimesh Demo Format" \
-ext "trimesh,tm" \
-load "readtrimesh" \
-package "mypackage"

Most of the options of the dataFile command have already been explained in the previous section.
However, in contrast to the PPM3D format, the Trimesh format cannot be identified by its file header.
Therefore, we use the -ext option to tell amira that all files with file name extensions trimesh or tm
should be opened using the Trimesh reader.

Read Routines 561

13.2.3 More About Read Routines

The basic structure of a read routine should be clear from the examples presented in the previous two
sections. Nevertheless, there are a few more things that might be of interest in some situations. These
will be discussed in the following.

Reading Multiple Images At Once

The amira file browser allows you to select multiple files at once. Usually, all these files are opened
one after the other by first determining the file format and then calling the appropriate read routine.
However, in some cases the data of a single amira data object are distributed among multiple files. The
most prominent example is 3D images where every slice is stored in a separate 2D image file. In order
to be able to create a full 3D image, the file names of all the individual 2D images must be available to
a read routine. To facilitate this, read routines in amira can have two different signatures. Besides the
ordinary form

int myreader(const char* filename);

read routines can also be defined as follows:

int myreader(int n, const char** filenames);

In both cases exactly the same dataFile command can be used in the package resource file. amira
automatically detects whether a read routine takes a single file name as an argument or multiple ones.
In the latter case, the read routine is called with the names of all files selected in the file browser,
provided all these files have the same file format (if multiple files with different formats are selected,
the read routine for each format is called with the matching files only). You can create the template of
a multiple files read routine by selecting the toggle create reader for multiple files in the Development
Wizard (see Section 12.7).

The Load Command

The current state of the amira network with all its data objects and modules can be stored in a script
file. When executed, the script should restore the network again. Of course, this is a difficult task
especially if data objects have been modified since they have been loaded from files. However, even if
this is not the case, amira must know how to reload the data later on.

For this purpose a special parameter called LoadCmd should be defined for the data object. This pa-
rameter should contain a Tcl command sequence which restores the data object on execution. Usually,
the load command is simply set to load <filename> when calling HxData::registerData.
However, this approach fails if the format of the file cannot be detected automatically, or if multiple
data objects are created from a single file, e.g., as in our Trimesh example.

562 Chapter 13: File I/O

In such cases the load command should be set manually. In case of the Trimesh reader, this could
be done by adding the following lines of code at the very end of the routine just before the method’s
returning point:

McString loadCmd;
loadCmd.printf("set TMPIO [load -trimesh %s]\n"

"lindex $TMPIO 0", filename);
surface->setLoadCmd(loadCmd,1);

for (int i=0; i<fields.size(); i++) {
loadCmd.printf("lindex $TMPIO %d", i+1);
fields[i]->setLoadCmd(loadCmd,1);

}

This code requires some explanation. The file is loaded and all data objects are created when the first
line of the load command is executed. Note that we specified the -trimesh option as an argument
of load. This ensures that the Trimesh reader will always be used. The format of the file to be loaded
will not be determined automatically. The Tcl command load returns a list with the names of all
data objects which have been created. This list is stored in the variable TMPIO. Later the names of
the individual objects can be obtained by extracting the corresponding elements from this list. This is
done using the Tcl command lindex.

Using Dialog Boxes in a Read Routine

In some cases a file cannot be read successfully unless certain parameters are interactively specified by
the user. Usually this means that a special-purpose dialog must be popped up within the read routine.
This is done, for example, when raw data are read in amira. In order to write your own dialogs, you
must use Qt, a platform-independent toolkit for designing graphical user interfaces. Qt is not included
with the developer version of amira. However, once you have it installed on your system, you can
easily use it to create custom dialogs in amira.

If you don’t have Qt or if you don’t want to use it, you may consider implementing your read routine
within an ordinary module. Although this somewhat breaks amira’s data import concept, it will work
too, of course. You then can utilize ordinary ports to let the user specify required import parameters.

13.3 Write Routines

Like read routines, write routines in amira are C++ functions, either global ones or static member func-
tions of an arbitrary class. In the following discussion we present write routines for the same two for-
mats for which reader codes have been explained in the previous section. First, a writer for scalar fields
will be discussed, then a writer for surfaces and surface fields.

Write Routines 563

13.3.1 A Writer for Scalar Fields

In this section we explain how to implement a routine for writing 3D images, i.e., instances of the class
HxUniformScalarField3, to a file using the PPM3D format introduced in Section 13.2.1. The writer is
even simpler than the reader. Again, the source code is contained in the demo package of the amira
developer version. Once you have created a local amira directory using the Development Wizard and
copied the demo package into that directory, you will find the write routine in the local amira directory
under packages/mypackage/writeppm3d.cpp. Here it is:

564 Chapter 13: File I/O

///
//
// Sample write routine for the PPM3D file format
//
///

#include <Amira/HxMessage.h>
#include <hxfield/HxUniformScalarField3.h>
#include <mypackage/mypackageAPI.h>

MYPACKAGE_API
int writeppm3d(HxUniformScalarField3* field, const char* filename)
{

// For the moment we only want to support byte data
if (field->primType() != McPrimType::mc_uint8) {

theMsg->printf("This format only supports byte data.");
return 0; // indicate error

}

FILE* f = fopen(filename, "w"); // open the file

if (!f) {
theMsg->ioError(filename);
return 0; // indicate error

}

// Write header:
fprintf(f, "# PPM3D\n");

// Write fields dimensions:
const int* dims = field->lattice.dims();
fprintf(f, "%d %d %d\n", dims[0], dims[1], dims[2]);

// Write dims[0]*dims[1]*dims[2] data values:
unsigned char* data =

(unsigned char*) field->lattice.dataPtr();

for (int i=0; i<dims[0]*dims[1]*dims[2]; i++) {
fprintf(f, "%d ", data[i]);
if (i%20 == 19) // do some formatting

fprintf(f,"\n");
}

// Close the file.
fclose(f);

return 1; // indicate success
}

At the beginning, the same header files are included as in the reader. HxMessage.h provides the global
pointer theMsg which allows us to print out text messages in the amira console window. HxUni-
formScalarField3.h contains the declaration of the data class to be written to the file. Finally, mypack-

Write Routines 565

ageAPI.h provides import and export storage-class specifiers for Windows systems. These are encoded
in the macro MYPACKAGE API. On Unix systems, this macro is empty and can be omitted.

The signature of a write routine differs from that of a read routine. It takes two arguments, namely a
pointer to the data object to be written to a file, as well as the name of the file. Before a write routine
is called, amira always checks if the specified file already exists. If this is the case, the user is asked
if the existing file should be overwritten. Therefore, such a check need not to be coded again in each
write routine. Like a read routine, a write routine should return 1 on success, or 0 if an error occurred
and the data object could not be saved.

The body of the write routine is almost self-explanatory. At the beginning, a check is made whether
the 3D image really consists of byte data. In general, the type of data values of such an image can
be 8-bit bytes, 16-bit shorts, 32-bit integers, floats, or doubles. If the image does contain bytes, a file
is opened and the image contents are written into it. However, note that the data object also contains
information which cannot be stored using our simple PPM3D file format. First of all, this applies to
the bounding box of the image volume, i.e., the position of the center of the first and the last voxel in
world coordinates. Also, all parameters of the object (defined in the member variable parameters of
type HxParamBundle) will be lost if the image is written into a PPM3D file and read again.

Like a read routine, a write routine must be registered in the package resource file, i.e., in mypack-
age/share/resources/mypackage.rc. This is done by the following statement:

dataFile -name "PPM3D Demo Format" \
-save "writeppm3d" \
-type "HxUniformScalarField3" \
-package "mypackage"

The option -save specifies the name of the write routine. The option -type specifies the C++ class
name of the data objects which can be saved using this format. Note that an export format may be
registered for multiple C++ objects of different type. In this case multiple -type options should be
specified. However, for each type there must be a separate write routine with a different signature
(polymorphism). For example, if we additionally want to register the PPM3D format for objects of
type HxStackedScalarField3, we must additionally implement the following routine:

int writeppm3d(HxStackedScalarField3* field, const char* fname);

Besides the standard data classes, there are so-called interface classes that may be specified with the
-type option. For example, in this way it is possible to implement a generic writer for n-component
regular 3D fields. Such data is encapsulated by the interface HxLattice3. For more information about
interfaces, refer to Chapter 15.

At this point you may try to compile and execute the write routine by following the instructions given
in Section 11.5 (Compiling and Debugging).

566 Chapter 13: File I/O

13.3.2 A Writer for Surfaces and Surface Fields

For the sake of completeness, a writer for the Trimesh format introduced in Section 13.2.2 is described
in this section. Remember that the Trimesh format is suitable for storing a triangular mesh as well as
an arbitrary number of data values defined on the vertices of the surface. In amira, surfaces and data
fields defined on surfaces are represented by different objects. This also has some implications when
designing a write routine.

In our example we actually implement two different write routines, one for the surface and one for
the surface field. If the user selects the surface and exports it using the Trimesh writer, the surface
mesh as well as all attached data fields will be written to file. On the other hand, if the user selects a
particular surface field, the corresponding surface and just the selected field will be written.

The source code of the writer can be found in the local amira directory under pack-
ages/mypackage/writetrimesh.cpp. Remember that the demo package must be copied into
the local amira directory before compiling. For details refer to Section 12.2. Again, let us start by
looking at the code:

///
//
// Write routine for the Trimesh file format
//
///

#include <Amira/HxMessage.h>
#include <hxsurface/HxSurface.h>
#include <hxsurface/HxSurfaceField.h>
#include <mypackage/mypackageAPI.h>

static
int writetrimesh(HxSurface* surface,

McDArray<HxSurfaceField*> fields, const char* filename)
{

FILE *f = fopen(filename, "w");

if (!f) {
theMsg->ioError(filename);
return 0;

}

int i,j,k;
McDArray<McVec3f>& points = surface->points;
McDArray<Surface::Triangle>& triangles = surface->triangles;

// Write number of points and number of triangles
fprintf(f, "%d %d\n", points.size(), triangles.size());

// Write point coordinates
for (i=0; i<points.size(); i++) {

McVec3f& v = points[i];
fprintf(f, "%g %g %g\n", v[0], v[1], v[2]);

Write Routines 567

}

// Write point indices of all triangles
for (i=0; i<triangles.size(); i++) {

int* idx = triangles[i].points;
fprintf(f, "%d %d %d\n", idx[0]+1, idx[1]+1, idx[2]+1);

}

// If there are data fields write them out too.
if (fields.size()) {

for (j=0; j<fields.size(); j++)
fprintf(f, "%d ", fields[j]->nDataVar());

fprintf(f, "\n");

for (i=0; i<points.size(); i++) {
for (j=0; j<fields.size(); j++) {

int n = fields[j]->nDataVar();
float* v = &fields[j]->dataPtr()[i*n];
for (k=0; k<n; k++)

fprintf(f, "%g ", v[k]);
}
fprintf(f, "\n");

}
}

fclose(f); // done
return 1;

}

MYPACKAGE_API
int writetrimesh(HxSurface* surface, const char* filename)
{

// Temporary array of surface data fields
McDArray<HxSurfaceField*> fields;

// Check if there are data fields attached to surface
for (int i=0; i<surface->downStreamConnections.size(); i++) {

HxSurfaceField* field =
(HxSurfaceField*) surface->downStreamConnections[i];

if (field->isOfType(HxSurfaceField::getClassTypeId()) &&
field->getEncoding() == HxSurfaceField::OnNodes)
fields.append(field);

}

// Write surface and all attached data fields
return writetrimesh(surface, fields, filename);

}

MYPACKAGE_API
int writetrimesh(HxSurfaceField* field, const char* filename)
{

// Check if data is defined on nodes
if (field->getEncoding() != HxSurfaceField::OnNodes) {

568 Chapter 13: File I/O

theMsg->printf("Data must be defined on nodes.");
return 0;

}

// Store pointer to field in dynamic array
McDArray<HxSurfaceField*> fields;
fields.append(field);

// Write surface and this data field
return writetrimesh(field->surface(), fields, filename);

}

In the upper part of the code, first a static utility method is defined which takes three arguments: a
pointer to a surface, a dynamic array of pointers to surface fields, and a file name. This is the function
that actually writes the data to a file. Once you have understood the Trimesh reader presented in Section
13.2.2, it should be no problem to follow the writer code too.

In the lower part of the code, two write routines mentioned above are defined, one for surfaces and the
other one for surface fields. Since these routines are to be exported for external use, we need to apply
the package macro MYPACKAGE API, at least on Windows.

Let us now look more closely at the surface writer. This routine first collects all surface
fields attached to the surface in a dynamic array. This is done by scanning surface-
>downStreamConnectionswhich provides a list of all objects attached to the surface. The class
type of each object is checked using the method isOfType. This sort of dynamic type-checking is
the same as in Open Inventor. If a surface field has been found and if it contains data defined on its
nodes, it is appended to the temporary array fields. The surface itself, as well as the collected fields,
are then written to file by calling the utility method defined in the upper part of the writer code.

The second write routine, the one adapted to surface fields, is simpler. Here a dynamic array of fields
is used too, but this array is filled with data representing the original surface field only. Once this has
been done, the same utility method can be called as in the first case.

Although actually two write routines have been defined, only one entry in the package resource file is
required. This entry looks as follows (see mypackage/share/resources/mypackage.rc):

dataFile -name "Trimesh Demo Format" \
-ext "trimesh" \
-type "HxSurface" \
-type "HxSurfaceField" \
-save "writetrimesh" \
-package "mypackage"

In order to compile and execute the write, please follow the instructions given in Section 11.5 (Com-
piling and Debugging).

Write Routines 569

13.4 The AmiraMesh API

Besides many standard file formats, amira also provides its own native format called AmiraMesh. The
AmiraMesh file format is very flexible. It can be used to save many different data objects including
image data, finite-element grids, and solution data defined on such grids. Among other features it
supports ASCII or binary data encoding, data compression, and storage of arbitrary parameters. The
format itself is described in more detail in the reference section of the users guide. In this section we
want to discuss how to save custom data objects in AmiraMesh format. For this purpose a special C++
utility class called AmiraMesh is provided. Using this class, reading and writing AmiraMesh files
becomes very easy.

Below we will first provide an overview of the AmiraMesh API. After that, we present two simple
examples. In the first one we show how colormaps are written in AmiraMesh format. In the second
one we show how such colormaps are read back again.

13.4.1 Overview

The AmiraMesh API consists of a single C++ class. This class is called AmiraMesh as is the file
format itself. It is defined in the header file include/amiramesh/AmiraMesh.h located in
the amira root directory. The class is designed to completely represent the information stored in
an AmiraMesh file in memory. When reading a file first an instance of an AmiraMesh class is
created. This instance can then be interpreted and the data contained in it can be copied into a matching
amira data object. Likewise, when writing a file, first an instance of an AmiraMesh class is created
and initialized with all required information. Then this instance is written to file simply by calling a
member method.

If you look at the header file or at the AmiraMesh class documentation, you will notice that there
are four public member variables called parameters, locationList, dataList, and field-
List. These variables completely store the information contained in a file. The first variable is of
type HxParamBundle. Like in an amira data object, it is used to store an arbitrary hierarchy of pa-
rameters. The other three member variables are dynamic arrays of pointers to locally defined classes.
The most important local classes are Location and Data, which are stored in locationList
and dataList, respectively.

A Location defines the name of a single- or multi-dimensional array. It does not store any data by
itself. This is done by a Data class. Every Data class must refer to some Location. For example,
when writing a tetrahedral grid, we may define two different one-dimensional locations, one called
Nodes and the other one called Tetrahedra. On the nodes we define a Data instance for storing the x-,
y-, and z-coordinates of the nodes. Likewise, on the tetrahedra we define a Data instance for storing
the indices of the four points of a tetrahedron.

As stated in the AmiraMesh class documentation, the Data class can take a pointer to some already
existing block of memory. In this way it is prevented that all data must be copied before it is written
to file. In order to write compressed data, the member method setCodec has to be called. Currently,
two different compression schemes are supported. The first one, called HxByteRLE, implements simple

570 Chapter 13: File I/O

run-length encoding on a per-byte basis. The second one, called HxZip, uses a more sophisticated
compression technique provided by the external zlib library. In any case, the data will be automatically
uncompressed when reading an AmiraMesh file.

It should be pointed out that the AmiraMesh file format itself merely provides a method for storing
arbitrary data organized in single- or multi-dimensional arrays in a file. It does not specify anything
about the semantics of the data. Therefore, when reading an AmiraMesh file it is not clear what kind of
data object should be created from it. To facilitate file I/O of custom data objects, the actual contents
of an AmiraMesh file are indicated by a special parameter called ContentType. For each such type,
a special read routine is registered. Like an ordinary read routine, an AmiraMesh reader is a global
function or a static member method of a C++ class. It has the following signature:

int readMyAmiraMesh(AmiraMesh* m, const char* filename);

This method is called whenever the ContentType parameter matches the the one the read method is
registered for. The reader should create an amira data object from the contents of the AmiraMesh
class. The filename can be used to define the name of the resulting data object. In order to register
an AmiraMesh read routine, a statement similar to the following one must be put into the package
resource file:

amiramesh -ContentType "MyType" \
-load "readMyAmiraMesh" \
-package "mypackage"

13.4.2 Writing an AmiraMesh File

As a concrete example, in this section we want to show how a colormap is written in AmiraMesh
format. In particular, we consider colormaps of type HxColormap256, consisting of N discrete
RGBA tuples. Like most other write methods, the AmiraMesh writer is a global C++ function. Let us
first look at the code before discussing the details.

HXCOLOR_API
int writeAmiraMesh(HxColormap256* map, const char* filename)
{

float minmax[2];
minmax[0] = map->minCoord();
minmax[1] = map->maxCoord();
int size = map->getLength();

AmiraMesh m;
m.parameters = map->parameters;
m.parameters.set("MinMax", 2, minmax);
m.parameters.set("ContentType", "Colormap");

AmiraMesh::Location* loc =
new AmiraMesh::Location("Lattice", 1, &size);

The AmiraMesh API 571

m.insert(loc);

AmiraMesh::Data* data = new AmiraMesh::Data("Data", loc,
McPrimType::mc_float, 4, (void*) map->getDataPtr());

m.insert(data);

if (!m.write(filename,1)) {
theMsg->ioError(filename);
return 0;

}

setLoadCmd(filename);
return 1;

}

In the first part of the routine a variable m of type AmiraMesh is defined. The parameters of the
colormap are copied into m. In addition, two more parameters are set. The first one, called MinMax,
describes the coordinate range of the colormap. The second one indicates the content type of the
AmiraMesh file. This parameter ensures that the colormap can be read back again by a matching
AmiraMesh read routine (see Section 13.4.3).

Before the RGBA data values can be stored, a Location of the right size must be created and
inserted into the AmiraMesh class. Afterwards, an instance of a Data class is created and inserted.
The constructor of the Data class takes a pointer to the Location as an argument. Moreover, a
pointer to the RGBA data values is specified. Each RGBA tuple consists of four numbers of type float.

13.4.3 Reading an AmiraMesh File

In the previous section we presented a simple AmiraMesh write routine for colormaps. We now want
to read back such files again. For this reason we define a static AmiraMesh read function in class
HxColormap256. Of course, a global C++ function could be used as well. The read function is
registered in the package resource file hxcolor.rc in the following way:

amiramesh -ContentType "Colormap" \
-load "HxColormap256::readAmiraMesh" \
-package "hxcolor"

This statement indicates that the static member method readAmiraMesh of the class HxCol-
ormap256 defined in package hxcolor should be called if the AmiraMesh file contains a parameter
ContentType equal to Colormap. The source code of the read routine looks as follows:

int HxColormap256::readAmiraMesh(AmiraMesh* m,
const char* filename)

{
for (int i=0; i<m->dataList.size(); i++) {

AmiraMesh::Data* data = m->dataList[i];

572 Chapter 13: File I/O

if (data->location()->nDim() != 1)
continue;

if (data->dim()<3 || data->dim()>4)
continue;

if (data->primType() != McPrimType::mc_uint8 &&
data->primType() != McPrimType::mc_float)
continue;

int dim = data->dim();
int size = data->location()->dims()[0];

HxColormap256* colormap = new HxColormap256(size);
colormap->parameters = m->parameters;

switch (data->primType()) {
case McPrimType::mc_uint8: {

unsigned char* src =
(unsigned char*) data->dataPtr();

for (int k=0; k<size; k++, src+=dim) {
float a = (dim>3) ? (src[3])/255.0 : 1;
colormap->setRGBA(k, src[0]/255., src[1]/255.,

src[2]/255., a);
} } break;

case McPrimType::mc_float: {
float* src = (float*) data->dataPtr();
for (int k=0; k<size; k++, src+=dim) {

float a = (dim>3) ? src[3] : 1;
colormap->setRGBA(k, src[0], src[1], src[2], a);

} } break;
}

float minmax[2] = { 0,1 };
m->parameters.findReal("MinMax", 2, minmax);
colormap->setMinMax(minmax[0], minmax[1]);

HxData::registerData(colormap, filename);
return 1;

}

return 0;
}

Compared to the write routine, the read routine is a little bit more complex since some consistency
checks are performed. First, the member dataList of the AmiraMesh structure is searched for a
one-dimensional array containing vectors of three or four elements of type byte or float. This array
should contain the RGB or RGBA values of the colormap. If a matching Data structure is found, a
new instance of type HxColormap256 is created. The parameters are copied from the AmiraMesh
class into the new colormap. Afterwards, the actual color values are copied. Although the write routine

The AmiraMesh API 573

only exports RGBA tuples of type float, the read routine also supports byte data. For this reason two
different cases are distinguished in a switch statement. If the file only contains 3-component data, the
opacity value of each colormap entry is set to 1. Finally, the coordinate range of the colormap is set by
evaluating the 2-component parameter MinMax, and the new colormap is added to the object pool by
calling HxData::registerData.

574 Chapter 13: File I/O

Chapter 14

Writing Modules

Besides the data classes, modules are the core of amira. They contain the actual algorithms for visu-
alization and data processing. Modules are instances of C++ classes derived from the common base
class HxModule.

There are two major groups of modules: compute modules and display modules. The first group
usually performs some sort of operation on input data, creates some resulting data object, and deposits
the latter in the object pool. In contrast, display modules usually directly visualize their input data.
In this chapter both types of modules will be covered in separate sections. For each case a concrete
example will be presented and discussed in detail.

In addition, we also discuss the amira Plot API in this chapter. This API makes it possible to create
simple line plots or bar charts within a module.

14.1 A Compute Module

As already mentioned compute modules usually take one or more input data objects and calculate
a new resulting data object from these. The resulting data object is deposited in the object pool.
Compute modules are represented by red icons in the object pool. They are derived from the base class
HxCompModule.

In order to learn how to implement a new compute module, we will take a look at a concrete example.
In particular, we want to write a compute module which performs a threshold operation on a 3D image,
i.e., on an input object of type HxUniformScalarField3. The module produces another 3D image as
output. In the resulting image, all voxels with a value below a user-specified minimum value or above
a maximum value should be set to zero.

For easier understanding we start with a very simple and limited version of the module. Then we
iteratively improve the code. In particular, we proceed in three steps:

• Version 1: merely scans the input image, does not yet produce a result

• Version 2: creates an output object as result, uses the progress bar

• Version 3: adds a DoIt button, overwrites the existing result if possible

You can find the source code of all three versions in the demo package provided with the amira
developer version, i.e., under packages/mypackage in the local amira directory. For each version
there are two files: a header file called MyComputeThresholdN.h and a source code file called
MyComputeThresholdN.cpp (where N is either 1, 2, or 3). Since the names are different, you
can compile and execute all three versions in parallel.

In order to create a new local amira directory, please follow the instructions given in Section 12.2. In
order to compile the demo package, please refer to Section 11.5 (Compiling and Debugging).

14.1.1 Version 1: Skeleton of a Compute Module

The first version of our module does not yet produce any output. It simply scans the input image and
prints the number of voxels above and below the threshold.

Like most other modules, our compute module consists of a header file containing the class declaration
as well as a source file containing the actual code (or the class definition). Let us look at the header
file MyComputeThreshold1.h first:

///
//
// Example of a compute module (version 1)
//
///
#ifndef MY_COMPUTE_THRESHOLD_H
#define MY_COMPUTE_THRESHOLD_H

#include <Amira/HxCompModule.h>
#include <Amira/HxPortFloatTextN.h>
#include <mypackage/mypackageAPI.h>

class MYPACKAGE_API MyComputeThreshold1 : public HxCompModule
{

// This macro is required for all modules and data objects
HX_HEADER(MyComputeThreshold1);

public:
// Every module must have a default constructor.
MyComputeThreshold1();

// This virtual method will be called when the port changes.
virtual void compute();

// A port providing float text input fields.
HxPortFloatTextN portRange;

};

576 Chapter 14: Writing Modules

#endif

As usual in C++ code, the file starts with a define statement that prevents the contents of the file from
being included multiple times. Then three header files are included. HxCompModule.h contains the
definition of the base class of our compute module. The next file, HxPortFloatTextN.h, contains
the definition of a port we want to use in our class.

A port represents an input parameter of a module. In our case we use a port of type HxPortFloat-
TextN. This port provides one or more text fields where the user can enter floating point numbers.
The required text fields and labels are created automatically within the port constructor. As a program-
mer you simply put some ports into your module, specifying their types and labels, and do not have to
bother creating a user interface for it.

Following HxPortFloatTextN.h, the package header file mypackageAPI.h is included. This
file provides import and export storage-class specifiers for Windows systems. These are encoded in
the macro MYPACKAGE API. A class declared without this macro will not be accessible from outside
the DLL it is defined in. On Unix systems the macro is empty and can be omitted.

In the rest of the header file nothing more is done than deriving a new class from HxCompModule
and defining two member functions, namely the constructor and an overloaded virtual method called
compute. The computemethod is called when the module has been created and whenever a change
of state occurs on one of the module’s input data objects or ports. In fact, a connection to an input data
object is also established by a port, as we shall see later on. In this example we just declare one port in
our class, specifically an instance of type HxPortFloatTextN.

The corresponding source file looks like this:

///
//
// Example of a compute module (version 1)
//
///

#include <Amira/HxMessage.h>
#include <hxfield/HxUniformScalarField3.h>
#include <mypackage/MyComputeThreshold1.h>

HX_INIT_CLASS(MyComputeThreshold1,HxCompModule) // required macro

MyComputeThreshold1::MyComputeThreshold1() :
HxCompModule(HxUniformScalarField3::getClassTypeId()),
portRange(this,"range",2) // we want to have two float fields

{
}

void MyComputeThreshold1::compute()
{

// Access the input data object. The member portData, which
// is of type HxConnection, is inherited from HxModule.

A Compute Module 577

HxUniformScalarField3* field =
(HxUniformScalarField3*) portData.source();

// Check whether the input port is connected
if (!field) return;

// Get the input parameters from the user interface:
float minValue = portRange.getValue(0);
float maxValue = portRange.getValue(1);

// Access size of data volume:
const int* dims = field->lattice.dims();

// Now loop through the whole field and count the pixels.
int belowCnt=0, aboveCnt=0;
for (int k=0; k<dims[2]; k++) {

for (int j=0; j<dims[1]; j++) {
for (int i=0; i<dims[0]; i++) {

// This function returns the value at the specific
// grid node. It implicitly casts the result
// to float if necessary.
float value = field->evalReg(i,j,k);
if (value<minValue)

belowCnt++;
else if (value>maxValue)

aboveCnt++;
}

}
}

// Finally print the result.
theMsg->printf("%d voxels < %g, %d voxels > %g\n",

belowCnt, minValue, aboveCnt, maxValue);
}

Following the include statements and the obligatory HX INIT CLASS macro, the constructor is de-
fined. The usual C++ syntax must be used in order to call the constructors of the base class and the
class members. The constructor of the base class HxCompModule takes the class type of the input
data object to which this module can be connected. amira uses a special run-time type information
system that is independent of the rtti feature provided by the newer ANSI C++ compilers.

The second method we have to implement is the compute method. We first retrieve a pointer to
our input data object through a member called portData. This port is inherited from the base
class HxModule, i.e., every module has this member. The port is of type HxConnection and it
is represented as a blue line in the user interface (if connected). The rest of the compute method is
rather straightforward. The way the actual data are accessed and how the computation is performed,
of course, is highly specific to the input data class and the task the module performs. In this case we
simply loop over all voxels of the input image and count the number of voxels below the minimum
value and above the maximum value. In order to access a voxel’s value, we use the evalReg method.
This method is provided by any scalar field with regular coordinates, i.e., by any instance of class

578 Chapter 14: Writing Modules

HxRegScalarField3. Regardless of the primitive data type of the field, the result will always be
cast to float.

Once you have compiled the mypackage demo package, you can load the file lobus.hm from
amira ‘s data/tutorials directory and attach the module to it. Try to type in different threshold
values, or use different input data sets. Instructions for compiling local packages are provided in
Section 11.5 (Compiling and Debugging).

14.1.2 Version 2: Creating a Result Object

Now that we have a first working version of the module, we can add more functionality. First, we
want to create a real output data object. Then we further want to improve the module by using amira’s
progress bar and by providing better default values for the range port. The header file of our mod-
ule will not be affected by all these changes. We merely need to add some code in the source file
MyComputeThreshold2.cpp.

Let us start with the output data object. In the compute method just before the for-loop, we insert the
following statements:

// Create output with same primitive data type as input:
HxUniformScalarField3* output =

new HxUniformScalarField3(dims, field->primType());

// Output shall have same bounding box as input:
output->coords()->setBoundingBox(field->bbox());

This creates a new instance of type HxUniformScalarField3 with the same dimensions and the
same primitive data type as the input data object. Since the output has the same bounding box, i.e.,
the same voxel size as the input, we copy the bounding box. Note that this approach will only work
for fields with uniform coordinates. For other regular coordinate types such as stacked or curvilinear
coordinates, we refer to Section 15.2.

After the output object has been created, its voxel values are not yet initialized. This is done in the
inner part of the nested for-loops. The method set, used for this purpose, automatically performs a
cast from float to the primitive data type of the output field. In summary, the inner part of the for-loop
now looks as follows:

float value = field->evalReg(i,j,k);
float newValue = 0;

if (value<minValue)
belowCnt++;

else if (value>maxValue)
aboveCnt++;

else newValue = value;

output->set(i,j,k,newValue);

A Compute Module 579

Creating a new data object using the new operator will not automatically make it appear in the object
pool. Instead, we must explicitly register it. In a compute module this can be done by calling the
method setResult:

setResult(output); // register result

This method adds a data object to the object pool if it is not already present there. In addition, it
connects the object’s master port to the compute module itself. Like any other connection, this link will
be represented by a blue line in the object pool. The master port of a data object may be connected to
a compute module or to an editor. Such a master connection indicates that the data object is controlled
by an ‘upstream’ component, i.e., that its contents may be overridden by the object it is connected to.

Now that we have created an output object, let us address the progress bar. Although for the test data
set lobus.am our threshold operation does not take very long, it is good practice to indicate that the
application is busy when computations are performed that could take long time on large input data.
Even better is to show a progress bar, which is not difficult. Before the time-consuming part of the
compute routine, i.e., before the nested for-loops, we add the following line:

// Turn \amira into busy state, don’t activate Stop button.
theWorkArea->startWorkingNoStop("Computing threshold");

We use the global instance theWorkArea of class HxWorkArea here. The corresponding header
file must be included at the beginning of the source file. The method turns the application into the
‘busy’ state and displays a working message in the status line. As opposed to the method start-
Working, this variant does not activate the stop button. See Section 17.2 for details. When the
computation is done, we must call

theWorkArea->stopWorking(); // stop progress bar

in order to switch off the ‘busy’ state again. Inside the nested for-loops we update the progress bar just
before a new 2D slice is processed. This is done by the following line of code:

// Set progress bar, the argument ranges between 0 and 1.
theWorkArea->setProgressValue((float)(k+1)/dims[2]);

The value of (float)(k+1)/dims[2] progressively increases from zero to one during computa-
tion. Note that you should not call setProgressValue in the inner of the three loops. Each call
involves an update of the graphical user interface and therefore is relatively expensive. It is perfectly
okay to update the progress bar several hundred times during a computation, but not several hundred
thousand times.

Another slight improvement we have incorporated into the second version of our compute module
concerns the range port. In the constructor we have set new initial values for the minimum and
maximum fields. While both values are 0 by default, we now set them to 30 and 200, respectively:

580 Chapter 14: Writing Modules

// Set default value for the range port:
portRange.setValue(0,30); // min value is 30
portRange.setValue(1,200); // max value is 200

You may now test this second version of the compute module by loading the test data set lobus.am
from amira’s data/tutorials directory. Attach the ComputeThreshold2 module to it. To
better appreciate the progress bar, try to resample the input data, for example to 512x512x100, and
connect the compute module to the resampled data set. However, be sure that you have enough main
memory installed on your system.

14.1.3 Version 3: Reusing the Result Object

Testing the first two versions of our module, we saw that the module’s compute method is triggered
automatically when the module is created and whenever the range port is changed. Each time a new
result output data object is created. This quickly fills up the computer’s main memory as well as
amira’s graphical user interface. Therefore, we now change this behavior: A new result object is to be
created only the first time. Whenever the range port is changed afterwards, the existing result object
should be overridden. In order to achieve this, we modify the middle part of the compute method in
the following way:

// Check if there is a result which we can reuse.
HxUniformScalarField3* output =

(HxUniformScalarField3*) getResult();

// Check for proper type.
if (output && !output->isOfType(

HxUniformScalarField3::getClassTypeId()))
output = 0;

// Check if size and primType still match the current input:
if (output) {

const int* outdims = output->lattice.dims();
if (dims[0]!=outdims[0] ||dims[1]!=outdims[1] ||

dims[2]!=outdims[2] ||
field->primType() != output->primType())
output=0;

}

// If necessary, create a new result data set.
if (!output) {

output = new HxUniformScalarField3(dims,
field->primType());

output->composeLabel(field->getName(),"masked");
}

The getResult method checks whether there is a data set whose master port is connected to the
compute module. This typically is the object set by a previous call to setResult. However, it

A Compute Module 581

also may be any other object. Therefore, a run-time type check must be performed by calling the
isOfType member method of the output object. If the output object is not of type HxUniform-
ScalarField3, the variable output will be set to null. Then a check is made whether the output
object has the same dimensions and the same primitive data type as the input object. If this test fails,
output will also be set to null. At the end, a new result object will only be created if no result yet
exists or if the existing result does not match the input. It is possible to interactively try different range
values without creating a bunch of new results.

However, when one of the numbers of the range port is changed, computation starts immediately.
Sometimes this may be desired, but in this case we prefer to add a DoIt button as present in many other
compute modules. The user must explicitly push this button in order to start computation. In order
to use the DoIt button, the following line of code must be added in the public section of the module’s
header file:

// Start computation when this button is clicked.
HxPortDoIt portDoIt;

Of course, the corresponding include file Amira/HxPortDoIt.h must be included as well. Like
for the other port, we must initialize portDoIt in the constructor of our module in the source file:

MyComputeThreshold3::MyComputeThreshold3() :
HxCompModule(HxUniformScalarField3::getClassTypeId()),
portRange(this,"range",2), // we want to have two float fields
portDoIt(this,"action")

{
...

// Set text of doIt button
portDoIt.setLabel(0,"DoIt");

}

To achieve the desired behavior we finally change our compute method so that it immediately returns
unless the DoIt button was pressed. This can be done by adding the following piece of code at the
beginning of the compute method:

// Check whether doIt button was hit
if (!portDoIt.wasHit()) return;

With these changes, the module is already quite usable. Try to attach the final version of the module
to some data set, press DoIt, change the range and press DoIt again. Attach an OrthoSlice module to
the result while experimenting with the range (use the histogram mapping in the OrthoSlice in order
to see small changes). Try to detach the connection between the result and the module and press DoIt
again.

Finally, some remarks on performance. Although it is probably not critical in this simple example,
performance typically becomes an issue in real-world applications. In the inner-most loop, calling the

582 Chapter 14: Writing Modules

methods field-> evalReg and output-> set is convenient but rather expensive. For exam-
ple, if the input consists of bytes like in lobus.am, these methods involve a cast from unsigned
char to float and back to unsigned char.

The performance can be improved by writing code which explicitly handles a particular primitive
data type. A pointer to the actual data values of a HxUniformScalarField3 can be obtained by calling
field-> lattice.dataPtr(). The value returned by this method is of type void*. It must be
explicitly cast to the data type the field actually belongs to. The voxel values itself are arranged without
any padding. This means that the index of voxel (i, j, k) is given by (k*dims[1]+j)*dims[0]+i,
where dims[0] and dims[1] denote the number of voxels in the x and y directions, respectively.

14.2 A Display Module

Our next example is a module which displays some geometry in amira’s 3D viewer. The module takes
a surface model as input and draws a little cube at every vertex that belongs to n triangles, where n is
a user-adjustable parameter.

From the previous section we already know the basic idea: We derive a new class from the base class
HxModule. Since this time our module does not produce a new data set we directly use HxModule as
base class instead of HxCompModule. As input the module should accept data of class HxSurface.
We need one additional port allowing the user to specify the parameter n. As in the previous section
we develop different versions of our module, thereby introducing new concepts step by step:

• Version 1:
creates an Open Inventor scene graph and displays it in the viewer

• Version 2:
adds a colormap port, provides a parse method for Tcl commands

• Version 3:
implements a new display mode, dynamically shows or hides a port

You can find the source code of all three versions of the module in the demo package provided with
the amira developer version, i.e., under packages/mypackage in the local amira directory. For
each version there are two files, a header file called MyDisplayVerticesN.h and a source code
file called MyDisplayVerticesN.cpp (where N is either 1, 2, or 3). Since the names are different
you can compile and execute all three version in parallel.

In order to create a new local amira directory, please follow the instructions given in Section 12.2. In
order to compile the demo package, please refer to Section 11.5 (Compiling and Debugging).

14.2.1 Version 1: Displaying Geometry

The first version of our module, called MyDisplayVertices1, merely detects the vertices of interest and
displays them using little cubes. In order to understand the code, we first need to look more closely at

A Display Module 583

the class HxSurface. As we can see in the reference documentation, a surface essentially contains
an array of 3D points and an array of triangles. Each triangle has three indices pointing into the list
of points. In order to count the triangles per vertex, we simply walk through the list of triangles and
increment a counter for each vertex.

Once we have detected all interesting vertices, we are going to display them using small cubes. This
is done by creating an Open Inventor scene graph. If you want to learn more about Open Inventor, you
probably should look at The Inventor Mentor, an excellent book about Open Inventor published by
Addison-Wesley. In brief, an Open Inventor scene graph is a tree-like structure of C++ objects which
describes a 3D scene. Our scene is quite simple. It consists of one separator node containing several
cubes, i.e., instances of class SoCube. Since an SoCube is always located at the origin, we put an
additional node of type SoTranslation right before each SoCube. We adjust the size of the cubes
so that each side is 0.01 times the length of the diagonal of the bounding box of the input surface.

After this short overview we now look at the header file of the module. It is called MyDisplayVer-
tices1.h:

///
//
// Example of a display module
//
///
#ifndef MY_DISPLAY_VERTICES_H
#define MY_DISPLAY_VERTICES_H

#include <McHandle.h> // smart pointer template class
#include <Amira/HxModule.h>
#include <Amira/HxPortIntSlider.h>
#include <mypackage/mypackageAPI.h>

#include <Inventor/nodes/SoSeparator.h>

class MYPACKAGE_API MyDisplayVertices1 : public HxModule
{

HX_HEADER(MyDisplayVertices1);

public:
// Constructor.
MyDisplayVertices1();

// Destructor.
˜MyDisplayVertices1();

// Input parameter.
HxPortIntSlider portNumTriangles;

// This is called when an input port changes.
virtual void compute();

protected:
McHandle<SoSeparator> scene;

584 Chapter 14: Writing Modules

};

#endif

The header file can be understood quite easily. First some other header files are included. Then the
new module is declared as a child class of HxModule. As usual, the macros MYPACKAGE API and
HX HEADER are obligatory. Our module implements a default constructor, a destructor, and a compute
method. In addition, it has a port of type HxPortIntSlider which allows the user to specify the
number of triangles of the vertices to be displayed.

A pointer to the actual Open Inventor scene is stored in the member variable scene of type
McHandle<SoSeparator>. A McHandle is a so-called smart pointer. It can be used like an
ordinary C pointer. However, each time a value is assigned to it, the reference counter of the ref-
erenced object is automatically increased or decreased. This is done by calling the ref or unref
method of the object. If the reference counter becomes zero or less, the object is deleted automatically.
We recommend using smart pointers instead of C pointers because they are safer.

The actual implementation of the module is contained in the file MyComputeThreshold1.cpp.
This file looks as follows:

///
//
// Example of a compute module (version 1)
//
///

#include <Amira/HxMessage.h>
#include <hxsurface/HxSurface.h>
#include <mypackage/MyDisplayVertices1.h>

#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoTranslation.h>

HX_INIT_CLASS(MyDisplayVertices1,HxModule)

MyDisplayVertices1::MyDisplayVertices1() :
HxModule(HxSurface::getClassTypeId()),
portNumTriangles(this,"numTriangles")

{
portNumTriangles.setMinMax(1,12);
portNumTriangles.setValue(6);
scene = new SoSeparator;

}

MyDisplayVertices1::˜MyDisplayVertices1()
{

hideGeom(scene);
}

void MyDisplayVertices1::compute()

A Display Module 585

{
int i;

// Access input object (portData is inherited from HxModule):
HxSurface* surface = (HxSurface*) portData.source();

if (!surface) { // Check if input object is available
hideGeom(scene);
return;

}

// Get value from input port, query size of surface:
int numTriPerVertex = portNumTriangles.getValue();
int nVertices = surface->points.size();
int nTriangles = surface->triangles.size();

// We need a triangle counter for every vertex:
McDArray<unsigned short> triCount(nVertices);
triCount.fill(0);

// Loop over all triangles and increase vertex counters:
for (i=0; i<nTriangles; i++)

for (int j=0; j<3; j++)
triCount[surface->triangles[i].points[j]]++;

// Now create the scene graph...
// First remove all previous childs:
scene->removeAllChildren();

// Cube size should be 1% of the bounding box diagonal:
float size = surface->getBoundingBoxSize().length() * 0.01;

// Pointer to coordinates cast from McVec3f to SbVec3f.
SbVec3f* p = (SbVec3f*) surface->points.dataPtr();

SbVec3f q(0,0,0); // position of last point
int count = 0; // vertex counter

for (i=0; i<nVertices; i++) {
if (triCount[i] == numTriPerVertex) {

SoTranslation* trans = new SoTranslation;
trans->translation.setValue(p[i]-q);

SoCube* cube = new SoCube;
cube->width = cube->height = cube->depth = size;

scene->addChild(trans);
scene->addChild(cube);

count++;
q=p[i];

}
}

586 Chapter 14: Writing Modules

theMsg->printf("Found %d vertices belonging to %d triangles",
count, numTriPerVertex);

showGeom(scene); // finally show scene in viewer
}

A lot of things are happening here. Let us point out some of these in more detail now. The constructor
initializes the base class with the type returned by HxSurface::getClassTypeId. This ensures
that the module can only be attached to data objects of type HxSurface. The constructor also ini-
tializes the member variable portNumTriangles. The range of the slider is set from 1 to 12. The
initial value is set to 6. Finally, a new Open Inventor separator nodes is created and stored in scene.

The destructor contains only one call, hideGeom(scene). This causes the Open Inventor scene to
be removed from all viewers (provided it is visible). The scene itself is deleted automatically when the
destructor of McHandle is called.

The actual computation is performed in the compute method. The method returns immediately if
no input surface is present. If an input surface exists, the numbers of triangles per point are counted.
For this purpose a dynamic array triCount is defined. The array provides a counter for each vertex.
Initially it is filled with zeros. The counters are increased in a loop over the vertices of all triangles.

In the second part of the compute method the Open Inventor scene graph is created. First, all previous
children of scene are removed. Then the length of the diagonal of the input surface is determined.
The size of the cubes will be set proportional to this length. For convenience the pointer to the coor-
dinates of the surface is stored in a local variable p. Actually the coordinates are of type McVec3f.
However, this class is fully compatible with the Open Inventor vector class SbVec3f. Therefore the
pointer to the coordinates can be cast as shown in the code.

After everything has been set up, every element of the array triCount is checked in a for-loop. If
the value of an element matches the selected number of triangles per vertex, two new Inventor nodes
of type SoTranslation and SoCube are created, initialized, and inserted into scene. Since the
SoTranslation also affects all subsequent translation nodes we must remember the position of the
last point in q and subtract this position from the one of the current point. Alternatively, we could
have encapsulated the SoTranslation and the SoCube in an additional SoSeparator node.
However, this would have resulted in a more complex scene graph. At the very end of the compute
method, the new scene graph is made visible in the viewer by calling showGeom. This method
automatically checks if a node has already been visible. Therefore it may be called multiple times with
the same argument.

The module is registered in the usual way in the package resource file, i.e., in mypack-
age/share/resource/mypackage.rc. Once you have compiled the demo package, you may
test the module by loading the surface mypackage/data/test.surf located in the local amira
directory.

A Display Module 587

14.2.2 Version 2: Adding Color and a Parse Method

In this section we want to add two more features to our module. First, we want to use a colormap
port which allows us to specify the color of the cubes. Second, we want to add a parse method which
allows us to specify additional Tcl commands for the module.

A colormap port is used to establish a connection to a colormap, i.e., to a class of type HxColormap.
It is derived from HxConnection but, in contrast to the base class, it provides a graphical user
interface showing the contents of the colormap and letting the user change its coordinate range. If no
colormap is connected to the port, a default color is displayed. The default color can be edited by the
user by double-clicking the color bar.

In order to provide our module with a colormap port, we must insert the following line into the mod-
ule’s header file:

HxPortColormap portColormap;

Of course, we must also include the header file of the class HxPortColormap. This file is located
in package hxcolor. Note that the order in which ports are displayed on the screen depends on
the order in which the ports are declared in the header file. If we declare portColormap before
portNumTriangles, the colormap port will be displayed before the integer slider.

In the compute method of our module we add the following piece of code just after the previous
children of the scene graph have been removed:

SoMaterial* material = new SoMaterial;
material->diffuseColor =

portColormap.getColor(numTriPerVertex);
scene->addChild(material);

With these lines we insert a material node right before all the translation and cube nodes into the sep-
arator. The material node causes the cubes to be displayed in a certain color. We call the getColor
method of the colormap port in order to determine this color. If the port is not connected to a colormap,
this method simply returns the default color. However, if it is connected, the color is taken from the
colormap. As an argument we specify numTriPerVertex, the number of triangles of the selected
vertices. Depending on the value of portNumTriangles, the cubes therefore will be displayed in
different colors. Of course, this requires that the range of the colormap extend from something like 1
to 10 or 12.

Besides the colormap port, we also want to add a Tcl command interface to our module. This is done
by overloading the virtual method parse of HxModule. We therefore insert the following line into
the module’s class declaration:

virtual int parse(Tcl_Interp* t, int argc, char **argv);

588 Chapter 14: Writing Modules

In a parse method special commands can be defined which allow us to control the module in a more
sophisticated way. A typical application is to set special parameters which should not be represented
by a separate port in the user interface. As an example, we want to provide a method which allows us
to change the size of the cubes. In the initial version of the module the cubes were adjusted so that
each side was 0.01 times the length of the diagonal of the bounding box of the input surface. The value
of the scale factor shall now be stored in the member variable scale. In order to set and get this
variable, two Tcl commands setScale and getScale shall be provided. The implementation of
the parse method looks as follows:

int
MyDisplayVertices2::parse(Tcl_Interp* t, int argc, char **argv)
{

if (argc < 2) return TCL_OK;
char *cmd = argv[1];

if (CMD("setScale")) {
ASSERTARG(3);
scale = atof(argv[2]);
fire(); // ensures that cubes will be updated immediately

}
else if (CMD("getScale")) {

Tcl_VaSetResult(t, "%g", scale);
}
else return HxModule::parse(t,argc,argv);

return TCL_OK;
}

Commands are defined in a sequence of if-else statements. For each command, the macro CMD should
be used. At the end of the if-else sequence the parse method of the base class should be called. Note
that after a command is issued, the compute method of the module will not be called automatically by
default. This is in contrast to interactive changes of ports. However, we may explicitly call fire in a
command like shown above. In this case the size of the cubes then will be adjusted immediately. You
may test the parse method by loading the file mypackage/data/test.surf, attaching Dis-
playVertices2 to it, and then typing something like DisplayVertices2 setScale 0.03
into the amira console window.

14.2.3 Version 3: Adding an Update Method

Besides a compute method, modules may also define a update method. This method is called just
before the compute method and also whenever a module is selected. In the update method, the user-
interface of the module can be configured, i.e., ports can be shown or hidden dynamically if this is
required, the sensitivity of ports can be adjusted, or the number of entries of an option menu can be
modified dynamically.

In order to illustrate how an update method might work, we implement an alternate display mode
in our module. In this mode all vertices of a surface should be displayed, not only the ones with a

A Display Module 589

certain number of neighboring triangles. In this second mode the slider portNumTriangles is not
meaningful anymore. We therefore hide it by defining an appropriate update method. The following
lines are added in the header file MyDisplayVertices3.h:

// Mode: 0=selected vertices, 1=all vertices
HxPortRadioBox portMode;

// Shows or hides required ports.
virtual void update();

The new radio box port lets the user switch between the two display modes. Like the compute method,
the update method takes no arguments and also has no return value.

If you look into the source code file MyDisplayVertices3.cpp you will notice that the radio box
port is initialized in the constructor of the module and that the text labels are set properly. The update
method itself is quite simple:

void MyDisplayVertices3::update()
{

if (portMode.getValue()==0)
portNumTriangles.show();

else portNumTriangles.hide();
}

The slider portNumTriangles is shown or hidden depending on the value of the radio box port.
Note that before the update method is called, all ports are marked to be shown. Therefore you must hide
them every time update is called. For example, the show and hide calls should not be encapsulated
by an if statement which checks if some input port is new.

In order to support the new all-vertices display style, we slightly modify the way the Open Inventor
scene graph is created. Instead of a single SoMaterial node, we insert a new one whenever the
color of a cube needs to be changed, i.e., whenever the number of triangles of a vertex differs from the
previous one. The new for-loop looks as follows:

int lastNumTriPerVertex = -1;
int allVertices = portMode.getValue();

for (i=0; i<nVertices; i++) {
if (allVertices || triCount[i]==numTriPerVertex) {

if (triCount[i]!=lastNumTriPerVertex) {
SoMaterial* material = new SoMaterial;
material->diffuseColor =

portColormap.getColor(triCount[i]);
scene->addChild(material);
lastNumTriPerVertex = triCount[i];

}

590 Chapter 14: Writing Modules

SoTranslation* trans = new SoTranslation;
trans->translation.setValue(p[i]-q);

SoCube* cube = new SoCube;
cube->width = cube->height = cube->depth = size;

scene->addChild(trans);
scene->addChild(cube);

count++;
q=p[i];

}
}

Again, you can test the module by loading the file mypackage/data/test.surf and attaching
DisplayVertices3 to it. If you connect the physics.icol colormap to the colormap port, adjust the
colormap range to 1...9, and select the all-vertices display style, you should get an image similar to the
one shown in Figure 14.1.

14.3 A Module With Plot Output

In some cases you may want to show a simple 2D plot in an amira module, for example a histogram
or some bar chart. To facilitate this task amira provides a special-purpose Plot API which can be used
in any amira object, regardless of whether it is a compute module or a display module.

The class PzEasyPlot provides the necessary methods to open a plot window and to draw in that
window. In the following, we illustrate how to use this class, again by means of an example. In
particular, we are going to write a module which plots the number of voxels per slice for all materials
defined in a label field. A label field usually represents the results of an image segmentation operation.
For each voxel there is a label indicating which material the voxel belongs to. In a separate section
further features of the Plot API will be described.

14.3.1 A Simple Plot Example

In this section we show how to plot some simple curves using the class PzEasyPlot. As mentioned
above, the curves represent the number of voxels per slice for the materials of a label field. For this
purpose we define a new module called MyPlotAreaPerSlice.

Like the other examples, this module is contained in the amira demo package. In order to check out
the demo package, you must create a local amira directory as described in Section 12.2. In order to
compile the demo package, please refer to Section 11.5 (Compiling and Debugging).

Let us first look at the header file MyPlotAreaPerSlice.h:

///
//

A Module With Plot Output 591

Figure 14.1: The demo module DisplayVertices3 displays little cubes at the vertices of a surface. The cubes are colored
according to the number of neighboring triangles.

592 Chapter 14: Writing Modules

// Example of a plot module (header file)
//
///
#ifndef MY_PLOT_AREA_PER_SLICE_H
#define MY_PLOT_AREA_PER_SLICE_H

#include <Amira/HxModule.h>
#include <Amira/HxPortButtonList.h>
#include <hxplot/PzEasyPlot.h> // simple plot window
#include <mypackage/mypackageAPI.h>

class MYPACKAGE_API MyPlotAreaPerSlice : public HxModule
{

HX_HEADER(MyPlotAreaPerSlice);

public:
// Constructor.
MyPlotAreaPerSlice();

// Shows the plot window.
HxPortButtonList portAction;

// Performs the actual computation.
virtual void compute();

protected:
McHandle<PzEasyPlot> plot;

};

#endif

The class declaration is very simple. The module is derived directly from HxModule. It provides a
constructor, a compute method, and a port of type HxPortButtonList. In fact, we will only use a
single push button in order to let the user pop up the plot window. The plot window class PzEasy-
Plot itself is referenced by a smart pointer, i.e., by a variable of type McHandle<PzEasyPlot>.
We have already used smart pointers in Section 14.2.1, for details see there.

Now let us take a look at the source file MyPlotAreaPerSlice.cpp:

///
//
// Example of a plot module (source code)
//
///

#include <Amira/HxWorkArea.h>
#include <hxfield/HxLabelLattice3.h>
#include <mypackage/MyPlotAreaPerSlice.h>

HX_INIT_CLASS(MyPlotAreaPerSlice,HxModule)

MyPlotAreaPerSlice::MyPlotAreaPerSlice() :

A Module With Plot Output 593

HxModule(HxLabelLattice3::getClassTypeId()),
portAction(this,"action",1)

{
portAction.setLabel(0,"Show Plot");
plot = new PzEasyPlot("Area per slice");
plot->autoUpdate(0);

}

void MyPlotAreaPerSlice::compute()
{

HxLabelLattice3* lattice = (HxLabelLattice3*)
portData.source(HxLabelLattice3::getClassTypeId());

// Check if valid input is available.
if (!lattice) {

plot->hide();
return;

}

// Return if plot window is invisible and show button
// wasn’t hit
if (!plot->isVisible() && !portAction.isNew())

return;

theWorkArea->busy(); // activate busy cursor

int i,k,n;
const int* dims = lattice->dims();
unsigned char* data = lattice->getLabels();
int nMaterials = lattice->materials()->nBundles();

// One counter per material and slice
McDArray< McDArray<float> > count(nMaterials);

for (n=0; n<nMaterials; n++) {
count[n].resize(dims[2]);
count[n].fill(0);

}

// Count number of voxels per material and slice
for (k=0; k<dims[2]; k++) {

for (i=0; i<dims[1]*dims[0]; i++) {
int label = data[k*dims[0]*dims[1]+i];
if (label<nMaterials)

count[label][k]++;
}

}

plot->remData(); // remove old curves

for (n=0; n<nMaterials; n++) // add new curves
plot->putData(lattice->materials()->bundle(n)->name(),

dims[2], count[n].dataPtr());

594 Chapter 14: Writing Modules

plot->update(); // refresh display
plot->show(); // show or raise plot window

theWorkArea->notBusy(); // deactivate busy cursor
}

In the constructor the base class HxModule is initialized with the class type ID of the class HxLa-
belLattice3. This class is not a data class derived from HxData but a so-called interface. Inter-
faces are used to provide a common API for objects not directly related by inheritance. In our case,
MyPlotAreaPerSlice can be connected to any data object providing a HxLabelLattice3 in-
terface. This might be a HxUniformLabelField3 but also a HxStackedLabelField3 or
something else.

Also in the constructor, a new plot window of type PzEasyPlot is created and stored in plot. Then
the method plot->autoUpdate(0) is called. This means that we must explicitly call the update
method of PzEasyPlot after the contents of the plot window are changed. Auto-update should be
disabled when more than one curve is being changed at once.

As usual, the actual work is performed by the compute method. First, we retrieve a pointer to the label
lattice. Since we want to use an interface instead of a data object itself, we must specify the class type
ID of the interface as an argument of the source method of portData. Otherwise we would get a
pointer to the object providing the interface, but we can’t be sure about the type of this object.

The method returns if no label lattice is present or if the plot window is not visible and the show button
has not been pressed. Otherwise, the contents of the plot window are recomputed from scratch. For
this purpose a dynamic array of arrays called count is defined. The array provides a counter for each
material and for each slice of the label lattice. Initially all counters are set to zero. Afterwards, they
are incremented while the voxels are traversed in a nested for-loop.

The actual initialization of the plot window happens subsequently. First, old curves are removed
by calling plot->remData. Then, for each material, a new curve is added by calling plot-
>putData. Afterwards, plot->update is called. If we had not disabled ‘auto update’ in the
constructor, the plot window would have been updated automatically in each call of putData. The
putData method creates a curve with the given name and sets the values. If a curve of the given
name exists, the old values are overridden. The method returns a pointer to the curve which in turn can
be used to set attributes for the curve individually (see below). Finally, the plot window is popped up
and the ‘busy’ cursor we have activated before is switched off again.

To test the module, first compile the demo package. For instructions, see Section 11.5 (Compiling
and Debugging). Then load the file data/tutorials/lobus.labels.am from the amira root
directory. Attach PlotAreaPerSlice to it and press the show button. You then should get a result
like that shown in Figure 14.2.

A Module With Plot Output 595

Figure 14.2: Plot produced by sample module PlotAreaPerSlice.

14.3.2 Additional Features of the Plot API

The ‘pointer to curve’ objects returned by the putData call can be used to access the curve directly,
i.e., to manipulate its attributes. The most important attributes of curve objects are:

• Color, represented by a RGB values between 0 and 1. Can be set by calling:
curve->setAttr("color", r, g, b);

• Line width, represented by an integer number. Can be set by calling:
curve->setAttr("linewidth", linewidth);

• Line type, represented by an integer number. Available line types are 0=no line, 1=line,
2=dashed, 3=dash-dotted, and 4=dotted. Can be set by calling:
curve->setAttr("linetype", type);

• Curve type, represented by an integer number. Available curve types are 0=line curve, 1=his-
togram, 2=marked line, 3=marker. Can be set by calling:
curve->setAttr("curvetype", type);

For each attribute corresponding getAttr methods are available.

In order to access the axis of the ‘easy plot’ window, you must call

PzAxis* axis = plot->getTheAxis();

Don’t forget to include the corresponding header file PzAxis.h.

596 Chapter 14: Writing Modules

The color, line width, and line type attributes of the curves apply to axes as well. Besides this, there
are some more methods to change the appearance of axes:

// Set the range of the axes
float xmin = 0.0, xmax = 1.0;
float ymin = 0.0, ymax = 1.0;
axis->setMinMax(xmin, xmax, ymin, ymax);

// Set the label of an axis
axis->setLabel(0, "X Axis");
axis->setLabel(1, "Y Axis");

If you are not satisfied with the size of the plot window and you don’t want to change it using the
mouse every time, just call setSize right after creating the plot window:

plot->setSize(width, height);

As you would expect, the methods getMinMax, getLabel and getSize are also available with
the same parameter list as their set counterparts.

Finally, it is also possible to have a legend or a grid in the plot. In this case more arguments must be
specified in the constructor of PzEasyPlot:

int withLegend = 1;
int withGrid = 0;
plot = new PzEasyPlot("Area per slice",

withLegend, withGrid);

Like the axis, the legend and the grid are internally represented by separate objects of type PzLegend
and PzGrid. You can access these objects by calling the methods getTheLegend and getThe-
Grid. Details about the member methods of these objects are listed in the class reference documenta-
tion.

A Module With Plot Output 597

598 Chapter 14: Writing Modules

Chapter 15

Data Classes

This chapter provides an overview of the structure of amira data classes. Important classes are dis-
cussed in more detail. In particular, the following topics will be covered:

• an introduction to data classes, including the hierarchy of data classes

• data on regular grids, e.g., 3D images with uniform or stacked coords

• tetrahedral grids, including data fields defined on such grids

• hexahedral grids, including data fields defined on such grids

• other issues related to data classes, including transparent data access

15.1 Introduction

A profound knowledge of the amira data objects is essential to developers. Data objects occur as
input of write routines and almost all modules, and as output of read routines and compute modules.
In the previous chapters we already encountered several examples of amira data objects such as 3D
image data (represented by the class HxUniformScalarField3), triangular surfaces (represented
by the class HxSurface), or colormaps (represented by the class HxColormap). Like modules,
data objects are instances of C++ classes. All data objects are derived from the common base class
HxData. Data objects are represented by green icons in amira’s object pool.

In the following let us first present an overview of the hierarchy of data classes. Afterwards, we will
discuss some of the general concepts behind it.

15.1.1 The Hierarchy of Data Classes

The hierarchy of amira data classes roughly looks as follows (derived classes are indented, auxiliary
base classes are ignored):

HxData base class of all data objects

HxSpreadSheet spreadsheet containing an arbitrary number of rows and columns

HxColormap base class of colormaps

HxColormap256 colormap consisting of discrete RGBA tuples

HxCameraPath base class of camera paths

HxKeyframeCameraPath camera path based on interpolated key-frames

HxSpatialData data objects embedded in 3D space

HxIvData encapsulates an Open Inventor scene graph

HxField3 base class representing fields in 3D space

HxScalarField3 scalar field (1 component)

HxRegScalarField3 scalar field with regular coordinates

HxUniformScalarField3 scalar field with uniform coordinates

HxUniformLabelField3 material labels with uniform coordinates

HxStackedScalarField3 scalar field with stacked coordinates

HxStackedLabelField3 material labels with stacked coordinates

HxAnnaScalarField3 scalar field defined by an analytic expression

HxTetraScalarField3 scalar field defined on a tetrahedral grid

HxHexaScalarField3 scalar field defined on a hexahedral grid

HxVectorField3 vector field (3 components)

HxRegVectorField3 vector field with regular coordinates

HxUniformVectorField3 vector field with uniform coordinates

HxEdgeElemVectorField3 vector field defined by Whitney elements

HxAnnaVectorField3 vector field defined by an analytic expression

HxTetraVectorField3 vector field defined on a tetrahedral grid

HxHexaVectorField3 vector field defined on a hexahedral grid

HxComplexScalarField3 complex-valued scalar field (2 components)

HxRegComplexScalarField3 complex scalar field with regular coordinates

HxUniformComplexScalarField3 complex scalar field w/ uniform coords

HxTetraComplexScalarField3 complex scalar field defined on a tetra grid

HxHexaComplexScalarField3 complex scalar field defined on a hexa grid

HxComplexVectorField3 complex-valued vector field (6 components)

HxRegComplexVectorField3 complex vector field with regular coordinates

HxUniformComplexVectorField3 complex vector field w/ uniform coords

HxEdgeElemComplexVectorField3 complex vector field w/ Whitney elements

HxTetraComplexVectorField3 complex field defined on a tetrahedral grid

HxHexaComplexVectorField3 complex field defined on a hexahedral grid

HxColorField3 color field consisting of RGBA-tuples

HxRegColorField3 color field with regular coordinates

HxUniformColorField3 color field with uniform coordinates

HxRegField3 other n-component field with regular coordinates

HxTetraField3 other n-component field defined on a tetrahedral grid

HxHexaField3 other n-component field defined on a hexahedral grid

600 Chapter 15: Data Classes

HxVertexSet data objects providing a set of discrete vertices

HxSurface represents a triangular surface

HxTetraGrid represents a tetrahedral grid

HxHexaGrid represents a hexahedral grid

HxLineSet represents a set of line segments with vertex data

HxLandmarkSet represents one or multiple sets of corresponding landmarks

HxCluster represents a set of vertices with associated data values

HxSurfaceField base class for fields defined on triangular surfaces

HxSurfaceScalarField scalar field defined on a surface (1 component)

HxSurfaceVectorField vector field defined on a surface (3 components)

HxSurfaceComplexScalarField complex scalar surface field (2 components)

HxSurfaceComplexVectorField complex vector surface field (6 components)

HxSurfaceField other n-component field defined on a surface

Note that you can find an in-depth description of every class in the online reference documentation.
This description has been generated automatically from the commented amira header files by a tool
called DOC++. You may view it by pointing an external web browser such as Internet Explorer or
Netscape Navigator to the file share/doc++/index.html contained in the amira root directory.
The reference documentation not only covers data objects but all classes provided with the amira
developer version. As you already know, these classes are arranged in packages. For example, all data
classes derived from HxField3 are located in package hxfield, and all classes related to triangular
surfaces are located in package hxsurface.

15.1.2 Remarks About the Class Hierarchy

All data classes are derived from the base class HxData. This class in turn is derived from HxOb-
ject, the base class of all objects that can be put into the amira object pool. The class HxData
adds support for reading and writing data objects, and it provides the variable parameters of type
HxParamBundle. This variable can be used to annotate a data object by an arbitrary number of
nested parameters. The parameters of any data object can be edited interactively using the parameter
editor described in the User’s Guide.

We observe that the majority of data classes are derived from HxSpatialData. This is the base
class of all data objects which are embedded in 3D space as opposed for example to colormaps. HxS-
patialData adds support for user-defined affine transformations, i.e., translations, rotations, and
scaling. For details refer to Section 15.5.2. It also provides the virtual method getBounding-
Box which is redefined by all derived classes. Two important child classes of HxSpatialData are
HxField3 and HxVertexSet.

HxVertexSet is the base class of all data objects that are defined on an unstructured set of vertices
in 3D space, like surfaces or tetrahedral grids. The class provides methods to apply a user-defined
affine transformation to all vertices of the object, or modify the point coordinates in some other way.

HxField3 is the base class of data fields defined on a 3D-domain, like 3D scalar fields or 3D vector

Introduction 601

fields. HxField3 defines an efficient procedural interface to evaluate the field at an arbitrary 3D point
within the domain, independent of whether the latter is a regular grid, a tetrahedral grid, or something
else. The procedural interface is described in more detail in Section 15.5.1.

Looking at the inheritance hierarchy again, we observe that a high level distinction is made between
fields returning a different number of data values. For example, all 3D scalar fields are derived from
a common base class HxScalarField3, and all 3D vector fields are derived from a common base
class HxVectorField3. The reason for this structure is that many modules depend on the data
dimensionality of a field only, not on the internal representation of the data. For example, a module
for visualizing a flow field by means of particle tracing can be written to accept any object of type
HxVectorField3 as input. It then automatically operates on all derived vector fields, regardless of
the type of grid they are defined on.

On the other hand, it is often useful to treat the number of data variables of a field as a dynamic
quantity and to distinguish between the type of grid a field is defined on. For example, we may
wish to have a common base class of fields defined on a regular grid and derived classes for regular
scalar or vector fields. Since this structure and the one sketched above are very hard to incorporate
into a common class graph, even if multiple inheritance were used, another concept has been chosen
in amira, namely interfaces. Interfaces were first introduced by the Java programming language.
They allow the programmer to take advantage of common properties of classes that are not related by
inheritance.

In amira interfaces can be implemented as class members, or as additional base classes. In the first case
a data class contains an interface class, while in the second case it is derived from HxInterface.
Important interface classes are HxLattice3, HxTetraData, and HxHexaData, which are mem-
bers of fields defined on regular, tetrahedral, and hexahedral grids, respectively. Another example is
HxLabelLattice3, which is a member of HxUniformLabelField3, as well as HxStacked-
LabelField3. In Section 14.3.1 we have already presented an example of how to use this interface
in order to write a module which operates on any label field, regardless of the actual coordinate type.

15.2 Data on Regular Grids

Fields defined on a regular grid occur in many different applications. For example, 3D image volumes
fall into this category. The term ‘regular’ means that the nodes of the grid are arranged as a regular 3D
array, i.e., every node can be addressed by an index triple (i,j,k). A regular field can be characterized
by three major properties: the coordinate type, the number of data components, and the primitive
component data type (for example short or float).

In the class hierarchy a major distinction is made between the number of data components of a field.
For example, there is a class HxRegScalarField3 representing (one-component) scalar fields de-
fined on a regular grid. This class is derived from the general base class HxScalarField3. Sim-
ilar classes exist for (three-component) vector fields, complex scalar field, and complex vector fields
defined on regular grids. Fields not falling into one of these categories, i.e., fields defined on regu-
lar grids with a different number of data components, are represented by the class HxRegField3

602 Chapter 15: Data Classes

which is directly derived from HxField3. Moreover, there are separate subclasses for the most
relevant combinations of the number of data components and the coordinates type, like HxStacked-
ScalarField3 or HxUniformVectorField3. All regular data classes provide a member vari-
able lattice of type HxLattice3. This variable is an interface. It can be used to access data
fields with a different number of components in a transparent way.

Below we first discuss the lattice interface in more detail. We then present an overview of all sup-
ported coordinate types. Afterwards, two more types of data fields defined on regular coordinates are
discussed, namely label fields and color fields.

Note that all these fields can be evaluated without regard to the actual coordinate type or the primitive
data type by means of amira’s procedural interface for 3D fields (see Section 15.5.1).

15.2.1 The Lattice Interface

The actual data of any regular 3D field is stored in a member variable lattice of type HxLat-
tice3. This variable essentially represents a dynamic 3D array of n-component vectors. The number
of vector components as well as the primitive data type are subject to change, i.e., a data object of type
HxLattice3 can be re-initialized to hold a different number of components of different primitive
data type. However, a lattice contained in an object of type HxRegScalarField3 always consists
of 1-component vectors, while a lattice contained in an object of type HxRegVectorField3 al-
ways consists of 3-component vectors. In addition, the coordinates of the field are stored in a separate
coordinate object that is also referenced by the lattice.

Accessing the Data

To learn what kind of methods are provided by the lattice class, please refer to the online reference
documentation or directly inspect the header file HxLattice3.h located in package hxfield. At
this point, we just present a short example which shows how the dimensionality of the lattice, the
number of data components, and the primitive data type can be queried. The primitive data type is
encoded by the class McPrimType defined in package mclib. In particular, the following six data
types are supported by amira:

• McPrimType::mc uint8 (8-bit unsigned bytes)

• McPrimType::mc int16 (16-bit signed shorts)

• McPrimType::mc uint16 (16-bit unsigned shorts)

• McPrimType::mc int32 (32-bit signed integers)

• McPrimType::mc float (32-bit floats)

• McPrimType::mc double (64-bit doubles)

Regardless of the actual type of the lattice data values, the pointer to the data array is returned as
void*. The return value must be explicitly cast to a pointer of the correct type. This is illustrated

Data on Regular Grids 603

in the following example where we compute the maximum value of all data components of a lattice.
Note that the data values are stored one after another without any padding. The first index runs fastest.

HxLattice3& lattice = field->lattice;
const int* dims = lattice.dims();
int nDataVar = lattice.nDataVar();

switch (lattice.primType()) {
case McPrimType::mc_uint8: {

unsigned char* data = (unsigned char*) lattice.dataPtr();
unsigned char* max = data[0];
for (int k=0; k<dims[2]; k++)

for (int j=0; j<dims[1]; j++)
for (int i=0; i<dims[0]; i++)

for (int n=0; n<nDataVar; n++) {
int idx =

nDataVar*((k*dims[1]+j)*dims[0]+i)+n;
if (data[idx]>max)

max = data[idx];
}

theMsg->printf("Max value is %d", max);
} break;

case McPrimType::mc_int16: {
short* data = (short*) lattice.dataPtr();
short* max = data[0];
for (int k=0; k<dims[2]; k++)

for (int j=0; j<dims[1]; j++)
for (int i=0; i<dims[0]; i++)

for (int n=0; n<nDataVar; n++) {
int idx =

nDataVar*((k*dims[1]+j)*dims[0]+i)+n;
if (data[idx]>max)

max = data[idx];
}

theMsg->printf("Max value is %d", max);
} break;

...

}

As a tip, note that the processing of different primitive data types can often be simplified by defining
appropriate template functions locally. In the case of our example, such a template function may look
like this:

template<class T>
void getmax(T* data, const int* dims, int nDataVar)
{

T* max = data[0];
for (int k=0; k<dims[2]; k++)

604 Chapter 15: Data Classes

for (int j=0; j<dims[1]; j++)
for (int i=0; i<dims[0]; i++)

for (int n=0; n<nDataVar; n++) {
int idx =

nDataVar*((k*dims[1]+j)*dims[0]+i)+n;
if (data[idx]>max)

max = data[idx];
}

theMsg->printf("Max value is %d", max);
}

Using this template function, the above switch statement looks as follows:

switch (lattice.primType()) {
case McPrimType::mc_uint8:

getmax((unsigned char*)lattice.dataPtr(),dims,nDataVar);
break;

case McPrimType::mc_int16:
getmax((short*)lattice.dataPtr(),dims,nDataVar);
break;

...

}

Though less efficient, another possibility for handling different primitive data types is to use one of the
methods eval, set, getData, or putData. These methods always involve a cast to float if the
primitive data type of the field requires it.

Accessing the Lattice Interface

Imagine you want to write a module which operates on any kind of regular field, i.e., on objects of
type HxRegScalarField3, HxRegVectorField3, and so on. One way to achieve this would
be to configure the input port of the module so that it can be connected to all possible regular field
input objects. This can be done by calling the method portData.addType() in the module’s
constructor multiple times with the required class type IDs. In addition, all input types must be listed
in the package resource file. This can be done by specifying a blank-separated list of types as the
argument of the -primary option of the module command. In the compute method of the module,
the actual type of the input must be queried, then the input pointer must be cast to the required type
before a pointer to the lattice member of the object can be stored.

Of course, this approach is very tedious. A much simpler approach is to make use of the fact that the
lattice member of a regular field is an interface. Instead of the name of a real data class, the class type
ID of HxLattice3 may be used to specify to what kind of input object a module may be connected
to. In fact, if this is done, any data object providing the lattice interface will be considered as a valid
input. In order to access the lattice interface of the input object, the following statement must be
used in the module’s compute method (also check Section 14.3.1 for an example of how to deal with
interfaces):

Data on Regular Grids 605

HxLattice3* lattice = (HxLattice3*)
portData.source(HxLattice3::getClassTypeId());

Creating a Field From an Existing Lattice

When working with lattices, we may want to deposit a new lattice in the object pool, for example
as the result of a compute module. However, since HxLattice3 is not an amira data class, this is
not possible. Instead we must create a suitable field object which the lattice is a member of. For this
purpose the class HxLattice3 provides a static method create which creates a regular field and
puts an existing lattice into it. If the lattice contains one data component, a scalar field will be created;
if it contains three components, a vector field will be created, and so on. The resulting field may then
be used as the result of a compute module. Note that the lattice must not be deleted once it has been
put into a field object. The concept is illustrated by the following example:

HxLattice3* lattice = new HxLattice3(dims, nDataVar,
primType, otherLattice->coords()->duplicate());

...

HxField3* field = HxLattice3::create(lattice);
theObjectPool->addObject(field);

15.2.2 Regular Coordinate Types

Currently four different coordinate types are supported for regular fields, namely uniform coordinates,
stacked coordinates, rectilinear coordinates, and curvilinear coordinates. The coordinate types are
distinguished by way of the enumeration data type HxCoordType. The coordinates themselves are
stored in a separate utility class of type HxCoord3 which is referenced by the lattice member of a
regular field. For each coordinate type there is a corresponding subclass of HxCoord3.

As already mentioned in the introduction, for some important cases there are special sub-
classes of a regular field dedicated to a particular coordinate type. Examples are HxStacked-
ScalarField3 (derived from HxRegScalarField3) or HxUniformVectorField3) (de-
rived from HxRegVectorField3). If such special classes do not exist, the regular base class should
be used instead. In this case the coordinate type must be checked dynamically and the pointer to the co-
ordinate object has to be down-cast explicitly before it can be used. This is illustrated in the following
example:

HxCoord3* coord = field->lattice.coords();

if (coord->coordType() == c_rectilinear) {
HxRectilinearCoord3* rectcoord =

(HxRectilinearCoord3*) coord;
...

}

606 Chapter 15: Data Classes

Uniform Coordinates

Uniform coordinates are the simplest form of regular coordinates. All grid cells are axis-aligned and
of equal size. In order to compute the position of a particular grid node, it is sufficient to know the
number of cells in each direction as well as the bounding box of the grid.

Uniform coordinates are represented by the class HxUniformCoord3. This class provides a method
bbox which returns a pointer to an array of six floats describing the bounding box of the grid. The six
numbers represent the minimum x-value, the maximum x-value, the minimum y-value, the maximum
y-value, the minimum z-value, and the maximum z-value in that order. Note, that the values refer to
grid nodes, i.e., to the corner of a grid cell or to the center of a voxel. In order to compute the width of
a voxel, you should use code like this:

const int* dims = uniformcoords->dims();
const float* bbox = uniformcoords->bbox();
float width = (dims[0]>1) ? (bbox[1]-bbox[0])/(dims[0]-1):0;

Stacked Coordinates

Stacked coordinates are used to describe a stack of uniform 2D slices with variable slice distance.
They are represented by the class HxStackedCoord3. This class provides a method bboxXYwhich
returns a pointer to an array of four floats describing the bounding box of a 2D slice. In addition, the
method coordZ returns a pointer to an array containing the z-coordinate of each 2D slice.

Rectilinear Coordinates

Same as for uniform or stacked coordinates, in the case of rectilinear coordinates the grid cells are
aligned to the axes, but the grid spacing may vary from cell to cell in each direction. Rectilinear
coordinates are represented by the class HxRectilinearCoord3. This class provides three meth-
ods, coordX, coordY, and coordZ, returning pointers to the arrays of x-, y-, and z-coordinates,
respectively.

Curvilinear Coordinates

In the case of curvilinear coordinates, the position of each grid node is stored explicitly as a 3D vector
of floats. A single grid cell need not to be axis-aligned anymore. An example of a 2D curvilinear grid
is shown in Figure 15.1.

Curvilinear coordinates are represented by the class HxCurvilinearCoord3. This class provides
a method poswhich can be used to query the position of a grid node indicated by an index triple (i,j,k).
Alternatively, a pointer to the coordinate values may be obtained by calling the method coords. The
coordinate vectors are stored one after another without padding and with index i running fastest. Here
is an example:

Data on Regular Grids 607

Figure 15.1: Example of a 2D grid with curvilinear coordinates.

const int* dims = curvilinearcoords->dims();
const float* coords = curvilinearcoords->coords();

// Position of grid node (i,j,k)
float x = coords[3*((k*dims[1]+j)*dims[0]+i)];
float y = coords[3*((k*dims[1]+j)*dims[0]+i)+1];
float z = coords[3*((k*dims[1]+j)*dims[0]+i)+2];

15.2.3 Label Fields and the Label Lattice Interface

Label fields are used to store the results of an image segmentation process. Essentially, at each
voxel a number is stored indicating which material the voxel belongs to. Consequently, label fields
can be considered scalar fields. In fact, currently there are two different types of label fields, one
for uniform coordinates (represented by class HxUniformLabelField3 derived from HxUni-
formScalarField3) and one for stacked coordinates (represented by class HxStackedLa-
belField3 derived from class HxStackedScalarField3). Since the two types are not derived
from a common base class, a special-purpose interface called HxLabelLattice3 is provided. In
fact, this interface is in turn derived from HxLattice3. It replaces the standard lattice variable of
ordinary regular fields (see Section 15.2.1).

The primitive data type of a label field is always McPrimType::mc uint8, i.e., bytes. In addition
to the standard lattice interface, the label lattice interface also provides access to the label field’s
materials. Materials are stored in a special parameter subdirectory of the underlying data object. While
discussing the plot API, we already encountered an example of how to interpret the materials of a label
field (see Section 14.3.1). Note that whenever a new label is introduced, a new entry should also be
put into the material list. Existing materials are marked so that they can not be removed from the

608 Chapter 15: Data Classes

material list (this would corrupt the labeling). In order to remove obsolete materials, call the method
removeEmptyMaterials of HxLabelLattice3.

In addition to the labels, special weights can be stored in a label lattice. These weights are used to
achieve sub-voxel accuracy when reconstructing 3D surfaces from the segmentation results. A pointer
to the weights can be obtained by calling getWeights or getWeights2 of the label lattice. For
more details about HxLabelLattice3, please refer to the online class documentation.

15.2.4 Color Fields

Color fields are yet another type of regular fields. They consist of 4-component RGBA-byte-tuples
and are represented by the class HxRegColorField3 derived from HxColorField3. The latter
class is closely related to HxScalarField3 or HxVectorField3, see the overview on data class
inheritance presented in Section 15.1.1. For color fields with uniform coordinates there is a special
subclass HxUniformColorField3. Like any other regular fields, color fields provide a member
lattice which can be used to access the data in a transparent way.

15.3 Unstructured Tetrahedral Data

Another important type of data refers to fields defined on unstructured tetrahedral grids. Such grids
are often used in finite element simulations (FEM). In amira, tetrahedral grids and data fields defined
on such grids are implemented by two different classes or groups of classes and are also distinguished
in the user interface by different icons. The reason is that by separating grid and data there is no need
for replicating the grid in case many fields are defined on the same grid, a case that occurs frequently
in practice.

In the following two sections, we introduce the grid class HxTetraGrid before discussing the cor-
responding field classes and the interface HxTetraData.

Unstructured Tetrahedral Data 609

Figure 15.2: Numbering of points in a tetrahedron with positive volume (left). Numbering of the corresponding triangles (right).

15.3.1 Tetrahedral Grids

Tetrahedral grids in amira are implemented by the class HxTetraGrid and its base class Tetra-
Grid. Looking at the reference documentation of TetraGrid we observe that a tetrahedral grid
essentially consists of a number of dynamic arrays such as points, tetras, or materialIds.

• The points array is a list of all 3D points contained in the grid. A single point is stored as an
element of type McVec3f. This class has the same layout as the Open Inventor class SbVec3f.
Thus, a pointer to McVec3f can be cast to a pointer to SbVec3f and vice versa.

• The tetras array describes the actual tetrahedra. For each tetrahedron the indices of the four
points and the indices of the four triangles it consists of are stored. The numbering of the points
and triangles is shown in Figure 15.2. In particular, the fourth point is located above of the
triangle defined by the first three points. Triangle number i is located opposite to point number
i.

• The materialIds array contains 8-bit labels that assign a ’material’ identifier to every tetra-
hedron. For example, this is used in tetrahedral grids generated from segmented image data to
distinguish between different image segments corresponding to different material components
of physical objects represented by the (3D) image data Like in the case of label fields or surfaces,
the set of possible material values is stored in the parameter list of the grid data object.

The three arrays, points, tetras, and materialIds, must be provided by the ’user’. The
triangles of the grid are stored in an additional array called triangles. This array can be constructed
automatically by calling the member method createTriangles2. This method computes the
triangles from scratch and sets the triangle indices of all tetrahedra defined in tetras.

The triangles array also provides a way for accessing neighboring tetrahedra. Among other in-
formation (see reference documentation) stored for each triangle, the indices of the two tetrahedra it
belongs to are available. In the case of boundary triangles, one of these indices is -1. Therefore, in
order to get the index of a neighboring tetrahedron you can use the following code:

610 Chapter 15: Data Classes

// Find tetra adjacent to tetra n at face 0:
int triangle = grid->tetras[n].triangles[0];
otherTetra = grid->triangles[triangle].tetras[0];
if (otherTetra == n)

otherTetra = grid->triangles[triangle].tetras[1];
if (otherTetra == -1) {

// No neighboring tetra, boundary face
...

}

Note that it is possible to define a grid with duplicated vertices, i.e. with vertices having exactly the
same coordinates. This is useful to represent discontinuous data fields. The method createTriangles2
checks for such duplicated nodes and correctly creates a single triangle between two geometrically
adjacent tetrahedra, even if these tetrahedra refer to duplicated points.

Optionally the edges of a grid can be computed in addition to its points triangles, and tetrahedra by call-
ing createEdges. The edges are stored in an array called edges and another array edgesPerTetra
is used in order to store the indices of the six edges of a tetrahedron.

Moreover, the class TetraGrid provides additional optional arrays, for example to store a dynamic
list of the indices of all tetrahedra adjacent to a particular point (tetrasPerPoint). This and other
information is primarily used for internal purposes, for example to facilitate editing and smoothing of
tetrahedral grids.

15.3.2 Data Defined on Tetrahedral Grids

In most applications, you will not only have to deal with a single tetrahedral grid, but also with
data fields defined on it, for example scalar fields (e.g. temperature) or vector fields (e.g. flow ve-
locity). amira provides special classes for these data modalities, namely HxTetraScalarField3,
HxTetraVectorField3, HxTetraComplexScalarField3, HxTetraComplexVector-
Field3, and HxTetraField3 (see class hierarchy in Section 15.1.1).

Like in the case of regular data fields, the actual information is stored in a special member variable
called data, which is of type HxTetraData. Like the corresponding member type HxLattice3
for regular data, HxTetraData is an interface, i.e., derived from HxInterface. It provides
transparent access to data fields defined on tetrahedral grids regardless of the actual number of data
components of the field. In order to access that interface without knowing the actual type of input
object within a module, you may use the following statement:

HxTetraData* data = (HxTetraData*)
portData.source(HxTetraData::getClassTypeId());

if (!data) return;

Data on tetrahedral grids must always be of type float. The data values may be stored in three
different ways, indicated by the encoding type as defined in HxTetraData:

Unstructured Tetrahedral Data 611

• PER TETRA: One data vector is stored for each tetrahedron. The data are assumed to be constant
inside the tetrahedron.

• PER VERTEX: One data vector is stored for each vertex of the grid. The data are interpolated
linearly inside a tetrahedron.

• PER TETRA VERTEX: Four separate data vectors are stored for each tetrahedron. The data are
also interpolated linearly.

This last encoding scheme is useful for modeling discontinuous fields. In order to evaluate a field
at an arbitrary location in a transparent way, amira’s procedural data interface should be used. This
interface is described in Section 15.5.1.

Like HxLattice3, the class HxTetraData provides a static method create which can be used
to create a matching data field, e.g., an object of type HxTetraScalarField3, from an existing
instance of HxTetraData. The HxTetraData object will not be copied but will be directly put
into the field object. Therefore it may not be deleted afterwards. Also see Section 15.2.1.

15.4 Unstructured Hexahedral Data

In an unstructured hexahedral grid the grid cells are defined explicitly by specifying all the points in
the cell. This is in contrast to regular hexahedral grids where the grid cells are arranged in a regular
3D array and thus are defined implicitly. The implementation of hexahedral grids is very similar to
tetrahedral grids as described in the previous section. There are separate classes for the grid itself and
for data fields defined on a hexahedral grid.

In the following two sections we introduce the grid class HxHexaGrid before discussing the corre-
sponding field classes and the interface HxHexaData.

15.4.1 Hexahedral Grids

Hexahedral grids in amira are implemented by the class HxHexaGrid and its base class HexaGrid.
Looking at the reference documentation of HexaGrid we observe that a hexahedral grid essentially
consists of a number of dynamic arrays such as points, hexas, or materialIds.

• The points array is a list of all 3D points contained in the grid. A single point is stored as an
element of type McVec3f. This class has the same layout as the Open Inventor class SbVec3f.
Thus, a pointer to McVec3f can be cast to a pointer to SbVec3f and vice versa.

• The hexas array describes the actual hexahedra. For each hexahedron the indices of the eight
points and the indices of the six faces it consists of are stored. The numbering of the points is
shown in Figure 15.3. Degenerate cells such as prisms or tetrahedra may be defined by choosing
the same index for neighboring points.

• The materialIds array contains 8-bit labels, which assign a material identifier to every hex-
ahedron. Like the case of label fields or surfaces, the set of possible material identifiers is stored

612 Chapter 15: Data Classes

Figure 15.3: Numbering of points in a hexadron with positive volume.

in the parameter list of the grid data object.

The three arrays, points, hexas, and materialIds, must be provided by the ’user’. The faces
of the grid are stored in an additional array called faces. This array can be constructed automatically
by calling the member method createFaces. This method computes the faces from scratch and
sets the face indices of all hexahedra defined in hexas.

Note that, in contrast to tetrahedral grids, in a hexahedral grid degenerate cells are allowed, i.e., cells
where neighboring corners in a cell coincide. In this way grids with mixed cell types can be defined.
The faces of a hexahedron are stored in a small dynamic array called faces. For a degenerate cell
this array contains less then six faces.

Also note that, although non-conformal grids are allowed, i.e., grids with hanging nodes on edges
and faces, currently the method createFaces does not detect the connectivity between neighboring
hexahedra sharing less than four points. Thus, faces between such cells are considered to be external
cells.

15.4.2 Data Defined on Hexahedral Grids

In most applications, you will not only have to deal with a single hexahedral grid, but also with data
fields defined on it, for example scalar fields (e.g. temperature) or vector fields (e.g., flow velocity).
amira provides special classes for these data modalities, namely HxHexaScalarField3, HxHex-
aVectorField3, HxHexaComplexScalarField3,HxHexaComplexVectorField3, and
HxHexaField3 (see class hierarchy in Section 15.1.1).

Like for fields defined on tetrahedral grids, the actual information is stored in a special member variable
called data, which is of type HxHexaData. HxHexaData is a so-called interface, i.e. derived from
HxInterface. The data variable provides transparent access to data fields defined on hexahedral
grids regardless of the actual number of data components the field has. In order to access the interface
without knowing the actual type of input object within a module, you may use the following statement:

Unstructured Hexahedral Data 613

HxHexaData* data = (HxHexaData*)
portData.source(HxHexaData::getClassTypeId());

if (!data) return;

Data on hexahedral grids must always be of type float. The data values may be stored in three
different ways, indicated by the encoding type defined in HxHexaData:

• PER HEXA: One data vector is stored for each hexahedron. The data are assumed to be constant
inside the hexahedron.

• PER VERTEX: One data vector is stored for each vertex of the grid. The data are interpolated
trilinearly inside a hexahedron.

• PER HEXA VERTEX: Eight separate data vectors are stored for each hexahedron. The data are
also interpolated trilinearly.

The last encoding scheme is useful for modeling discontinuous fields. In order to evaluate a field at an
arbitrary location in a transparent way, amira’s procedural data interface should be used. This interface
is described in Section 15.5.1.

Like HxLattice3, the class HxHexaData provides a static method create which can be used
to create a matching data field, e.g., an object of type HxHexaScalarField3, from an existing
instance of HxHexaData. The HxHexaData object will not be copied but will be directly put into
the field object. Therefore it may not be deleted afterwards. Also see Section 15.2.1.

15.5 Other Issues Related to Data Classes

In this section the following topics will be covered:

• amira’s procedural interface for evaluating 3D fields

• coordinate systems and transformations of spatial data objects

• defining parameters and materials in data objects

15.5.1 Procedural Interface for 3D Fields

The internal representation of a data field very much depends on whether the field is defined on a
regular, tetrahedral, or hexahedral grid. There are even data types such as HxAnnaScalarField3
or HxAnnaVectorField3 for fields that are defined by an analytical mathematical expression. To
allow for writing a module which operates on any scalar field without having to bother about the
particular data representation, a transparent interface is needed. One could think of a function like

float value = field->evaluate(x,y,z);

614 Chapter 15: Data Classes

For the sake of efficiency, a slightly different interface is used in amira. Evaluating a field defined
on tetrahedral grid at an arbitrary location usually involves a global search to detect the tetrahedron
which contains that point. The situation is similar for other grid types. In most algorithms, however,
the field is typically evaluated at points not far from each other, e.g., when integrating a field line.
To take advantage of this fact, the concept of an abstract Location class has been introduced. A
Location describes a point in 3D space. Depending on the underlying grid, Location may keep
track of additional information such as the current grid cell number. The Location class provides
two different search strategies, a global one and a local one. In this way performance can be improved
significantly. Here is an example of how to use a Location class:

float pos[3];
float value;
...
HxLocation3* location = field->createLocation();
if (location->set(pos))

field->eval(location, &value);
...
if (location->move(pos))

field->eval(location, &value);
...
delete location;

First a location is created by calling the virtual methodcreateLocation of the field to be evaluated.
The two methods, location->set(pos) and location->move(pos), both take an array of
three floats as argument, which describe a point in 3D space. The set method always performs a
global search in order to locate the point. In contrast, move first tries to locate the new point using a
local search strategy starting from the previous position. You should call move when the new position
differs only slightly from the previous one. Both set and move may return 0 in order to indicate that
the requested point could not be located, i.e., that it is not contained in any grid cell.

In order to locate the field at a particular location, field->eval(location, &value) is
called. The result is written to the variable pointed to by the second argument. Internally the eval
method does two things. First it interpolates the field values, for example, using the values at the
corners of the cell the current point is contained in. Secondly, it converts the result to a float value if
the field is represented internally by a different primitive data type.

15.5.2 Transformations of Spatial Data Objects

In amira, all data objects which are embedded in 3D space are derived from the class HxSpatial-
Data defined in the subdirectory kernel/Amira (see class hierarchy in Section 15.1.1). On the one
hand, this class provides a virtual method getBoundingBoxwhich derived classes should redefine.
On the other hand, it allows the user to transform the data object using an arbitrary geometric trans-
formation. The transformation is stored in an Open Inventor SoTransform node. This node is applied
automatically to any display module attached to a transformed data object.

In total there are three different coordinate systems:

Other Issues Related to Data Classes 615

• The world coordinate system is the system the camera of the 3D viewer is defined in.

• The table coordinate system is usually the same as the world coordinate system. However,
it might be different if special modules displaying, for example, the geometry of a radiother-
apy device is used. These modules should call the method HxBase::useWorldCoords
with a non-zero argument in their constructor. Later they may then call the method HxCon-
troller::setWorldToTableTransform of the global object theController. In
this way they can cause all other objects to be transformed simultaneously.

• Finally, the local coordinate system is defined by the transformation node stored for objects of
type HxSpatialData. This transformation can be modified interactively using the transfor-
mation editor. Transformations can be shared between multiple data objects using the method
HxBase::setControllingData. Typically, all display modules attached to a data ob-
ject will share its transformation matrix, so that the geometry generated by these modules is
transformed automatically when the data itself is transformed.

The transformation node of a spatial data object may be accessed using the SoTransform* HxS-
patialData::getTransform()method, which may return a NULL pointer when the data ob-
ject is not transformed.

Often it is easier to use HxSpatialData::getTransform(SbMatrix& matrix) instead,
which returns the current transformation matrix or the identity matrix when there is no transformation.
This matrix is to be applied by multiplying it to a vector from the right-hand side. It transforms vectors
from the local coordinate system to the table or world coordinate system.

If you want to transform table or world coordinates to local coordinates, use HxSpatial-
Data::getInverseTransform(SbMatrix& matrix). For example, consider the follow-
ing code which transforms the lower left front corner of object A into the local coordinate system of a
second object B:

float bbox[6];
SbVec3f originWorld,originB;
SbMatrix matrixA, inverseMatrixB;

// Get origin in local coordinates of A
fieldA->getBoundingBox(bbox);
SbVec3f origin(bbox[0],bbox[1],bbox[2]);

// Transform origin to world coordinates:
fieldA->getTransform(matrixA);
matrixA.multVecMatrix(origin,originWorld);

// Transform origin from world coords to local coords of B
fieldB->getInverseTransform(inverseMatrixB);
inverseMatrixB.multVecMatrix(originWorld,originB);

Instead of this two-step approach, the two matrices could also be combined:

SbMatrix allInOne = matrixA;

616 Chapter 15: Data Classes

allInOne.multRight(inverseMatrixB);

allInOne.multVecMatrix(origin,originB);

Note that the same result is obtained in the following way:

SbMatrix allInOne = inverseMatrixB;
allInOne.multLeft(matrixA);

allInOne.multVecMatrix(origin,originB);

Since the transformation could contain a translational part, special attention should be
paid when directional vectors are transformed. In this case the method HxSpatial-
Data::getTransformNoTranslation(SbMatrix& matrix) should be used.

15.5.3 Parameters and Materials

For every data object an arbitrary number of attributes or parameters can be defined. The parameters
are stored in a member variable parameters of type HxParamBundle. The header file of the
class HxParamBundle is located in the subdirectory kernel/amiramesh.

HxParamBundle is derived from the base class HxParamBase. Another class derived from Hx-
ParamBase is HxParameter. This class is used to actually store a parameter value. A parameter
value may be a string or an n-component vector of any primitive data type supported in amira (byte,
short, int, float, or double). The bundle class HxParamBundle may hold an arbitrary number of
HxParamBase objects, i.e., parameters or other bundles. In this way parameters may be ordered
hierarchically.

Many data objects such as label fields, surfaces, or unstructured finite element grids make use of the
concept of a material list. Material parameters are stored in a special sub-bundle of the object’s
parameter bundle called Materials. In order to access all material parameters of such an object, the
following code may be used:

HxParamBundle* materials = field->parameters.materials();
int nMaterials = materials->nBundles();

for (int i=0; i<nMaterials; i++) {
HxParamBundle* material = materials->bundle(i);
const char* name = material->name();
theMsg->printf("Material[%d] = %s\n", name);

}

The class HxParamBundle provides several methods for looking up parameter values. All these
find-methods return 0 if the requested parameter could not be found. For example, in order to retrieve
the value of a one-component floating point parameter called Transparency, the following code may
be used:

Other Issues Related to Data Classes 617

float transparency = 0;
if (!material->findReal("Transparency",transparency))

theMsg->printf("Transparency not defined, using default");

In order to add a new parameter or to overwrite the value of an existing one, you may use one of several
different set-methods, for example:

material->set("Transparency",transparency);

Many modules check whether a color is associated to a particular ’material’ in the material list of a
data object. If this is not the case, the color or some other value is looked up in the global mate-
rial database amira provides. This database is represented by the class HxMatDatabase defined
in kernel/Amira. It can be accessed via the global pointer theDatabase. Like an ordinary
data object, the database has a member variable parameters of type HxParamBundle in order
to store parameters and materials. In addition, it provides some convenience methods, for example
getColor(const char* name), which returns the color of a material, defining a new one if the
material is not yet contained in the database.

618 Chapter 15: Data Classes

Chapter 16

Documentation of Modules in
amiraDev

amiraDev allows the user to write the documentation for his own modules and integrate it into the
user’s guide. For this, in the package directory a subdirectory named doc must be created, e.g.,

$AMIRA LOCAL/src/mypackage/doc.

The documentation must be written in amira’s native documentation style. The syntax is borrowed
from the Latex text processing language. Documentation files for new modules can easily be created
by the Tcl command createDocFile. To create a documentation template for MyModule, create
such a module and type

MyModule createDocFile

in the amira console. This will generate a template for the documentation file as well as snapshots of
all ports. Copy these files to

$AMIRA LOCAL/src/mypackage/doc.

The file MyModule.doc already provides the skeleton for the module description and includes the
port snapshots.

The command createSnapshots only creates the snapshots of the module ports. This is useful
when the ports have changed and their snapshots must be updated in the user’s guide.

16.1 The documentation file

In this section the basic elements of a documentation file are presented. A typical documentation file
looks as follows:

\begin{hxmodule}{MyModule}
This command indicates the begin of a description file.
MyModule is the module name.

\begin{hxdescription}
This block contains a general module description.
All beginning blocks must have an end.
\end{hxdescription}

\begin{hxconnections}
\hxlabel{MyModule_data}
\hxport{Data}{\tt [required]}\\
Here the required master connection is described.
The hxlabel command sets a label such that this
connection can be referenced in the documentation.

\end{hxconnections}

\begin{hxports}
\hxlabel{MyModule_portDoIt}
\hxport{PortDoIt}\\
\hximage{MyModule_portDoIt}\\
Here the snapshot image of PortDoIt is placed in the
documentation. Below the snapshot, the port is described.

Anywhere in the documentation a label can be referenced:
\link{MyModule_data}{Text for reference}

\end{hxports}
\end{hxmodule}

This file contains the documentation of a module. It starts with

\begin{hxmodule}{name}

This statement specifies that the doc file contains the documentation of a module. The entry namewill
be automatically included in the list of modules in the amira online help. Other documentation types
are available too:

\begin{hxmodule2}{name}{short description to ap-
pear in the list of modules}

620 Chapter 16: Documentation of Modules in amiraDev

\begin{hxfileformat}{name}
\begin{hxfilefromats2}{name}{short description to ap-
pear in the list of file formats}
\begin{hxdata}{name}
\begin{hxdata2}{name}{short description to appear in the list of data types}
\begin{hxeditor}{name}
\begin{hxeditor}{name}{short description to ap-
pear in the list of editors}
\begin{hxcomponent}{name}
\begin{hxextension}{title of an extension}
\begin{hxdemo}{title of a demo}

The file always must be closed by the corresponding end command. hxcomponent refers to a port
which can be used in an amira module. hxextension refers to an extension, i.e., to a set of one
or more packages which can be considered as a logical entity. Extensions are not listed in a reference
section, but are included directly in the main page of the online help.

More commands

Other formats allow to format and structure the documentation:

\begin{itemize}
\item This is an enumeration.

Eeach item starts with the key word item.
\end{itemize}

{\bf This will be set in bold face.}

{\it This will be set in italics.}

{\tt This will be set in Courier.}

This is a link to the \link{HxIsosurface}{Isosurface} module.

Formulas can be included by means of the text processor LaTeX. They must be written in the Latex
syntax. This requires that LaTeX and Ghostscript are installed on the user’s system. The following
environment variables need to be set:

• DOC2HTML LATEX points to the LaTeX executable. The default value is latex on Unix sys-
tems, and C:/cygwin/bin/tex --fmt latex on Windows systems.

• DOC2HTML DVIPS points to the dvi-to-postscript converter. The default value is dvips
on Unix systems and C:/cygwin/bin/dvips on Windows systems.

The documentation file 621

• DOC2HTML GS points to Ghostscript. The default is gs on Unix systems and
C:/cygwin/bin/gs on Windows systems.

16.2 Generating the documentation

All documentation files must be converted to HTML files and copied into the user’s guide. For this
purpose, the program doc2html is provided. Run this program from a command shell with the
following option:

doc2html -a

This converts the documentation and copies the HTML files to the appropriate places in the
AMIRA ROOT/share/doc/usersguidedirectory. Call doc2htmlwithout option to get a com-
plete list of options.

622 Chapter 16: Documentation of Modules in amiraDev

Chapter 17

Miscellaneous

This chapter covers a number of additional issues of interest for the amira developer. In particular, the
following topics are included:

• Import of time-dependent data, including the use of HxPortTime

• Important global objects, such as theMessage and theWorkArea

• Save-network issues, making save-network work for custom modules

• Troubleshooting, providing a list of common errors and solutions

17.1 Time-Dependent Data And Animations

This section covers some more advanced topics of amiraDev, namely the handling of dynamic data
sets and the implementation of animated compute tasks. Before reading the section you should at least
know how to write ordinary IO routines and modules.

17.1.1 Time Series Control Modules

In general, the processing of time-dependent data sets is a challenging task in 3D visualization. Usually
not all time steps of a dynamic data series can be loaded at once because of insufficient main memory.
Even if all time steps would fit into memory it is usually not a good idea to load every time step as a
separate object in amira. This would result in a large number of icons in the object pool. The selection
between different time steps would become difficult.

A better solution comprise special-purpose control modules. An example is the
time series control module described in the user’s guide. This module is created if a time series
of data objects each stored in a separate file is imported via the Load time series... option of the main

window’s file menu. Instead of loading all time steps together the control module loads only one time
step at once. The current time step can be adjusted via a time slider. When a new time step is selected
the data objects associated with the previous one are replaced.

If you want to support a file format where multiple time steps are stored in a common file, you can
write a special time series control module for that format. For each format a special control module is
needed because seeking for a particular time step inside the file of course is different for each format.
For convenience, you may derive a control module for a new format from the class HxDynamicData-
Control contained in the package hxtime. This base class provides a time slider and a virtual method
newTimeStep(int k) which is called whenever a new new time step is to be loaded. In contrast
to the standard time series control module in most other control modules data objects should be cre-
ated only once. If a new time step is selected existing objects should be updated and reused instead of
replacing them by new objects. In this way the burden of disconnecting and reconnecting down-stream
objects is avoided.

17.1.2 The Class HxPortTime

In principal, an ordinary float slider (HxPortFloatSlider) can be used to adjust the time of a time series
control module or of some other time-dependent data object. However, in many cases the special-
purpose class HxPortTime defined in the package hxtime is more appropriate. This class can be used
like an ordinary float slider but it provides many additional features. The most prominent one is the
possibility to auto-animate the slider. In addition, HxPortTime can be connected to a global time object
of type HxTime. In this way multiple time-dependent modules can be synchronized. In order to create
a global time object, choose Time from the main window’s Edit Create menu.

Another feature of HxPortTime is that the class is also an interface, i.e., it is derived from HxInterface
(compare Section 15.1.2). In this way it is possible to write modules which can be connected to any
object containing an instance of HxPortTime. An example is the DisplayTime module. In order to
access the time port of a source object the following C++ dynamic cast construct should be used:

HxPortTime* time = dynamic_cast<HxPortTime*>(
portData.source(HxPortTime::getClassTypeid()));

In the previous section we discussed how time-dependent data could be imported using special-purpose
control modules. Another alternative is to derive a time-dependent data object from an existing static
one. An example of this is the class MyDynamicColormap contained in the demo package of ami-
raDev. Looking at the header file packages/mypackage/MyDynamicColormap.h in the lo-
cal amira directory you notice that this class is essentially an ordinary colormap with an additional
time port. Here is the class declaration:

class MYPACKAGE_API MyDynamicColormap : public HxColormap
{

HX_HEADER(MyDynamicColormap);

624 Chapter 17: Miscellaneous

public:
// Constructor.
MyDynamicColormap();

// This will be called when an input port changes.
virtual void compute();

// The time slider
HxPortTime portTime;

// Implements the colormap
virtual void getRGBA1(float u, float rgba[4]) const;

};

The implementation of the dynamic colormap is very simple too (see the file MyDynamicCol-
ormap.cpp). First, in the constructor the time slider is initialized:

portTime.setMinMax(0,1);
portTime.setIncrement(0.1);
portTime.setDiscrete(0);
portTime.setRealTimeFactor(0.5*0.001);

The first line indicates that the slider should go from 0 to 1. The increment set in the next line defines
by what amount the time value should be changed if the backward or the forward button of the slider
is pressed. The next line unsets the discrete flag. If this flag is on, the slider value always would be
an integer multiple of the increment. Finally, the so-called real-time factor is set. Setting this factor
to a non-zero value implies that the slider is associated with physical time in animation mode. More
precisely, the number of microseconds elapsed since the last animation update is multiplied with the
real-time factor. Then the result is added to the current time value.

In order to see the module in action compile the demo package, start amira (use the -debug option
if you compiled in debug mode), and choose DynamicColormap from the main window’s Edit Create
menu. Attach a DisplayColormap module to the colormap and change the value of the colormap’s
time slider. Animate the slider. The speed of the animation can be adjusted by resetting the value of
the real-time factor using the Tcl command DynamicColormap time setRealTimeFactor.

17.1.3 Animation Via Time-Out Methods

In some cases you might want certain methods to be called in regular intervals without using a time
port. There are several ways to do this. First, you could use the Open Inventor class SbTimerSensor
or related classes. Another possibility would be to use the Qt class QTimer (this requires that you
install the correct version of the Qt library in addition to amiraDev on your system). However, both
methods have the disadvantage that the application can get stuck if too many timer events are emitted
at once. In same cases it could even be impossible to press the stop button or some other button for
turning off user-defined animation. For this reason amira provides its own way off registering time-
out methods. The relevant methods are implemented by the class HxController. Suppose, you

Time-Dependent Data And Animations 625

have written a module with a member method called timeOut. If you want this method to be called
automatically once in a second, you can use the following statement:

theController->addTimeOutMethod(
this,(HxTimeOutMethod)timeOut,1000);

In order to stop the animation again, use

theController->removeTimeOutMethod(
this,(HxTimeOutMethod)timeOut);

Instead of using a member method of an amira object class, you can also register an arbitrary static
function using the method addTimeOutFunction of class HxController. The corresponding
remove method is called removeTimeOutFunction. For more information, see the reference
documentation of HxController.

The amiraDev demo package contains the module MyAnimateColormap which makes use of the
above time-out mechanism. The source code of the module again is quite easy to understand. After
compiling the demo package, you can attach to module under the name DoAnimate to an existing
colormap. The colormap then is modified and copied. After pressing the animate toggle of the module
the output colormap is shifted automatically at regular intervals. Note, that in this example the fire
method of the module is used as time-out method. fire invokes the modules compute method and
also updates all down-stream objects.

17.2 Important Global Objects

Beside the base classes of modules and data objects, there are some more classes in the amira kernel
that are important to the developer. Many of these classes have exactly one global instance. A short
summary of these global objects is presented here. For details, please refer to the online reference
documentation by looking at the file share/programmersguide/index.html in the amira
root directory.

HxMessage: This class corresponds to the amira console window in the lower right part of the screen.
There is only one global instance of this class, which can be accessed by theMsg. All text output
should go to this object. Text can be printed using the function theMsg->printf("...",...),
which supports common C-style printf syntax. HxMessage also provides static methods for pop-
ping up error and warning messages or simple question dialogs.

HxObjectPool: This class maintains the list of all currently existing data objects and modules. In the
graphical user interface the object pool is represented by the green area in the main window containing
the modules’ and data objects’ icons. There is only one global instance of this class, which can be
accessed by the pointer theObjectPool.

HxWorkArea: This class displays the ports of selected objects and provides the progress bar and busy-
state functionality. Important functions are startWorking, stopWorking, wasInterrupted

626 Chapter 17: Miscellaneous

as well as busy and notBusy. There is only one global instance of this class, which can be accessed
by the pointer theWorkArea.

HxFileDialog: This class represents the file browser used for loading and saving data. Normally the
developer does not need to use this class since the standard I/O mechanism is completely implemented
in the amira kernel. However, for special purpose modules, a separate file browser might be useful.
There is a global instance of this class, which can be accessed by the pointer theFileDialog.

HxResource: This class maintains the list of all registered file formats and modules as defined in the
package resource files. It also provides information about the amira root directory, the local amira
directory, the version number, and so on. Normally there is no need for the developer to use this class
directly. There is no instance of this class, since all its members are static.

HxViewer: This class represents an amira 3D viewer. There can be multiple instances which are
accessed via the method viewer of the global object theController. Normally you will not not
need to use this class. Instead, you should use the member functions showGeom and hideGeom
which every module and data object provides in order to display geometry.

HxController: This class controls all 3D viewers and Open Inventor geometry. In order to access a
viewer you may use the following statement:

HxViewer* v0 = theController->viewer(0,0);

The first argument indicates the ID number of the viewer to be retrieved. In total there may be up to
16 different viewers. The second argument specifies whether the viewer should be created or not if it
does not already exist.

HxColorEditor: amira’s color editor. Used, for example, to define the background color of the
viewer. In a standard module you should use a port such as HxPortColorList or HxPortCol-
orMap instead of directly accessing the color editor. There is a global instance of this class, which
can be accessed by the pointer theColorEditor.

HxHTML: A window used to display HTML files. This class is used for amira’s online help. The
global instance used for displaying the online user’s guide and the online programmer’s guide can be
accessed by the pointer theBrowser.

HxMatDatabase: This class represents amira’s global parameter and material database. For example,
the database contains default colors for a number of biomedical tissue types such as fat, muscle, and
bone. The database can be accessed by the global pointer theDatabase. Details about the material
database are discussed in Section 15.5.3.

17.3 Save-Network Issues

This section describes the mechanism used in amira to save networks. For most modules this is done
transparently for the developer.

The menu command “Save Network” dumps a Tcl script that should reconstruct the current network.

Save-Network Issues 627

Figure 17.1: When loading this network, the Resample module recreates the lobus.Resampled data object on the fly.

Essentially this is done by writing a load ... command for each data object, a create ...
command for each module and setValue ... commands for each port of a module.

This suffices to reconstruct the network correctly if all information about a module’s state is kept in
the module’s ports only. If this is not the case, e.g., if the developer uses extra member variables that
are important for the modules current state, those values are not restored automatically. If you cannot
avoid this, you must extend the ‘Save Network’ functionality of your module. In order to do so, you can
override the virtual function savePorts so that it writes additional Tcl commands. For example, let
us take a look at the HxArbitraryCut class, which is the base class e.g., for the ObliqueSlice
module and which has to save its current slice orientation:

void HxArbitraryCut::savePorts(FILE* fp)
{

HxModule::savePorts(fp);
...
fprintf(fp, "%s setPlane %g %g %g %g %g %g %g %g %g\n",

getName(),
origin()[0], origin()[1], origin()[2],
uVec()[0], uVec()[1], uVec()[2],
vVec()[0], vVec()[1], vVec()[2]);

}

Note that this method requires that HxArbitraryCut or some of its parent classes implement the
Tcl command setPlane. Hints about implementing new Tcl commands are given in Section 14.2.2.

Some remarks about how to generate the load command for data objects are given in Section 13.2.

There is a special optimization for data objects created by computational modules. amira automati-
cally determines whether data objects which are created by other modules are not yet saved and asks
the user to do so if necessary. However, in some cases, this may not be desired, since saving the data
object consumes disk space and regenerating can sometimes be nearly as fast as loading the object
from disk. As an example, consider the network in figure 17.1. In this case the resample module can
automatically recompute the lobus.Resampled data object when the network is loaded. In order
to determine whether a compute module is able to do so, the module must implement the function int
HxResample::canCreateData(HxData* data, McString& createCmd). This func-
tion is called whenever a network containing newly created data objects is saved and these objects
have not yet been saved but are still connected to a compute module. The method should return 1 if
the compute module is able to recreate that particular data object. In this case the corresponding Tcl

628 Chapter 17: Miscellaneous

command should be stored in the string createCmd. When executed, the Tcl command should return
the name of the newly created data object.

Determining whether a compute module can create a data object may be tricky. Typically, it must be
assured that in the time between the actual creation of the data object by the computational module
and the execution of the save network command neither the parameters nor the input has changed, and
that the resulting data object had not been edited.

In order to implement this behavior, most compute modules use a flag that they set when they create
a data object and which they clear when the module’s update() method is called, indicating that
some input has changed. In order to check whether the data object was edited, the data object’s
touchTime variable is saved. touchTime is increased automatically whenever a module is edited.
A typical method could look like this:

int HxResample::canCreateData(HxData* data, McString& createCmd)
{

if (resultTouchTime != data->getTouchTime() ||
parameterChanged)

return 0;

createCmd.printf("%s action hit; %s fire; %s getResult\n",
getName(), getName(), getName());

return 1;
}

17.4 Troubleshooting

This section describes some frequently occurring problems and some general problem solving ap-
proaches related to amira development.

The section is divided into two parts: Problems which may occur when compiling a new package, and
problems which may occur when executing it.

17.4.1 Compile-Time Problems

Unknown identifier, strange errors: A very common problem occurring in C++ programming is the
omission of necessary include statements. In amira, most classes have their own header file (.h file)
containing the class declaration. You must include the class declaration for each class that you are
using in your code. When you get strange error messages that you do not understand, check whether
all classes used in the neighborhood of the line the compiler complains about have their corresponding
include statement.

Unresolved symbols: If the linker complains about unresolved symbols, you probably are missing a
library on your link line. The amira development wizard makes sure that the amira kernel library and
important system libraries are linked. If you are using amira data classes, you will need to link with
the corresponding package library hxfield, hxcolor, hxsurface, and so on. To add libraries

Troubleshooting 629

to your link line on Unix, edit the GNUmakefile, find the line starting with LIBS += ..., and
append -l<name>, where <name> is the name of the package you want to add. On Windows, use
Visual Studio’s project settings dialog. Details are given in Section 11.5.

17.4.2 Run-Time Problems

The module does not show up in the popup menu: If your module did compile, but is not visible
in the popup menu of a corresponding data object, there is probably a problem with the resource file.
The resource file will be copied from your package’s share/resources directory to the directory
share/resources in your local amira directory. Verify that this worked. Note: Currently on
Windows, the resource files are copied in a post link step. Therefore, if you change the resource file
after linking, you must build the package again, e.g., by changing one of the source files.

If the resource file is present, the next step is to check whether it is really parsed. Add a line
echo "hello mypackage" to the resource file. Verify that the message appears in the amira
console when amira starts. If not, probably the environment variable AMIRA LOCAL is not set
correctly.

If the file is parsed, but the module still does not show up, the syntax of the rc file entry might be wrong
or you specified a wrong primary data type, so that the module will appear in the menu of a different
data class.

There is an entry in the pop-up menu, but the module is not created: Probably something is wrong
with the shared library (the .so or .dll file). In the amira console, type dso verbose 1 and try to
create the module again. You will see some error messages, indicating that either the dll is not found,
or that it cannot be loaded (and why) or that some symbol is missing. Check whether your building
mode (debug/optimize) and execution mode are the same. In particular, if you have compiled debug
code you must start amira using the -debug command line option (see Section 11.5).

A read or write routine does not work: The procedure for such problems is the same. First check
whether the load function is registered. Then verify that your save-file format shows up in the file
format list when saving the corresponding data object. For a load method, right click on a filename in
the load-file dialog. Choose format and check whether your format appears in the list. If that is the
case, you probably have a dll problem. Follow the steps above. If the library can be loaded, but the
symbol cannot be found, your method may have either a wrong signature (wrong argument types) or
on Windows you might have forgotten the <PACKAGE>_API macro. This macro indicates that the
routine should be exported by the DLL.

In general, if you have problems with unresolved and/or missing symbols you should take a look
at the symbols in your library. On Unix, type nm lib/arch-*-Debug/libmypackage.so.
On Windows, type in a command shell: dumpbin /exports bin/arch-Win32-
Debug/mypackage.dll.

630 Chapter 17: Miscellaneous

17.4.3 Debugging Problems

Setting breakpoints does not work: Since amira uses shared libraries, the code of an individual
package is not loaded even after the program has started. Therefore some debuggers refuse to set
breakpoints in such packages or disable previously set breakpoints. To overcome this problem, first
create your module and then set the breakpoint. If you want to debug a module’s constructor or a read
or write routine, of course, this does not work. In these cases, load the library by hand, by typing into
the amira console dso open libmypackage.so (if your package is called mypackage). Then
set the breakpoint and create your module or load your data file.

Troubleshooting 631

632 Chapter 17: Miscellaneous

Chapter 18

Online Class Documentation

The online class documentation is a reference guide consisting of a description of every C++ class
that is part of the Amira developer version. The class documentation contains links for example to
base classes or to the formatted header files. In order to view it, point a web browser such as Internet
Explorer or Netscape Navigator to the file share/devref/index.html located in the Amira root
directory, i.e., in the directory where Amira is installed. The documentation can also be viewed using
the Amira help viewer, but a web browser might be more convenient because it allows you to define
bookmarks or to open multiple windows.

634 Chapter 18: Online Class Documentation

Part IV

amiraVR Manual

Chapter 19

amiraVR Configuration

amiraVR is an amira extension providing support for large tiled displays as well as immersive multi-
wall displays like CAVEs or Holobenches. amiraVR supports multi-threaded rendering on multi-pipe
machines, head tracking, active and passive stereo modes, advanced 3D user interaction, soft edge
blending and many more. Any VRCO trackd-compatible tracking system can be used together with
amiraVR. Existing amira modules can be directly used in an immersive environment by means of
3D menus. In addition, a simple API is provided, allowing an amiraDev programmer to add display
modules with a specific interaction behaviour.

Beginning with version 3.1 amiraVR can also be run on a graphics cluster. The particular requirements
and limitations of this cluster version are described in a separate section below.

• amiraVR essentials

• Flat screen configurartions

• Immersive configurations

• Calibrating the tracking system

• The amiraVR cluster version

Working with amiraVR:

• 3D user interaction, including the 3D menu

• Writing amiraVR custom modules

amiraVR Reference:

• Config file reference

• The amiraVR control module

• The ShowConfig module

• The tracker emulator

• amiraVR tutorials and demos

19.1 amiraVR essentials

amiraVR can be configured in many different ways. A particular amiraVR configuration is described
in a config file under $AMIRA ROOT/share/config or $AMIRA LOCAL/share/config. The
config file contains things like the physical extent of the screens of the display system, information
about the X display or the parts of the desktop mapped onto the screens, as well as calibration data for
the tracking system.

When amiraVR is installed the amira main window provides an additional menu labelled Config. This
menu lists all config files found in the config directory. Once a particular configuration is selected, an
amiraVR module is created (if there not already exists one). Depending on the particular configuration
the amiraVR module allows one to to connect to the tracking system, to calibrate the tracking system,
and to activate additional options.

The trackd server

amiraVR makes use of the VRCO trackd software in order to access the tracking system. However,
trackd itself is not part of amiraVR. It has to be purchased and installed separatley. For more informa-
tion about this product please refer to www.vrco.com or www.tgs.com.

Before a tracking system can be used in amiraVR the trackd server has to be started. The server con-
nects to the tracking system and provides the actual tracker and controller data in two shared memory
segments, which are read by amira. In contrast to previous versions of amiraVR it is not necessary
anymore to manually link additional libraries like libtrackdAPI.so into the amira lib directory.
Once the trackd server is running it can be accessed automatically.

Starting amira

After amiraVR has been installed amira can be started as usual. However, in order to activate par-
allel rendering of screens assigned to different thread groups, amira should be started with the -mt
command line options. This option enables multi-threading. In order to permanently activate multi-
threading, the environment variable AMIRA MULTITHREAD can be set. In order to disable multi-
threading when AMIRA MULTITHREAD is set, amira can also be started with the -st command line
option (single-threaded mode).

Note: On SGI Onyx systems there are known problems with the OpenGL driver related to the use
of texture objects in different OpenGL contextes. If you are rendering more than one screen on a
single pipe, you should define the environment variable AMIRA NO CONTEXT SHARING. This bug
will probably be fixed in IRIX 6.5.17 and higher.

638 Chapter 19: amiraVR Configuration

19.2 Flat screen configurations

A flat screen configuration consists of usually two or more screens forming a bigger 2D virtual graphics
window commonly called a tiled display or power wall. Users can interact with the ordinary 2D mouse,
i.e., mouse events in the different windows are translated and interpreted in the 2D virtual window.
There is no need for a tracking system in case of a flat screen configuration. For such a configuration
the only option provided by the amiraVR control module is a stereo toggle allowing the user to enable
or disable stereo viewing. Besides standard OpenGL active stereo modes passive stereo modes can
also be configured. In the most simple case this is done by defining two full screen windows on two
different channels, one for the left eye view and one for the right eye view. This particular configuration
is illustrated in Figure 19.1. Other passive stereo configurations are possible too, e.g., a super-wide
tiled passive stereo configuration with four channels (left side left eye, left side right eye, right side left
eye, right side right eye), possibly with an overlap region for soft-edge blending.

The main advantage of a flat screen configuration is its ease of use. There is no need for a tracking
system. Flat screen configurations are well suited for presentations targeted to a larger audience, e.g.,
presentations in a seminar room or in a lecture hall.

In the following we describe some common flat screen configurations in more detail, namely a
standard-resolution two-projector passive stereo configuration, a super-wide two-projector mono con-
figuration with soft-edge blending, and a tiled 2x2 four-channel monitor configuration. For some
cases also hardware solutions are available, namely special-purpose video splitters converting an in-
terlaced active stereo signal into separate non-interlaced left eye and right eye signals for the passive
stereo case, or hardware edge-blending units for blended super-wide configurations. However, these
hardware solutions are usually expensive and less flexible. Therefore they are often not suitable for
temporary demonstrations or experiments.

• A two-channel passive stereo configuration

• A super-wide configuration with soft-edge blending

• A tiled four-channel 2x2 monitor configuration

19.2.1 Example: A two-channel passive stereo configuration

For a single-screen passive stereo projection system two video projectors emitting orthogonally polar-
ized light are required. One projector displays the left eye image, the other one the right eye image.
This is illustrated in Figure 19.1. Both images are projected onto a non-depolarizing screen either using
front projection or rear projection. Observers wear suitable light-weight polarized glasses so that each
eye only sees its own image, but not the image determined for the other eye. Without special-purpose
hardware such a passive stereo projection system can be driven in full screen mode even using a very
inexpensive low-end dual-head graphics adapter (for example NVidia GeForce2 MX TwinView).

We assume that the dual-head graphics computer is configured so that the left half of the desktop
is output on one channel and the right half is output on the other channel. Here is the amiraVR
configuration file:

Flat screen configurations 639

Figure 19.1: Sketch of a single-screen passive stereo projection system.

#Inventor V2.1 ascii

Separator {
SoScreen {

name "Left eye view"
channelOrigin 0 0
channelSize 0.5 1
tileOrigin 0 0
tileSize 1 1
cameraMode LEFT_VIEW

}
SoScreen {

name "Right eye view"
channelOrigin 0.5 0
channelSize 0.5 1
tileOrigin 0 0
tileSize 1 1
cameraMode RIGHT_VIEW

}
}

The fields channelOrigin and channelSize indicate that the two windows exactly cover the left half

640 Chapter 19: amiraVR Configuration

and the right half of the desktop. The fields tileOrigin and tileSize indicate that both screens should
display the full viewer window, i.e., there is no tiling at all. Finally, the field cameraMode indicates
that one screen should display the left eye view and the other the right eye view. Note, that the graphics
computer need not to support active stereo for this configuration. In order to change the default stereo
parameters eye offset and stereo balance the following standard amira Tcl command can be used:

viewer 0 setStereo [-b <balance>] <offset>

Here <offset> denotes the eye offset and <balance> denotes the stereo balance, i.e., the loca-
tion of the zero parallax plane. Depending on the balance value objects appear to be in front of the
projection screen or behind it.

19.2.2 Example: A super-wide configuration with soft-edge blending

Super-wide images with two times the XGA- or SXGA-resolution can be displayed using two projec-
tors and a low-end dual-head graphics adapter (for example NVidia GeForce2 MX TwinView). How-
ever, often it is very desirable to have an overlap between the two projected images. In the overlap
region one image softly fades out from full intensity to black, while the other image fades in from black
to full intensity. This technique is called soft-edge blending (compare Figure 19.2). With soft-edge
blending the border between the two projected images becomes almost invisible. amiraVR is able to
generate two partially overlapping images. In addition, the soft-edge can be computed in software.
With these features perfect full-screen demos can be presented on a super-wide projection system.

We assume that the dual-head graphics computer is configured so that the left half of the desktop is
output on one channel and the right half is output on the other channel. We further assume that there
is a 20 percent overlap between the projected images of the two projectors. Here is the amiraVR
configuration file:

#Inventor V2.1 ascii

Separator {
SoScreen {

name "Left half"
channelOrigin 0 0
channelSize 0.5 1
tileOrigin 0 0
tileSize 0.6 1
softEdgeOverlap [0, 0.2, 0, 0]
softEdgeGamma [0, 1.2, 0, 0]

}
SoScreen {

name "Right half"

Flat screen configurations 641

Figure 19.2: Sketch of a super-wide projection system with soft-edge blending.

channelOrigin 0.5 0
channelSize 0.5 1
tileOrigin 0.4 0
tileSize 0.6 1
softEdgeOverlap [0.2, 0, 0, 0]
softEdgeGamma [0, 1.2, 0, 0]

}
}

The fields channelOrigin and channelSize indicate that the two windows exactly cover the left half and
the right half of the desktop. The fields tileOrigin and tileSize indicate that both screens display an area
of 0.6 times the width of the full tiled window. The first screen displays the left half of that window,
the second screen displays the right half. The field softEdgeOverlap specifies the relative width of the
soft-edge region at the left, right, bottom, and top border of the screen. For the first screen there is a
20 percent soft-edge region at the right border, for the second screen there is a 20 percent soft-edge
region at the left border. Finally, the field softEdgeGamma specifies the gamma factor for the soft-edge
region. The gamma factor determines how the fading from full intensity to black is done. A gamma
factor of one means a linear transition in terms of RGB values. However, since RGB values are usually
not mapped linearly to light intensity by the video projector often a decrease of overall light intensity
is observed in the overlap region. In order to compensate for this a gamma factor larger than one can
be used.

In order to facilitate the initial calibration of a super-wide projection system with soft-edge blending

642 Chapter 19: amiraVR Configuration

the amiraVR module provides a special-purpose Tcl command setSoftEdge. This command is used in
the following way:

AmiraVR setSoftEdge <overlap> <gamma>

This command automatically creates a two-screen configuration similar to the one above. However,
the correct values for tileSize, tileOrigin, and softEdgeOverlap are computed automatically from the
relative overlap value. By gradually adapting this value the correct settings for a given but unknown
setup of the projection system can be easily found.

19.2.3 Example: A tiled four-channel 2x2 monitor configuration

There are some interesting graphics workstations with two two-channel graphics pipes. One example
is the SGI Octance Fuel. With such a computer four different monitors or projectors can be used.
For some purposes it is useful to have a single viewer subdivided into 2x2 parts and each part being
displayed by a different monitor. Such a configuration can be easily created using amiraVR.

We assume that the graphics computer has two pipes with two channels each. The two pipes are
configured as two separate X11 screens, :0.0 and :0.1. The left and right part of each screen
is output on the two different channels of the particular pipe. Then the configuration files looks as
follows:

#Inventor V2.1 ascii

Separator {
SoScreen {

name "Upper left monitor"
display ":0.0"
channelOrigin 0 0
channelSize 0.5 1
tileOrigin 0 0.5
tileSize 0.5 0.5
threadGroup 0

}
SoScreen {

name "Upper right monitor"
display ":0.0"
channelOrigin 0.5 0
channelSize 0.5 1
tileOrigin 0.5 0.5
tileSize 0.5 0.5
threadGroup 0

Flat screen configurations 643

}
SoScreen {

name "Lower left monitor"
display ":0.1"
channelOrigin 0 0
channelSize 0.5 1
tileOrigin 0 0
tileSize 0.5 0.5
threadGroup 1

}
SoScreen {

name "Lower right monitor"
display ":0.1"
channelOrigin 0.5 1
channelSize 0.5 1
tileOrigin 0.5 0
tileSize 0.5 0.5
threadGroup 1

}
}

Since the two X11 screens :0.0 and :0.1 are driven by two independent graphics pipes it makes
sense to perform the rendering on these pipes in parallel. This is done by assigning the corresponding
screens two different thread groups. Note, that for all common current graphics architectures it makes
no sense to render multiple windows on the same pipe in parallel. Typically, this even implies a
significant performance decrease. Therefore, here we use only two thread groups instead of four. In
order to actually activate parallel rendering amira must be started with the command line option -mt.
Alternatively, the environment variable AMIRA MULTITHREAD can be defined.

19.3 Immersive configurations

In amiraVR an immersive configuration differs from a flat screen configuration mainly in the way the
screens are described in the config file. While for a flat screen configuration it was sufficient to specify
which part of a big 2D virtual screen was covered by each screen, for an immersive configuration the
true physical coordinates of the screens have to be specified. Knowing the exact spatial arrangements of
the screens has the advantage that correct perspective views can be computed for all screens, provided
the 3D position of the observer is also known. In particular, the different screens no longer need to be
arranged in a plane. Instead, the screens might be arranged perpendicular to each other like in a CAVE
or on a Holobench. In fact, amiraVR supports any other oblique arrangement as well.

Since the 3D position of the observer need to be known in order to compute correct perspective views
usually the observer’s eye position is tracked in an immersive environment. In amiraVR this so-called

644 Chapter 19: amiraVR Configuration

head tracking can be achieved using a variety of different tracking systems. Instead of accessing the
tracking system directly an intermediate software layer is used, namely the trackd software of VRCO.
trackd runs as a server, communicates with the tracking system, and stores the tracking data in a
shared-memory areas which then is read by amiraVR. Using a second sensor not only the observer’s
eye position can be tracked, but also the position of a virtual wand, i.e., a kind of pointing or interaction
device to be held in a hand. For large planar screen configurations it sometimes also makes sense to use
a virtual wand without head tracking. The images then will always be computed for a fixed observer’s
eye position. Image flicker due to noise in the tracking data is avoided, which is an advantage for 3D
demonstrations in front of a larger audience.

Obviously, immsersive configurations are more difficult to setup than flat screen configurations. Be-
sides defining a suitable amiraVR configuration file, also the tracking system and the trackd server
have to be properly initialized. Finally, the tracking system has to be calibrated for use with amiraVR.
In the following sections we first want to present some example config files for common immersive
environments. In particular config files for a single-wall workbench, for a double-wall Holobench,
and for a four-sided CAVE shall be discussed. The process of calibrating the tracking system and
customizing 3D user interaction is described in subsequent sections.

• A Workbench configuration

• A Holobench configuration

• A CAVE configuration

19.3.1 Example: A Workbench configuration

A single-screen 3D projection system is often called an immersive workbench. The actual projection
screen can either be in up-right position, or it can be oriented like the surface of a table. Of course, any
other orientation is possible too. There are even devices like the Barco Baron with can be arbitrarily
tilted between fully horizontal and fully vertical position. For amiraVR there is no difference between
these configurations, as long as the tracking system is calibrated in the right way. Traditionally a work-
bench is driven by a CRT projector using active stereo. However, today also passive stereo systems
based on two LCD or DLP projectors become more common. In the config file below we assume that
an active stereo system is used, or that a passive stereo system is connected via an apropriate signal
splitter. This means that the workbench can be used with any standard stereo-capable graphics com-
puter. No dual-head or multi-pipe computer is necessary. An example of a single-screen workbench is
shown in Figure 19.3.

An amiraVR config file for driving a single-screen immersive workbench with a tracked 3D input
device but without head tracking is listed below. Instead of actually tracking the observer’s eye position
in this case a fixed default camera position is used. This can be useful for demonstrations in front of
small or medium-size groups, since it produces less fidget images. In addition, it saves a second sensor
for the tracking system.

#Inventor V2.1 ascii

Immersive configurations 645

Figure 19.3: A single-screen 3D projection system.

Separator {
SoScreen {

name "Workbench"
lowerLeft 0 0 0
lowerRight 170 0 0
upperRight 170 130 0
upperLeft 0 130 0
cameraMode ACTIVE_STEREO

}
SoTracker {

server "4147:4148"
autoConnect TRUE
wandTrackerId 0
headTrackerId -1
defaultCameraPosition 85 65 140
defaultObjectPosition 85 65 0
referencePoints [0 0 0, 170 0 0, 170 130 0, 0 130 0]

}
}

In the SoScreen section of the config file the physical coordinates of the four corners of the workbench

646 Chapter 19: amiraVR Configuration

are defined. This can be done using an arbitrary right-handed coordinate system with arbitrary units.
In this case the coordinates might be specified in centimeters. The origin of the coordinate system
was chosen in the lower left corner of the screen. By default, a full-screen graphics window is opened
when activating this configuration. The field cameraMode indicates that the graphics window should
be opened in active stereo mode by default.

In the SoTracker section of the config file the tracking system is described. First the shared memory
ids of the trackd server as specified in the trackd.conf file are listed. The syntax is id of controller
reader:id of tracker reader. The autoConnect field indicates that a connection to the trackd server
should be established automatically as soon as the configuration is activated. wandTrackerId denotes
the trackd sensor id of the 3D input device. Head tracking is disabled by setting headTrackerId to -1.
Instead the default camera position set in the line below is used. This position must be specified using
the same coordinate system as the screen. In this case the camera is located 140 cm in front of the
screen’s center. The default object position is the position where the scene is placed by default (or
whenever a view all request comes from the viewer).

At the end of the config file four reference points are specified, namely the four corners of the screen.
Before the configuration can be actually used, the tracking system has to be calibrated (see section
19.4). This is done by placing the input device at the reference points and clicking an input button.
Once the tracking system is calibrated, the config file should be written by clicking the write config
button of the amiraVR control module. The new config file will contain the same information listed
above, but in addition it will also contain some calibration data, e.g., the transformation between raw
tracker coordinates and screen coordinates.

19.3.2 Example: A Holobench configuration

A Holobench (TM) is a special display system consisting of two screens oriented perpendicular to
each other. One screen is oriented vertically, the other one is oriented horizontally like a table. On a
good Holobench there is almost no visible border between the two screens. Provided the observer’s
eye position is known, correct perspective views can be computed so that the displayed scene finally
does not appear to have any break. However, in contrast to a single-screen workbench this is only the
case for the tracked observer. Other spectators will more or less clearly notice a break.

In order to drive a workbench at least a stereo-capable dual-head graphics computer is required. In
principle, two different settings are possible. Either, there is a big desktop and one half of it is output
on a first channel and the other one is output on a second channel. Or, there are two independent
graphics adapters (pipes) which are configured as two different X11 displays or as one display with
two X11 screens. In the config file below we assume, that the desktop is split into two halfs (left and
right). An example of how to use a multi-pipe graphics computer is presented in the next section where
a 4-sided CAVE configuration is described.

#Inventor V2.1 ascii

Separator {

Immersive configurations 647

SoScreen {
name "Vertical Screen"
lowerLeft 0 0 0
lowerRight 180 0 0
upperRight 180 110 0
upperLeft 0 110 0
channelOrigin 0 0
channelSize 0.5 1
cameraMode ACTIVE_STEREO

}
SoScreen {

name "Horizontal Screen (rotated)"
lowerLeft 180 0 0
lowerRight 0 0 0
upperRight 0 0 110
upperLeft 180 0 110
channelOrigin 0.5 0
channelSize 0.5 1
cameraMode ACTIVE_STEREO

}
SoTracker {

server "4147:4148"
autoConnect TRUE
wandTrackerId 1
headTrackerId 0
leftEyeOffset 6 0 0
rightEyeOffset 13 0 0
defaultCameraPosition 90 55 110
defaultObjectPosition 90 20 20
referencePoints [60 0 110, 120 0 110, 120 0 55, 60 0 55]

}
}

In the two SoScreen sections of the config file the geometry of the Holobench is described by specifying
the physical coordinates of the four corners of each screen. An arbitrary right-handed coordinate
system with arbitrary units can be chosen. Here the coordinates are specified in centimeters and the
origin was put in the lower left corner of the vertical screen. Notice, that the horizontal screen was
rotated by 180 degress with respect to the vertical screen. I.e., instead of the upper left corner the lower
right corner of the horizontal screen is located at the origin. This is because the horizontal image of a
Holobench is usually projected that way. If the corresponding lower scan-lines of the two images meet
at the border between the two screens artifacts due to delayed response of the active shutter glasses are
avoided. The fields channelOrigin and channelSize indicate that the graphics window for the vertcial
screen should be opened on the left half of the desktop, while the graphics window for the horizontal

648 Chapter 19: amiraVR Configuration

screen should be opened on the right half. Both windows are opened in stereo mode by default as
specified by cameraMode.

In the SoTracker section of the config file the tracking system is described. First the shared memory ids
of the trackd server as specified in the trackd.conf file are listed. The syntax is id of controller reader:if
of tracker reader. The autoConnect field indicates that a connection to the trackd server should be
established automatically as soon as the configuration is activated. wandTrackerId denotes the trackd
sensor id of the 3D input device. headTrackerId denotes the trackd sensor id of the head sensor which
is usually mounted at the shutter glasses. The fields leftEyeOffset and rightEyeOffset specify the actual
position of the eyes with respect to the head sensor. Standing in front of the Holobench the x-axis
points horizontally to the right, the y-axis points upwards, and the z-axis points towards the observer.
In this case we assume the head sensor to be mounted on the left side of the glasses since both left
and right eye have a positive offset in x-direction. The default camera position and the default object
position both are specified in the same coordinate system as the screens. The default camera posistion
is only used if the tracking system is disconnected. The default object posistion is the position where
the scene is placed by default (or whenever a view all request comes from the viewer).

At the end of the config file four reference points are specified, namely four points on the horizontal
screen. Before the configuration can be actually used, the tracking system has to be calibrated (see sec-
tion 19.4). This is done by placing the input device at the reference points and clicking an input button.
The reference points were chosen so that they can be easily accessed with the hand. In addition, it is
important that the points are well inside the operating range of the tracking system. During calibration
the raw coordinates of the wand sensor are displayed, so you can check if these values are reasonable.
Once the tracking system is calibrated, the config file should be written by clicking the write config
button of the amiraVR control module. The new config file will contain the same information listed
above, but in addition it will also contain some calibration data, e.g., the transformation between raw
tracker coordinates and screen coordinates.

19.3.3 Example: A 4-side CAVE configuration

A CAVE (TM) is a more or less fully immersive VR display system with the shape of a cubical box.
Typically the size of the box is something like 3 x 3 x 3 meters. Three, four, five, or even six sides of
the box are implemented as projection screens. In this way an observer inside the box can completely
dive into a virtual world. In order to compute correct perspective views the eye position of the observer
need to be tracked. Other non-tracked observers will perceive distorted images, especially at the edges
between the individual walls. A schematic view of a 3-side CAVE is shown in Figure 19.4.

The amiraVR config file listed below was designed for a 4-side CAVE. In order to drive such a system
four different images need to be generated, one for the front, bottom, left, and right wall repectively.
This can be done for example using a two-pipe SGI Onyx system. Each pipe has two channels. Thus
it is able to output two different images. We assume that there is one X server running on the machine.
The two pipes are configured as two independent X11 screens, denoted :0.0 and :0.1. On each
X11 screen there is a double-wide desktop. The left half and the right half of the two desktops are
output by the two different channels of each pipe. For such a setting the amiraVR config file looks as

Immersive configurations 649

Figure 19.4: Schematic view of a 3-side CAVE system.

follows:

#Inventor V2.1 ascii

Separator {
SoScreen {

name "Front"
display ":0.0"
lowerLeft 0 0 0
lowerRight 300 0 0
upperRight 300 300 0
upperLeft 0 300 0
channelOrigin 0 0
channelSize 0.5 1
cameraMode ACTIVE_STEREO
threadGroup 0

}
SoScreen {

name "Bottom"
display ":0.0"
lowerLeft 0 0 300
lowerRight 300 0 300

650 Chapter 19: amiraVR Configuration

upperRight 300 0 0
upperLeft 0 0 0
channelOrigin 0.5 0
channelSize 0.5 1

If the bottom image is rotated try this:
lowerLeft 300 0 0
lowerRight 0 0 0
upperRight 0 0 300
upperLeft 300 0 300

This modifies the \amira gradient background
backgroundMode BG_LOWER
cameraMode ACTIVE_STEREO
threadGroup 0

}
SoScreen {

name "Left"
display ":0.1"
lowerLeft 0 0 300
lowerRight 0 0 0
upperRight 0 300 0
upperLeft 0 300 300
channelOrigin 0 0
channelSize 0.5 1
cameraMode ACTIVE_STEREO
threadGroup 1

}
SoScreen {

name "Right"
display ":0.1"
lowerLeft 300 0 0
lowerRight 300 0 300
upperRight 300 300 300
upperLeft 300 300 0
channelOrigin 0.5 0
channelSize 0.5 1
cameraMode ACTIVE_STEREO
threadGroup 1

}
SoTracker {

server "4147:4148"

Immersive configurations 651

autoConnect TRUE
wandTrackerId 1
headTrackerId 0
leftEyeOffset 6 0 0
rightEyeOffset 13 0 0
defaultCameraPosition 50 50 100
defaultObjectPosition 50 50 0
referencePoints [

0 150 100, 0 150 100, 100 150 0, 200 150 0, 300 150 100]
}

}

19.4 Calibrating the tracking system

This section describes how to calibrate a tracking system for use in amiraVR. Here, calibration es-
sentially means finding the transformation between the raw tracker coordinates and the coordinates in
which the geometry of the display system, i.e., the corners of the screens, has been defined. Calibrating
the tracking system does not involve changing the trackd config file trackd.conf in any way. Instead
the calibration data is completely stored in the amiraVR config file. Usually the tracking system need
to be calibrated only once. A new calibration is necessary for example if the antenna of an electro-
magnetic tracking system is moved with respect to the display system, if the screen of a single-wall
immersive workbench is tilted, or if a new 3D input device is used where the 3D sensor is oriented
in a different way. The only part of the calibration process which one might repeat many a time is
picking the wand. Picking the wand means to specify the offset between the actual position of the 3D
input device and the visual representation of the wand in amira. Sometimes it is useful not to have
any offset, while sometimes an offset provides more pleasent less exhausting working conditions. The
wand offset can be quickly adapted even multiple times within a single amiraVR session.

Below there is a complete step-by-step description of the calibration process. Before starting calibra-
tion make sure that you have a valid amiraVR config file for your particular display system and that the
trackd software and the tracking system itself are setup in the right way. In particular, make sure that
the tracker coordinates are reported in a right-handed coordinate system. Many electromagnetic track-
ing systems cannot distinguish between two opposite hemispheres. In the trackd.conf file you have to
specify in which hemisphere you want to operate. If the wrong hemisphere is specified a left-handed
coordinate system is used, which cannot be correctly calibrated in amira.

1. Make sure that the trackd server is running and that the tracking system is operating. Start amira
and choose the appropriate configuration from the main window’s Config menu.

2. In the amiraVR control module connect to the tracking system if necessary. Activate the values
toggle in order to display the current 3D coordinates in the upper left corner of the main screen.
Make sure that the coordinates are changing if you move the 3D input device and the head sensor
(unless head tracking is disabled in the amiraVR config file). Make also sure, that the button

652 Chapter 19: amiraVR Configuration

status changes if you press a button of the 3D input device.

Note: Unless you are in calibration mode the coordinates reported by the values option are
transformed coordinates, i.e., they are in the same coordinate system in which the screens in the
config file have been defined.

Hint: If the wand tracker and the head tracker seem to be exchanged modify the fields wand-
TrackerId and headTrackerId in the amiraVR config file.

3. Click the Calibrate button of the amiraVR control module. You are now in calibration mode. A
fixed 2D control grid is displayed on all screens. You are requested to click at the first reference
point. In the current version of amiraVR, the control grid is not guaranteed to match the actual
reference points. However, you could choose the reference points in the config file to be at the
corners of the control grid (one third and two thirds of the screen width in horizontal direction,
one half of the screen height in vertical direction). Besides the number of the reference point
its coordinates as specified in the config file are displayed in the upper left corner of the main
screen.

Now move the 3D input device at the first reference point and click any button of the device.

Note: Make sure that the raw tracker coordinates which are displayed in the upper left corner
of the main screen are valid at the reference point. Some devices just report zero values if the
sensor is outside the operating range of the tracking system. Some other devices report non-
sense values, typically with large oscillations. If you don’t get stable values at a reference point,
choose some other point in the amiraVR config file.

4. Next you are asked to click at second reference point using the 3D input device. Repeat the
above procedure until all reference points have been located.

Note: If not at least three different reference points are specified in the config file, by default
the upper left, lower left, and lower right corner of the first screen are used as reference points.
You may want to specify other reference points or a larger number of reference points in order
to improve accuracy. The reference points must not lie all on one line. However, they may well
be located in a common plane, e.g., in the plane of the main screen.

5. Next, you need to align the glasses for head tracking. However, if head tracking is disabled in
the amiraVR config file, this step is omitted.

Align the glasses parallel to the x-axis of the screen coordinate system. Usually the x-axis will
oriented horizontally with respect to the front screen of the display system. The up-direction of
the glasses should be aligned parallel to the y-axis of the screen coordinate system. Usually the
y-axis will be oriented vertically with respect to the front screen. Once you have aligned the
glasses click any button of the 3D input device.

6. Now camera calibration is done and correct stereoscopic images should be displayed. As a final
step you are requested to pick the wand in order to define the wand offset. The wand is being
displayed half-way between the current eye position (or the default camera position, if head
tracking is disabled) and the default object position. Now move the 3D input device near the
origin of the wand (or at any other position) and click any button. The virtual wand remains
stick to the 3D input device in exactly that position. You can repeat this last calibration step any

Calibrating the tracking system 653

time by clicking on the pick wand button of the amiraVR module.

Hint: If you don’t get a clear 3D image of the wand make sure left and right eye images are
not exchanged. If the eyes are exchanged you get a result which somehow also looks 3D but
which isn’t comfortable to work with at all. Also make sure that the fields leftEyeOffset and
rightEyeOffset are set correctly in the config file.

7. At this point, the calibration is finished. You may now want to write a new amiraVR config file
(or to overwrite the original one) in order to save the calibration data permanently. This can be
achieved most easily by pressing the write config button of the amiraVR module. Pressing this
button causes the amira file browser to be activated. You can accept the name of the previous
config file or choose a new one.

When reloading the new configuration calibrated tracker data will be generated automatically.
You can verify the correctness of the calibration process by turning on the values toggle and
moving the 3D input device to one of the reference points. The reported values should be almost
the same as the coordinates of the reference point specified in the config file.

19.5 The amiraVR cluster version

The amiraVR cluster version is an extension allowing amiraVR to be used on a graphics cluster. A
graphics cluster consists of multiple computers connected via a network. Each computer controls one
or more screens of a multi-wall display system. amiraVR synchronizes the different nodes, and en-
sures that same scene is rendered simultaneously from different perspectives. The amiraVR cluster
version facilitates parallel multi-pipe rendering. It does not speed up ordinary computations by dis-
tributing them across multiple nodes of the cluster. Instead, on each node a separate instance of amira
is running, with the complete network and all data being duplicated. Changes of amira modules made
on the master node will be propagated to the slave nodes and executed synchronously.

Requirements:

• All data files and scripts must have the same absolute file path on all nodes of the cluster.
Likewise, amira must be installed at the same location on all nodes. For convenience, it is
recommended to run amira from a mounted file system. This ensures that the same scripts and
config files will be used on all nodes.

• All nodes of the cluster should be of the same type. If different hardware is used, it is not
guaranteed that the cluster runs out-of-sync because of round-off errors. Rendering speed is
limited by the slowest node of the cluster.

• All nodes of the graphics cluster must be able to communicate with each other via a TCP/IP
connection. A standard 10 Mbit ethernet connection is fast enough, since only synchronization
commands are exchanged, rather than images or raw data blocks.

• The graphics cards of the different nodes must be genlocked with a genlock cable. Currently
only a small number of graphics cards (such as WildCat or SUN Zulu boards) provide genlock-
ing. Genlocking ensures that the video refresh cycles are synchronized. amiraVR itself only

654 Chapter 19: amiraVR Configuration

synchronizes OpenGL buffer swaps.

Limitations:

• The focus of the amiraVR cluster version is on working in a VR environment. Consequently
all manipulations performed in VR mode, e.g., via the 3D menu, will be properly synchronized.
On the other hand, currently not all manipulations made on the master node via the conventional
2D user interface will be synchronized.

• The general work flow is to first create a network in standard mode on the master node, and then
to load this network from file in cluster mode. Currently, you cannot create new modules via an
object’s popup menu in cluster mode, nor you can interactively change connections via the 2D
user interface.

• Some modules such as PlanerLIC or DisplayISL make use of random number generators. Cur-
rently, it is not ensured that the resulting numbers are always the same on all nodes. Conse-
quently, different visual results might be obtained on different nodes.

• Any kind of 2D mouse interaction in a 3D viewer window also will not be synchronized in
cluster mode. Thus you cannot pick a slice or move an Open Inventor dragger with the 2D
mouse. You need to perform such manipulations using a 3D mouse in amiraVR.

Running amiraVR cluster

The following steps are required to run the amiraVR cluster version:

1. Install amiraVR on every node of the graphics cluster under the same absolute path name, or
better create a mounted file system with the same absolute path name on every node.

2. Create a standard amiraVR config file describing the geometry of your display system.
Then add a field hostname in each screen section. This field indicates on which node
the screen will be rendered. The config file must be stored on all nodes in the directory
$AMIRA ROOT/share/config.

3. Choose one node as the master node. On all other nodes start amira with the command line
option -clusterdaemon. With this option a little daemon is started, to which the master
process can talk to. The daemon automatically starts a slave instance of the real amira if neces-
sary.

4. Start amiraVR on the master node. Then select your cluster configuration from the config menu.
Slave instances of amiraVR should now be started on all nodes specifed in the config file.

5. Next you can load any standard amira network script. For example, open the online help
browser on the master node and choose one of the standard amiraVR tracking demos. The
particular script will be loaded on all slaves as well. Once a script has been loaded all standard
amiraVR interaction modes are available in cluster mode too.

The amiraVR cluster version 655

656 Chapter 19: amiraVR Configuration

Chapter 20

Working with amiraVR

20.1 3D user interaction

amiraVR flat screen configurations, i.e., tiled displays or power walls, can be completely controlled
using an ordinary 2D mouse. However, in case of true immersive configurations this isn’t feasible
anymore. Therefore, several ways of 3D user interaction are provided in amiraVR. The view can
be changed using different navigation modes, a 3D menu is provided in order to control modules in
3D, and special objects like slices, selection boxes, or 3D point probes can be directly picked and
manipulated using a tracked input device. In addition, a 2D mouse mode is provided allowing the
user to control the conventional 2D mouse pointer using the tracked 3D mouse. In the following these
features will be described in more detail.

In order to utilize 3D user interaction a tracked 3D input device with at least one button is required.
By default amira only interpretes a single button. The most easiest way for making use of additional
buttons is to associate Tcl procedures with these buttons. This is described below in a section about
Tcl event procedures.

• The 3D menu

• User-defined 3D menu items

• 3D module controls

• Navigation modes

• Tcl event procedures

• The 2D mouse mode

20.1.1 The 3D menu

The amiraVR 3D menu provides buttons allowing the user to bring up a 3D version of the user inter-
face of every object in the object pool. In addition it can contain any number of user-defined buttons.
These buttons can be configured most easily using the Tcl interface described in Section 20.2.

On default, the menu also contains a button for activating the 2D mouse mode. This mode lets you
control the 2D mouse using a 3D input device. In this way also the standard 2D user interface of amira
can be used in a VR environment.

The basic shape of the amiraVR 3D menu is shown in Figure 20.1 on the left hand side. The menu
can be manipulated in the following way:

• Initially, after activating or reloading an amiraVR configuration, the 3D menu is hidden. In
order to bring up the menu double-click the button of the 3D input device. Alternatively, you
may select the 3D menu toggle button of the amiraVR control module.

By default the menu will be positioned in the upper left corner of the first screen defined in the
amiraVR config file. You may change the default position by setting the field menuPosition
in the tracker section of the amiraVR config file. There is also a field for setting the default
orientation of the menu.

• You can move the menu by pointing the wand on the blue header labeled 3D menu, clicking
the main button of the 3D input device, and then moving the device while keeping the button
pressed. When the wand is on the blue header a yellow frame is displayed, indicating that this
element has focus.

If you pop up the menu using the 3D menu toggle, the menu position will be reset to its default.
In contrast, if you pop up the menu by double-clicking the 3D mouse button, the menu will be
shown at its current position.

• In order to hide the menu again, click the red close button at the right side of the blue header
element. Double-clicking the 3D input device again pops up the menu at its previous position.

Since version 3.1 of amiraVR the 3D menu will also be available as an ordinary 2D sub-menu under
the VR menu of the amira main window. The 2D menu has the same structure as the 3D menu, and
choosing an item from the 2D menu triggers the same actions as choosing an item from the 3D menu.
This feature allows you to prepare and test a 3D menu on an ordinary desktop computer without an
attched tracking system.

20.2 User-defined 3D menu items

Besides the default buttons any number of user-defined buttons can be added to the amiraVR 3D menu
using a Tcl script interface. This is useful for executing certain demos or for invoking other special
actions. The script interface essentially consists of a single global Tcl method called menu which
is provided by amiraVR. Calling the menu method with special parameters allows the user to add
individual buttons or submenus to the main 3D menu. Each button or submenu has an id. This id can

658 Chapter 20: Working with amiraVR

Figure 20.1: amiraVR scene with 3D menu on the left and 3D user interface of the SurfaceView module on the right.

be used to modify the particular element afterwards. Whenever a button is pressed a user-defined Tcl
procedure is invoked.

An example of how to create a two-level menu hierarchy is shown below. This example is taken from
the file $AMIRA ROOT/share/demo/tracking/demomenu.hx contained in the amiraVR demo section.
You can execute that script in order to see how the user-defined buttons work.

menu reset

menu insertMenu -id 0 -text "Medical"
menu insertMenu -id 1 -text "Flow Dynamics"
menu insertMenu -id 2 -text "Reconstruction"
menu insertMenu -id 3 -text "Multi-Channel"

menu 0 insertItem -id 0 -text "CT Slices" -proc "Menu0"
menu 0 insertItem -id 1 -text "Isosurface" -proc "Menu0"
menu 0 insertItem -id 2 -text "Surface model" -proc "Menu0"
menu 0 insertItem -id 4 -text "Oblique slice" -proc "Menu0"
menu 0 insertItem -id 5 -text "Pseudo-color" -proc "Menu0"

menu 1 insertItem -id 0 -text "Wing" -proc "Menu1"
menu 1 insertItem -id 1 -text "Turbine ISL" -proc "Menu1"
menu 1 insertItem -id 2 -text "Turbine LIC" -proc "Menu1"

menu 2 insertItem -id 0 -text "Slice & Isosurface" -proc "Menu2"
menu 2 insertItem -id 1 -text "Volume Rendering" -proc "Menu2"
menu 2 insertItem -id 2 -text "Simplified Surface" -proc "Menu2"

menu 3 insertItem -id 0 -text "Projection view" -proc "Menu3"

User-defined 3D menu items 659

menu 3 insertItem -id 1 -text "Slicing" -proc "Menu3"
menu 3 insertItem -id 2 -text "Isosurface" -proc "Menu3"
menu 3 insertItem -id 3 -text "Volume Rendering" -proc "Menu3"

proc Menu0 { id } {
global AMIRA_ROOT
switch $id \

0 { load $AMIRA_ROOT/share/demo/medical/ctstack.hx } \
1 { load $AMIRA_ROOT/share/demo/medical/isosurface.hx } \
2 { load $AMIRA_ROOT/share/demo/medical/surf.hx } \
3 { load $AMIRA_ROOT/share/demo/medical/tetra.hx } \
4 { load $AMIRA_ROOT/share/demo/medical/gridcut.hx } \
5 { load $AMIRA_ROOT/share/demo/medical/pseudocolor.hx } \
6 { load $AMIRA_ROOT/share/demo/medical/splats.hx }

}

proc Menu1 { id } {
global AMIRA_ROOT
switch $id \

0 { load $AMIRA_ROOT/share/demo/cfd/wing.hx } \
1 { load $AMIRA_ROOT/share/demo/cfd/turbine-isl.hx } \
2 { load $AMIRA_ROOT/share/demo/cfd/turbine-lic.hx }

}

proc Menu2 { id } {
global AMIRA_ROOT
switch $id \

0 { load $AMIRA_ROOT/share/demo/recon/recon01.hx } \
1 { load $AMIRA_ROOT/share/demo/recon/recon05.hx } \
2 { load $AMIRA_ROOT/share/demo/recon/recon04.hx }

}

proc Menu3 { id } {
global AMIRA_ROOT
switch $id \

0 { load $AMIRA_ROOT/share/demo/multichannel/projectionview.hx } \
1 { load $AMIRA_ROOT/share/demo/multichannel/slicing.hx } \
2 { load $AMIRA_ROOT/share/demo/multichannel/isosurfaces.hx }
3 { load $AMIRA_ROOT/share/demo/multichannel/voltex.hx }

}

The example above give a general idea of how to create a user-defined button hierarchy. The menu
command provides some additional parameters. The general form of the menu command is as follows:

menu [submenu-id [...]] cmd [options]

660 Chapter 20: Working with amiraVR

Here submenu-id is the id of any submenu. The root level has no id at all. The first level has one
id, the second level has two ids, and so on.

Note: In contrast to previous versions of amiraVR now all user-defined buttons are inserted at the
main level of the menu. On default at this level there are already three buttons defined:

• a button for activating the 2D mouse mode (id 1000)

• a button for getting a list of all modules (id 1001)

• a button for getting a list of all data objects (id 1002)

You can remove these default buttons using the command menu clear. In order to clear the menu
and then reset the default buttons use menu reset. The complete list of commands is this:

menu reset
Removes all buttons and sub-menus from the menu and restores the default layout with entries
for mouse mode, modules, and data objects. This command can only be applied at the main
level.

menu [...] clear
Removes all buttons and sub-menus from the specified menu. If applied at the main level also
the default buttons (mouse mode, modules, and data) will be removed.

menu [...] count
Returns the number of entries (action buttons and sub-menu buttons) in the specified menu.

menu [...] idAt index Returns the id of the item at position index.

menu [...] insertItem [options]
This command creates a new button and inserts it into the specified menu. The following options
are available:

-id id
Specifies the id of the new button.

-index index
Specifies the position of the new button. If index is -1 (which is the default) the new button
will be appended at the bottom of the menu.

-text text
Specifies the text to be displayed by the new button.

-fg ”r g b”
Specifies the text or foreground color of the new button.

-bg ”r g b”
Specifies the background color of the new button.

User-defined 3D menu items 661

-proc proc
The name of the Tcl procedure to be called when the button is pressed. Either an own
procedure without arguments can be used for a button. Alternatively, a procedure with one
argument can be used for all buttons in a menu. The argument then is set to the id of the
pressed button (see example above).

menu [...] insertMenu [options]
This command creates a new sub-menu button and inserts it into the specified menu. The id of
the new button can be used as a sub-menu id for the menu command itself. The same options as
for insertItem can be used. In addition the following option is available:

-type classtype
If this option is specified a special sub-menu will be inserted which lists all objects of type
classtype in the amira object pool. For example, in order to get a list of all modules (like
in the default menu) you should use insertMenu with -type HxModule.

menu [...] changeItem id -text text
Changes the text of an existing button.

menu [...] removeItem id
Removes an action button or sub-menu button from the menu.

menu [...] connectItem id proc
Connects a button to a Tcl procedure. The procedure will be called when the button is pressed.

menu [...] disconnectItem id proc
Disconnects a button from a Tcl procedure.

20.2.1 3D module controls

The 3D menu provides a button called Modules. Clicking on this button brings up a list of all visible
modules which currently exist in the amira object pool. Clicking on a module button brings up a 3D
version of the modules user interface. This 3D user interface looks very similar to the 2D user interface
of the module which is normally shown in the work area part of the amira main window. An example
of the 3D user interface of the SurfaceView module is shown in Figure 20.1.

The 3D user interface of every module can be moved independently from each other like the main
3D menu itself. Again, this is done by picking the header bar of the module’s GUI. The GUI can be
removed by clicking on the red close button at the right side of the header bar. On the left side an
orange viewer toggle is displayed. As in the 2D interface a display module can be switched on or off
by toggling this button.

In 3D the ports of a module can be manipulated almost in the same way as in 2D. The only remarkable
difference is that text input is not possible in 3D. Text fields with numerical values like the range
of a colormap port or the data window of an OrthoSlice module still can be changed using a virtual

662 Chapter 20: Working with amiraVR

slider. This is done by clicking into the text field with the wand, and then moving the wand upwards or
downwards while keeping the button pressed. As a general rule, every active element shows a yellow
frame when the wand is pointing on it, i.e., when it has input focus.

20.2.2 Navigation modes

amiraVR supports two different navigation modes. The default mode is scene manipulation, i.e., the
whole scene can be rotated and translated using the 3D input device. This is done by clicking with
the wand into some empty or insensitive region in space, and then moving the wand while keeping the
button pressed. In this mode the whole scene remains stick relative to the input device.

The second mode is fly mode. This mode can be activated by selecting the second entry from the Mode
port of the amiraVR control module (either in the 2D or in the 3D user interface). In fly mode you can
click the 3D input device at some insensitive point, and then move it in any direction. The vector from
the point where the wand was clicked to the current point defines a velocity vector which is used to
modify the position of the camera. The longer the vector, i.e., the more the wand is shifted, the faster
the camera is moving. In the same way the orientation of the camera is modified by rotating the 3D
wand. An incremental rotational change is computed by comparing the current orientation which the
orientation at the point where the wand was clicked initially.

20.2.3 Tcl event procedures

On default, amiraVR treats all buttons of a 3D mouse in the same way. This allows you to operate the
program even with a one-button mouse. In order to make better use of a 3D input device with multiple
buttons, you can define special Tcl procedures which are called when a button is pressed or released. If
these procedures return the value 1, this indicates that the event has been handled by the Tcl procedure
and that it should not be further processed by amira. In particular, it then will not be send to the Open
Inventor scene graph. The following procedures can be defined:

• vrButton0Press, vrButton1Press, ...
These procedures are called when the button with the specified index is pressed. By redefining
vrButton0Press you can overwrite the default interaction routine.

• vrButton0Release, vrButton1Release, ...
These procedures are called when the button with the specified index is released.

• vrButton0DblClick, vrButton1DblClick, ...
These procedures are called when the button with the specified index is double-clicked. Note,
that for the first click of a double-click event an ordinary button press event is generated.

When a 3D mouse button event occurs and no appropriate Tcl event procedure is defined or if this
procedure returns 0, the event will be passed to the current amiraVR event handler. The default event
handler checks if the 3D menu or some other 3D widget has been clicked. If not, it sends the event to
the Open Inventor scene graph. Besides this default event handler there are also other event handlers,
namely handlers for managing the different navigation modes (examine and fly).

User-defined 3D menu items 663

If a 3D mouse button event was not handled by the current event handler, finally the following Tcl
procedures will be called, provided they are defined:

• vrButton0PressFallback, vrButton1PressFallback, ...

• vrButton0ReleaseFallback, vrButton1ReleaseFallback, ...

• vrButton0DblClickFallback, vrButton1DblClickFallback, ...

Assuming, that the default event handler is active (the one which checks the 3d menu and the Open
Inventor scene graph), you can trigger certain actions when the user clicks into empty space. On
default, when this happens one of the navigation mode handlers is activated. If you want to disable this
feature you can define a dummy vrButton0PressFallback procedure which always returns 1.

20.2.4 The 2D mouse mode

The 2D mouse mode is useful for accessing GUI elements which have no direct analogon in 3D. In
this mode the position of the ordinary 2D mouse pointer is controlled using the 3D input device.

• In order to activate 2D mouse mode press the red mouse mode button of the 3D menu. Once
mouse mode is activated the amira main window is popped up automatically.

• You can control the 2D mouse by translating or rotating the 3D input device. Usually, rotating it
is more convenient since less movement is required. The position of the 2D mouse is computed
by determining the intersection of the virtual wand vector with the screen.

• In order to exit 2D mouse mode, double-click the 3D input device over some insensitive region
of the 2D user interface. When leaving 2D mouse mode the main graphics window is raised
automatically.

If the 2D mouse stays in the middle of the screen, of course 3D impression is disturbed. There-
fore, usually it is a good idea to move the 2D mouse in a corner before returning to 3D mode.

The two Tcl procedures AmiraVR StartMouseMode and AmiraVR StopMouseMode are called when
entering and exiting 2D mouse mode. You can use these methods for example to pop up the amira
help browser with a page from which additional demos can be launched. For this, the following
definition could be included for example in the file $AMIRA ROOT/share/resources/Amira.init:

proc AmiraVR_StartMouseMode { } {
global AMIRA_ROOT
load $AMIRA_ROOT/share/usersguide/tracking.html

}

In order to activate or deactivate the 2D mouse mode from Tcl, the amiraVR control module provides
the command AmiraVR enableMouseMode <value>, where <value> can be either 0 or 1.
In order to check if 2D mouse mode is currently active, you can use AmiraVR isMouseModeEn-
abled.

664 Chapter 20: Working with amiraVR

20.3 Writing amiraVR custom modules

amira can be easily extended by writing new I/O-routines, data types, modules, and other components.
Details about this are described in the amira Programmer’s Guide.

In order to write custom modules which provide specific interaction features in a VR environment,
Open Inventor nodes interpreting events generated by the 3D input device have to be inserted into
the scene graph. In particular, the 3D input device generates events of type SoTrackerEvent and So-
ControllerButtonEvent. These two event classes have been introduced in Open Inventor 3.0. For more
information about these classes please refer to the Open Inventor documentation. amira itself provides
an additional class Hx3DWandBase which provides some additional information about the virtual 3D
wand. Among others, this class also allows to user to highlight the wand in order to provide some
visual feedback during interaction.

Below we present the source code of a sample amiraVR module which just displays a number of
cubes. The cubes then can be picked and transformed using the 3D wand. The source code of the
module is contained in the amiraDev demo package. The particular files are called MyVRDemo.h
and MyVRDemo.cpp. The module can also be directly created from the popup menu of the amiraVR
control module.

Here is the listing of the header file:

///
//
// Illustrates 3D interaction in a VR environment
//
///
#ifndef MY_VR_DEMO_H
#define MY_VR_DEMO_H

#include <Inventor/nodes/SoSeparator.h>

#include <McHandle.h>
#include <Amira/HxModule.h>
#include <Amira/HxPortButtonList.h>
#include <mypackage/mypackageAPI.h>

class MYPACKAGE_API MyVRDemo : public HxModule
{

HX_HEADER(MyVRDemo);

public:
MyVRDemo();
virtual void compute();
HxPortButtonList portAction;

Writing amiraVR custom modules 665

protected:
˜MyVRDemo();

McHandle<SoSeparator> scene;
McHandle<SoSeparator> activeCube;

bool isMoving;
SbVec3f refPos;
SbMatrix refMatrix;
SbRotation refRotInverse;

void createScene(SoSeparator* scene);
SoSeparator* checkCube(const SbVec3f& pos);
void trackerEvent(SoEventCallback* node);
void controllerEvent(SoEventCallback* node);

static void trackerEventCB(void* userData, SoEventCallback* node);
static void controllerEventCB(void* userData, SoEventCallback* node);

};

#endif

Here is the listing of the source file:

///
//
// Illustrates 3D interaction in a VR environment
//
///
#include <stdlib.h>

#include <Inventor/nodes/SoCube.h>
#include <Inventor/nodes/SoMaterial.h>
#include <Inventor/nodes/SoEventCallback.h>
#include <Inventor/nodes/SoMatrixTransform.h>
#include <Inventor/events/SoTrackerEvent.h>
#include <Inventor/events/SoControllerButtonEvent.h>

#include <Amira/Hx3DWandBase.h>
#include <mypackage/MyVRDemo.h>

HX_INIT_CLASS(MyVRDemo,HxModule)

MyVRDemo::MyVRDemo() :
HxModule(HxObject::getClassTypeId()),
portAction(this,"action",1)

666 Chapter 20: Working with amiraVR

{
isMoving = 0;
portAction.setLabel(0,"Reset");
scene = new SoSeparator;
createScene(scene);
showGeom(scene);

}

MyVRDemo::˜MyVRDemo()
{

hideGeom(scene);
}

void MyVRDemo::compute()
{

if (portAction.isNew() && portAction.getIndex()==0)
createScene(scene);

}

void MyVRDemo::createScene(SoSeparator* scene)
{

scene->removeAllChildren();

SoEventCallback* cb = new SoEventCallback;
cb->addEventCallback(SoTrackerEvent::getClassTypeId(),

trackerEventCB, this);
cb->addEventCallback(SoControllerButtonEvent::getClassTypeId(),

controllerEventCB, this);
scene->addChild(cb);

for (int j=0; j<4; j++) {
for (int i=0; i<4; i++) {

SoSeparator* child = new SoSeparator;

SoMatrixTransform* xform = new SoMatrixTransform;
SbMatrix M;
M.setTranslate(SbVec3f(i*3.f,j*3.f,0));
xform->matrix.setValue(M);

SoMaterial* mat = new SoMaterial;
float hue = (rand()%1000)/1000.;
mat->diffuseColor.setHSVValue(hue,1.f,.8f);

SoCube* cube = new SoCube;

child->addChild(xform);

Writing amiraVR custom modules 667

child->addChild(mat);
child->addChild(cube);

scene->addChild(child);
}

}
}

SoSeparator* MyVRDemo::checkCube(const SbVec3f& p)
{

for (int iChild=1; iChild<scene->getNumChildren(); iChild++) {
SoSeparator* child = (SoSeparator*) scene->getChild(iChild);
SoMatrixTransform* xform = (SoMatrixTransform*) child->getChild(0);
const SbMatrix& M = xform->matrix.getValue();

SbVec3f q;
M.inverse().multVecMatrix(p,q);
if (fabs(q[0])<1 && fabs(q[1])<1 && fabs(q[2])<1) {

if (activeCube.ptr()!=child) {
if (activeCube) {

SoMaterial* mat = (SoMaterial*) activeCube-
>getChild(1);

mat->emissiveColor = SbColor(0.f,0.f,0.f);
}
SoMaterial* mat = (SoMaterial*) child->getChild(1);
mat->emissiveColor = mat->diffuseColor[0];
activeCube = child;

}
return activeCube;

}
}

if (activeCube) {
SoMaterial* mat = (SoMaterial*) activeCube->getChild(1);
mat->emissiveColor = SbColor(0.f,0.f,0.f);
activeCube = 0;

}

return 0;
}

void MyVRDemo::trackerEventCB(void* userData, SoEventCallback* node)
{

MyVRDemo* me = (MyVRDemo*) userData;
me->trackerEvent(node);

}

668 Chapter 20: Working with amiraVR

void MyVRDemo::trackerEvent(SoEventCallback* node)
{

SoTrackerEvent* e = (SoTrackerEvent*) node->getEvent();
Hx3DWandBase* wand = GET_WAND(e);

if (activeCube && isMoving) {
if (!wand->getButton(0)) {

node->setHandled();
isMoving = 0;
return;

}

SbMatrix T1; T1.setTranslate(-refPos);
SbMatrix R; R.setRotate(refRotInverse*wand->orientation());
SbMatrix T2; T2.setTranslate(wand->origin());

SoMatrixTransform* xform = (SoMatrixTransform*) activeCube-
>getChild(0);

xform->matrix = SbMatrix(refMatrix*T1*R*T2);

wand->setHighlight(true);
node->setHandled();
return;

}

if (checkCube(wand->top()))
node->setHandled();

}

void MyVRDemo::controllerEventCB(void* userData, SoEventCallback* node)
{

MyVRDemo* me = (MyVRDemo*) userData;
me->controllerEvent(node);

}

void MyVRDemo::controllerEvent(SoEventCallback* node)
{

if (activeCube) {
SoTrackerEvent* e = (SoTrackerEvent*) node->getEvent();
Hx3DWandBase* wand = GET_WAND(e);

if (wand->wasButtonPressed(0)) {
SoMatrixTransform* xform = (SoMatrixTransform*) activeCube-

>getChild(0);
refRotInverse = wand->orientation().inverse();

Writing amiraVR custom modules 669

refPos = wand->origin();
refMatrix = xform->matrix.getValue();

wand->setHighlight(true);
isMoving = 1;

}

if (wand->wasButtonReleased(0))
isMoving = 0;

node->setHandled();
}

}

670 Chapter 20: Working with amiraVR

Chapter 21

amiraVR Reference

21.1 Config file reference

An amiraVR config file is an Open Inventor file containing one or more SoScreen nodes (one for each screen
of the VR system), an optional SoTracker node (containing information about the tracking system), as well as
optional Open Inventor nodes (visual representation of the room).

In principal two different configurations are distinguished. A ”flat screen” configuration defines a virtual big 2D
screen, while a true ”immersive” configuration defines multiple non-planar screens. For a flat screen configuration
the fields tileOrigin and tileSize (see below) are used, while for an immersive configuration the fields lowerLeft,
lowerRight, upperRight, and upperLeft are used. For a tiled configuration ordinary 2D mouse interaction works,
while an immersive configuration usually requires a tracking system.

An SoScreen node contains the following fields:

SoSFString name ”Vertical screen”
The name of the screen (not used internally)

SoSFVec3f lowerLeft 0 0 0
The coordinates of the lower left corner of the screen. Any right-handed coordinate system can be used.
It does not matter in which units the screen corners are defined, because the transformation between the
screen coordinates and the tracker coordinates is computed automatically when calibrating the tracking
system.

SoSFVec3f lowerRight 180 0 0
The coordinates of the lower right corner of the screen.

SoSFVec3f upperRight 180 110 0
The coordinates of the upper right corner of the screen.

SoSFVec3f upperLeft 0 110 0
The coordinates of the upper left corner of the screen.

SoSFString display ”:0.1”
Specifies on which X display the screen should be rendered. On a multi-pipe machine such as an SGI
Onyx either different X servers may run on the different pipes, or there may be one X server with multiple
screens. Depending on the actual configuration either ”:1.0” or ”:0.1” should be specifed in order to enable
multi-pipe rendering for the second screen. If this field is omitted the window will be opened on the same
display as the amira user interface (determined by the value of the DISPLAY environment variable or by
the -display command line option).

SoSFString hostname
This field is required if amiraVR shall be run in cluster mode. It specifies on which node of a graphics
cluster the particular screen should be rendered. The hostname can either be specified as a name or as a
numeric IP address. Special requirements and limitations of the amiraVR cluster version are described in
a separate section.

SoSFVec2f channelOrigin 0.0 0.0
Specifies the position of the upper left corner of the graphics window in relative coordinates. (0,0) is the
upper left corner of the desktop, (1,1) is the lower right corner of the desktop.

SoSFVec2f channelSize 0.5 1.0
Specifies the size of graphics window in relative coordinates. The size of the whole desktop is (1,1).
In order to create a window covering the left half of the desktop, channelOrigina should be (0,0) and
channelSize should be (0.5,1).

SoSFVec2f tileOrigin 0.0 0.0
This field is used in case of a 2D tiled display instead of the fields lowerLeft,lowerRight, upperRight, and
upperLeft. It specifies the origin of a rectangular part of a virtual big screen which should be rendered in
the graphics window. The origin can be any point between (0,0) and (1,1). Here (0,0) denotes the LOWER
left corner of the virtual big screen, and (1,1) denotes the UPPER right corner.

SoSFVec2f tileSize 1.0 1.0
This field is used in case of a 2D tiled display instead of the fields lowerLeft,lowerRight, upperRight, and
upperLeft. It specifies the size of a rectangular part of a virtual big screen which should be displayed in the
graphics window. The size can be any value between (0,0) and (1,1).

SoSFEnum cameraMode [MONOSCOPIC — LEFT VIEW — RIGHT VIEW — ACTIVE STEREO]
This field specifies the camera mode used for the screen. The default is MONOSCOPIC. The values
LEFT VIEW and RIGHT VIEW are used for passive stereo applications. If ACTIVE STEREO is speci-
fied, the window is opened in active stereo mode on default.

SoSFEnum backgroundMode [BG AS IS — BG LOWER — BG UPPER — BG REVERSE]
This field affects the way how the default amira gradient background is rendered on the screen. If
BG LOWER or BG UPPER is specified a uniform background with either the lower or upper color of
the standard gradient background is used. This is useful for the bottom or ceiling of a CAVE.

SoSFInt32 threadGroup
Screens with different thread groups are rendered in parallel using multiple threads, provided amira has
been started with the -mt command line option or the environment variable AMIRA MULTITHREAD
has been set. If the same thread group is used for two different screens, these screens will always be
rendered one after the other. Usually, screens being rendered on the same pipe (same display but different
channelOrigina or channelSize) should be assigned the same thread group.

SoMFFloat softEdgeOverlap
This field is used for soft-edge blending. It should contain exactly four floating-point values, indicating the

672 Chapter 21: amiraVR Reference

size of the soft-edge region on the left, right, bottom, and top border of the screen relative to the total width
or height of the screen. For example, in order to specify 25softEdgeOverlap should be [0.0, 0.25, 0.0, 0.0
].

SoMFFloat softEdgeGamma
This field is used for soft-edge gamma correction. It should contain exactly four floating-point values,
indicating the gamma value of the soft-edge region at the left, right, bottom, and top border of the screen.
A gamma value of 1 means, that image intensity is linearly faded out to black. For most projectors gamma
values bigger than 1 are required to achieve good results. The default gamma value for all borders is 1.2.

An SoTracker node contains information about the tracking system. Usually it is not necessary to define an So-
Tracker node for a ”tiled” configuration, but only for true VR configurations with make use of the fields lowerLeft,
lowerRight, upperRight, and upperLeft of SoScreen (see above).

SoSFString server 4127:4126
This field specifies a string used to initialize the connection to the tracking system. In order to con-
nect to a running VRCO trackd server, the string should contain the shared memory key of the trackd
controller data, and the shared memory key of the trackd tracker data separated by a colon (”¡con-
trollerKey¿:¡trackerKey¿”). The shared memory keys are defined in the trackd.conf file.

SoSFBool autoConnect
If this field is set to TRUE the connection to the tracking system will be established automatically when
the configuration is loaded. The default value is FALSE.

SoSFVec3f defaultCameraPosition 90 50 150
Defines the camera position to be used as long as there is no connection to the tracking system. This
position is also used if the head tracker id (below) is -1.

SoSFVec3f defaultObjectPosition 90 50 0
Defines the object position to be used as long as there is no connection to the tracking system. If there is a
”view all” request in amira (e.g., because the space bar of the keyboard was hit), the scene is centered at
the default object position. In a CAVE it makes sense to choose the default object position in the center of
the front wall.

SoMFVec3f calibration
The field is used to store calibration data, i.e., data allowing the system to transform raw tracker data into
the coordinate system in which the screens have been defined. Usually there is no need to set this field
manually. Instead, load a configuration file without calibration data, perform calibration in amiraVR, and
then export a new config file.

SoSFRotation rotGlasses
This field is used for calibrating the orientation of the tracked stereo glasses. Usually there is no need to
set this field manually.

SoSFRotation rotWand
This field is used for calibrating the orientation of the wand tracker. Usually there is no need to set this
field manually.

SoSFVec3f leftEyeOffset
The center of the left eye with respect to the head tracker. For calibration, the glasses must be align parallel
to the front screen. In this position the horizontal axis is the x-axis, the vertical axis is the y-axis, and the
axis pointing towards the observer is the z-axis. The eye offsets are defined with respect to this coordinate

Config file reference 673

system. The difference between the left eye’s x-offset and the right eye’s x-offset should be around 6.5 cm
(average eye separation).

SoSFVec3f rightEyeOffset
The center of the right eye with respect to the head tracker. Same remarks as for leftEyeOffset apply.

SoMFVec3f referencePoints
Reference points used for calibrating the tracking system. If no reference points are specified, the user is
asked for clicking at the upper left, lower left, and lower right corner of the first screen defined in the config
file. Note, that at least three different reference points are required and that these points must not lie on
a common line. However, the reference points may well lie in a common plane, e.g., in the screen plane
itself.

SoSFInt32 wandTrackerId
Specifies the id of the trackd sensor which should be used to control the wand. On default the wand sensor
is assumed to have the id 0.

SoSFInt32 headTrackerId
Specifies the if of the trackd sensor which should be used to control the camera (head tracking). On default
the head tracker is assumed to have the id 1. If -1 is specified for a head tracker id the default camera
position is used instead of actually querying a head sensor.

SoSFInt32 headTrackingEnabled
This field determines if head tracking should be enabled or disabled by default if the configuration file
is loaded. The default is TRUE. If the value is set to FALSE head tracking is initially disabled, but can
be activated later on by pressing the head tracking toggle of the amiraVR control module. However,
headTrackerId must not be set to -1 in this case.

SoSFString wandFile
This is the name of an Open Inventor file which is used as the visual representation of the wand. The origin
of the wand should be at (0,0,0). The wand itself should point into the negative z-direction. The wand is
scaled so that the length 1 corresponds to 0.16 times the width of the first screen in the config file. The hot
spot of the wand should be indicated by an SoInfo node containing a string ”x y z”. Usually the hot spot
will be something like ”0 0 -1”. The filename can be an absolute or relative path. If it is relative the file is
assumed to be in the same directory as the config file itself (namely in share/config).

SoSFString highlightWandFile
This is the name of an Open Inventor file which is used as the visual representation of the wand in highlight
state. The same remarks as for wandFile apply to this field too.

SoSFFloat wandScale
This field specifies a scaling factor applied to the wand geometry. On default, a value of 0.16 times the
width of the first screen is assumed. In order to change the length of the wand you can either specify a
custom wand file with a hot spot different from ”0 0 -1”, or you can change the wand scale value.

SoSFVec3f menuPosition
Specifies the default position of the upper left corner of the 3D menu. On default it is placed in the upper
left corner of the first screen in the config file. The values must be defined in the same coordinate system
as the corners of the screens.

SoSFRotation menuOrientation
Specifies the orientation of the 3d menu. On default the horizontal axis of the menu, i.e., the text direction,
is aligned to the x-axis of the VR coordinate system, while the vertical direction is aligned to the y-axis.

674 Chapter 21: amiraVR Reference

This field allows you to change the orientation by appling a rotation the default orientation. The rotation
is specified by four numbers. The first three numbers define the axis of rotation, and the fourth numbers
defines the rotation angle in radians.

SoSFFloat menuSize
This field specifies the default width of the 3D menu in the same coordinates in which the corners of the
screens were defined in. You can adjust this value to make the menu smaller or bigger.

SoSFString onLoad
This field defines a Tcl command which is executed after the configuration has been loaded. You can
put in additional initialization code here. For example, you may always want to load a particular script
MenuInit.hx for initializing the 3d menu when a certain configuration is loaded. You can do this by defining
onLoad ”load $AMIRA ROOT/MenuInit.hx”.

SoSFString onUnload
This field defines a Tcl command which is executed before a configuration is unloaded.

SoSFString onConnect
This field defines a Tcl command which is executed after a connection to the tracking system has been
established.

SoSFString onDisconnect
This field defines a Tcl command which is executed after the connection to the tracking system was dis-
connected.

21.2 amiraVR control module

The amiraVR module is the central control module of the amiraVR Virtual Reality Extension. It allows you
to activate different screen configurations specified in config files located in $AMIRA ROOT/share/config
or $AMIRA LOCAL/share/config. For details about supported features such as multi-pipe or multi-thread
rendering, soft-edge blending, passive stereo support, or head-tracking please refer to the main amiraVR docu-
mentation. In the following we assume that you are already familiar with the basic concepts of amiraVR.

Ports

Config

This port provides a list of all config files found in $AMIRA ROOT/share/config and
$AMIRA LOCAL/share/config. This is the same as in the Config menu of the amira main window.
Note, that valid config files are only searched once. It is not possible to add a config file when amira is run-
ning. However, existing config files may be modified and reloaded using the reload button. The write button
allows you store a modified configuration into a file (for example after the tracking system has been calibrated).
If this button is pressed the file dialog pops up.

Tracker

amiraVR control module 675

Specifies how the connection to the tracking system should be established. In order to connect to a run-
ning trackd server the value of this port should be <id of controller reader>:<id of tracker
reader>, where the two ids are the shared memory ids of the trackd controller reader and the trackd tracker
reader as specified in the trackd.conf file.
In order to activate a simple tracker emulator you can type in test into the text field.

Action

The connect button allows you to connect to the tracking system. Once you are connected to the tracking
system the button label changes to disconnect. Pressing the button then disconnects from the tracking system.
The calibrate button allows you to calibrate the tracking system, i.e., to find the transformation between raw
tracker coordinates and the screen coordinates used in the config file. For more information about the calibra-
tion process please refer to Section 19.4.
The pick wand button allows you to change the offset between the 3D input device and the visual representation
of the virtual wand. If you press the button the wand is displayed half-way between the current eye position
and the default object position. You can then pick the virtual wand in the way which is most convenient for
you.

Mode

Option menu allowing you to change between ordinary interaction mode (translate and rotate the whole scene
using the 3D wand), fly mode (navigate through the scene like an airplane), or 2D mouse mode (control the 2D
mouse using the 3D wand). In order to exit 2D mouse mode double-click the 3D wand while the 2D mouse in
over some insensitive GUI element.

Options

If the values toggle is activated the current coordinates of the wand sensor and of the head sensor are displayed
in the upper left corner of the screen. The coordinates are transformed into the screen coordinate system which
was used in the config file. Only during calibration raw tracker coordinates are displayed.

Adjust size

This slider allows you to change the overall scaling of the scene.

Stereo

This toggle allows you to enable or disable stereo mode. Depending on the camera mode defined in the config
file either active stereo or passive stereo will be used. This option is the only one which is provided for flat
screen configurations (compare Section19.2).
The second button labeled allows to temporarily enable or disable head tracking. If head tracking is disabled
the default camera position specified in the config file will be used instead of the position reported by the
head sensor. If no head sensor has been configured or if a flat screen configuration is being used this button is
disbaled.

676 Chapter 21: amiraVR Reference

Commands
setHeadTrackerId <id>

Changes the head tracker id on-the-fly. Usually the id is defined in the config file. A value of -1 disables the
head tracker.

setWandTrackerId <id>

Changes the wand tracker id on-the-fly. Usually the id is defined in the config file. A value of -1 disables the
wand tracker.

setSoftEdge <overlap> <gamma>

Initializes a dual-screen soft-edge configuration with the given overlap percentage <overlap>. This is a
value between 0 (no overlap) and 1 (full overlap). <gamma> defines the gamma value for the soft-edge
blending.

setPanorama <overlap1> [<overlap2> ...]

Initializes a multi-screen panorama configuration with the given overlap percentages. These are values between
0 (no overlap) and 100 (full overlap). The current configuration must be a flat-screen configuration.

21.3 amiraVR show config module
This module displays a model of the currently loaded AmiraVR configuration. It’s intended to give the visual
feedback needed during the configuration process and for easier error detection. It shows the projection planes,
camera-, sensor- and scene-positions as well as the button state. Therefor the fourth viewer is used.

Objects associated with an own local coordinate system are drawed with an axis cross consisting of three colored
line segments. X axis is red, y is green and z is drawn with a blue line.

The camera postition is marked with a red cone and two small grey spheres, one for each eye. The eye spheres
are translated according to the configured eye offset value. One eye sphere is marked with the letter R which
means that this is the sphere for the right eye.

amiraVR show config module 677

The default object- or scene position is marked with a green sphere.

Blue spheres represent sensors (3D-tracker). One for every sensor. If one of the buttons is pressed the blue sphere
of the first sensor turns white until all buttons are released.

If the camera is bound to one of the 3D-sensors, which means that head tracking is turned on, the red cone
representing the camera is glued to the blue sensor sphere and follows its movement. At the moment the
head-tracking feature is turned off, the camera model snaps back to the default camera position.

Finally the projection planes are drawn at the positions and dimensions specified in the configuration file. The
following two images are showing an environment with a single projection plane. The front side looks blue and a
projection plane observed from its back side appears red. Considering the color one can check if the edge points
were specified in the right order.

front view

678 Chapter 21: amiraVR Reference

rear view

The user defined name of the plane is drawn in it’s center. Since projection planes are given as a set of four
edge points it is possible to produce a non-planar polygon. This misconfiguration leads to a clearly visible edge
crossing the plane.

Connections

Data [required]

Connect the amiraVR control module.

Ports

21.4 Tracker Emulator

The Tracker Emulator provides emulation of a 3D positioning device with two spacial sensors and two buttons.
To activate it, type the word test into the tracker port of the amiraVR control module and press the connect button.
After that the user interface dialog of the tracker emulator appears.

As mentioned before, the emulator emulates two spacial sensors designated as sensor0 and sensor1. For each of
these sensors the position is changeable by three sliders, one for each direction. Alternative and to reach positions
of greater distances as the sliders allow one can type the values directly to the entry fields to the right of the slider.

The sensors rotation can be changed by selecting one of the main axes as rotation axis and a following adjustment
of the rotation angle around this axis using the slider or the entry field. To perform an additional rotation simply

Tracker Emulator 679

Figure 21.1: The tracker emulators user interface dialog.

680 Chapter 21: amiraVR Reference

select a different rotation axis and angle. The rotations are performed accumulative. The current rotation doesn’t
affect the orientation of the main rotation axes. Rotation center is always the current sensor position. To set the
sensors rotation to the initial unrotated state, press the Reset button.

In the buttons section one can toggle the emulated buttons state. If the checkbox is checked, the button is emulated
as pressed until its checkbox gets unchecked.

21.5 amiraVR - Tracking module
The tracking module implements head-tracking for immersive virtual reality applications. This
means that a correct perspective viewing matrix is computed for an observer wearing stereo glasses
with a 3D sensor. The module supports single-pipe multi-channel and true multi-pipe configura-
tions.

The demo script illustrates some basic interaction principles.

tracking demo

demos via 3d menu

amiraVR - Tracking module 681

Index

.Amira, 108, 147

Access LargeDiskData, 153
ACR-NEMA, 431
affine transformations,103
AlignPrincipalAxes, 154
AlignSlices, 155
AlignSurfaces, 168
Amira

local directory, 528
amira

class structure, 100
data objects, 3
exetnsions, 7
local directory, 531, 540
modules, 3
root directory, 531

Amira Script, 432
Amira Script Object, 432
Amira.init, 108, 147
AMIRA LOCAL, 108, 135, 534
AMIRA ROOT, 135, 536
amiraDeconv, 7
AmiraMesh

API, 570
read routine, 572
write routine, 571

AmiraMesh as LargeDiskData, 443
AmiraMesh Format, 432
amiraMol, 7
amiraVR, 7
amiraVR - Tracking module, 681
amiraVR control module, 675
amiraVR show config module,677
Analyze 7.5, 443
AnalyzeAVW, 444
Animate, 169

AnnaScalarField3, 397
AnnaVectorField3, 398
Annotation, 170
AnonymizeImageStack, 171
Apply Transform, 172
ArbitraryCut, 174
Arithmetic, 176
auto-save, 98
auto-select modules, 97
AVS Field, 431
AVS UCD Format, 432
Axis, 179

Bio-Rad Confocal Format, 444
BMP Image Format, 444
BoundaryConditions, 181
bounding box, 277, 469, 490
BoundingBox, 182
breakpoint, 535, 536, 631
build system, 547
busy cursor, 595

CameraPath Editor, 471
CameraRotate, 400
CastField, 182
ChannelWorks, 184
class hierarchy, 599
ClippingPlane, 186
Cluster, 400
ClusterDiff, 186
ClusterGrep, 188
ClusterSample, 189
ClusterView, 189
Color Combine, 192
color depth, 122
Color Dialog, 472
color editor, 627

ColorField3, 401
Colormap, 402, 571
Colormap Editor, 474
colormap port, 588, 627
Colorwash, 193
CombineLandmarks, 195
command line options, 106
CompareLatticeData, 195
compiler, 529
compiling

Unix, 536
component, 543
ComponentField, 196
compose label, 561
compression, 571
compute indicator, 97
compute method, 577
compute module

adding new one, 545
example, 575

ComputeContours, 197
ConePlot, 198
ConnectedComponents, 201
Connection, 369
console window, 556, 566
content type, 571
ContourView, 202
ContrastControl, 203
ConvertToLargeDiskData, 206
coordinate systems, 615
coordinates, 102

curvilinear, 607
rectilinear, 607
stacked, 607
uniform, 607

CorrectZDrop, 206
CorrelationPlot, 207
create command, 629
Create menu, 83
create method, 606
Curl, 211
curvilinear coordinates, 607
Cutting Plane, 211
CylinderSlice, 212

Data, 404

data classes, 599
data import, 105
database, 618, 627

default, 83
user-defined,83

DataProbe, 213
debug mode, 535, 536
debugger, 536
default directories, 107
degenerate cells, 613
Delaunay2D, 216
demo package, 542
DemoMaker, 218
development wizard, 539
dialog boxes, 563
DICOM, 445
Digital Image Filters, 228, 479
Displace, 228
DisplayColormap, 229
DisplayISL, 230
DisplayTime, 233
DistanceMap, 234
Divergence, 236
DLL, 528, 630
do-it button, 582
DoseVolume (Tetrahedra), 236
down stream connection, 569
dso command, 536, 631
duplicate vertices, 611
DuplicateNodes, 237
DXF, 449
dynamic loading, 528
dynamic type checking, 569, 578

Edit menu
Database, 83
Duplicate, 82
Hide, 82
Preferences, 83
Remove, 82
Remove All, 83
Rename, 82
Show, 82
Show All, 82

editors, 4
Encapsulated Postscript, 449

INDEX 683

encoding, 561, 611
environment variables, 107
error dialog, 626
eval method, 614
evalReg, 579

F1 key, 135
features, 4
FIDAP NEUTRAL, 450
field classes,602
Field3, 405
FieldCut, 238
file dialog,627

changing directories, 95
filename filter,95
popup menu, 95
selecting files,95

file format,546, 553
file header,546, 557
File menu

Jobs, 81
Load, 79
Load Time Series, 80
Quit, 81
Recent Files, 81
Recent Networks, 81
Save Data, 80
Save Data As, 80
Save Network, 81

file name extension,546
firing algorithm,98
Fluent / UNS, 450
font size, 108, 109
function key, 109

procedure, 147

GetCurvature, 240
global objects, 626
global search, 615
gmake, 529, 536
GNUmakefile,529, 536
Gradient, 241
graphical user interface, 529, 563
Grid Editor, 484
GridBoundary, 242
GridCut, 243
GridView, 245

GridVolume, 245
Grouping, 247

HeightField, 248
help

for commands, 135
help browser, 86
searching, 86

hexahedral grids, 612
HexaView, 250
HexToTet, 249
hidden data objects, 98
Histogram, 251
hot-key procedure, 109, 147
HP-UX, 530
HTML, 450
HxColormap, 588
HxHexaGrid, 612
HxLabelLattice3, 595, 608
HxLattice3, 603
HxMessage, 556, 566
HxParamBundle, 617
HxPortButtonList, 593
HxPortFloatTextN, 577
HxPortIntSlider, 585
HxPortRadioBox, 590
HxSurface, 450
HxTetraData, 611
HxTetraGrid, 610
HxUniformScalarField3, 579
Hypermesh, 455

Icol, 456
IDEAS universal format, 456
IlluminatedLines, 253
ImageCrop Editor, 488
interface, 566, 602
Interpolate, 255
InterpolateLabels, 256
InterpolLabels, 254
Intersect, 257
IRIX, 529
Isolines, 258
Isolines (Surface), 260
Isosurface (Hexahedra), 261
Isosurface (Regular), 262
Isosurface (Tetrahedra), 264

684 INDEX

IvData, 405
IvDisplay, 265
IvToSurface, 265

Job dialog box, 95
JPEG Image Format, 456

label field,608
LabelField3, 405
LabelVoxel, 266
LandmarkEditor, 490
LandmarkSet, 407
LandmarkSurfaceWarp, 268
LandmarkView, 268
LandmarkWarp, 269
LargeDiskData, 408, 457
Lattice3, 409
LegoSurfaceGen, 270
Leica 3D TIFF, 457
Leica Binary Format (.lei), 457
Leica Slice Series (.info), 458
Light, 410
LineProbe, 270
LineSet, 413
LineSet Editor, 491
LineSetProbe, 271
LineSetView, 272
LineStreaks, 274
link line, 630
Linux, 530
load command, 562, 628
local amira directory, 531, 540
local coordinates, 616
local directory, 528
local search, 615
location class, 615

MagAndPhase, 275
Magnitude, 275
MAKE CFG, 536
masking, 178
MasterConnection, 370
material database, 618, 627
material ids, 610, 613
materials, 609, 618
McHandle, 585, 593
McStringTokenizer, 561

McVec3f, 587
Measuring, 276
Merge, 277
message window, 626
Metamorph STK Format, 458
module

adding new one, 543
example, 583

Movie, 414
MovieMaker, 279
MoviePlayer, 281
MultiChannelField3, 417
multiple file input,546

non-conformal grids, 613

Object, 418
object pool, 88, 626
ObliqueSlice, 284
Open Inventor, 458, 528, 584
OpenGL, 528, 529
OpenGL driver, 122
OrthoSlice, 287
overwrite dialog, 566

package, 528, 542
parallel flags, 536
Parameter Editor, 492
parameters, 601, 617
parameters of data objects, 104
Parametric Surface, 289
parse method, 588
performance, 583
PlanarLIC, 292
Plot 3D Single Structured, 460
plot API, 591
Plot Tool, 492
Ply Format, 463
PNG Image Format, 458
PNM Image Format, 459
PointProbe, 294
PointWrap, 294
polymorphism, 566
Port, 88, 367
Port3DPointList, 371
PortButtonList, 373
PortButtonMenu, 375

INDEX 685

PortChannelConfig,376
PortColorList, 377
PortColormap, 378
portData, 579
PortDoIt, 379
PortDrawStyle, 379
PortFilename, 380
PortFloatSlider, 382
PortFloatTextN, 384
PortGeneric, 385
PortInfo, 387
PortIntSlider, 388
PortIntTextN, 388
PortMultiChannel, 389
PortMultiMenu, 389
PortRadioBox, 390
PortSeparator, 391
PortTabBar, 391
PortText, 392
PortTime, 393
PortToggleList, 395
PPM3D format, 555, 564
preferences, 97
primitive data types, 603
ProbeToLineSet, 295
procedural data interface, 614
progress bar, 580
ProjectionView, 296
ProjectionViewCursor, 298
PSI format, 459

Qt, 529, 563
question dialog, 626

Raw Data, 463
Raw Data as LargeDiskData, 465
read routine

adding new one, 545
example, 554
multiple files,562

rectilinear coordinates, 607
register

data, 557, 561
read routine, 557
write routine, 566, 569

Registration, 299
registry, 534, 541

regular grid, 102, 602
Relabel, 302
renaming a package, 538
Resample, 303
resampling, 178
resource file,528, 557, 566, 569, 630

save network, 98, 147, 628
save ports, 628
scalar fields,101
Scale, 306
ScanConvertSurface, 307
scene graph, 584
SCRIPTDIR, 135
SCRIPTFILE, 135
Scripting interface, 127
ScriptObject, 419
SeedSurface, 308
Segmentation Editor, 499
SelectRoi, 309
SGI-RGB Image Format, 465
shared object, 528
Shear, 310
Simplification Editor,513
smart pointer, 585, 593
Smooth Surface, 311
Snapshot dialog box, 98
Solaris, 530
Spacemouse, 108
SpatialData, 423, 601
Splats, 312
SplineProbe, 313
SpreadSheet, 425
stacked coordinates, 178, 607
Stacked-Slices, 465
Stacked-Slices as LargeDiskData, 466
StandardView, 313
start-up script, 108, 147
stereo mode, 108
STL, 465
storage-class specifier,556, 566
StreamRibbons, 315
StreamSurface, 317
SunOS, 530
Surface, 425
surface, 103, 558

686 INDEX

patch, 561
Surface Editor, 515
surface field,558
SurfaceArea, 318
SurfaceCut, 319
SurfaceDistance, 321
SurfaceField, 322
SurfaceGen, 323
SurfaceLIC, 325
SurfaceView, 327
swap space, 122
system information dialog, 99
system requirements, 122

HP-UX, 123
Linux, 124
Silicon Graphics, 123
SunOS, 124
Windows, 123

system stability, 122

table coordinates, 616
Tcl, 127
Tcl interface, 588
Tcl introduction, 128
Tcl library, 529
template function, 604
TetraCombine, 330
TetraGen, 331
TetraGrid, 427
tetrahedral grids, 102, 610
TetraQuality, 332
TetToHex, 329
TIFF Image Format, 467
Time, 428
TimeSeriesControl, 333
TissueStatistics, 335
touch time, 629
Tracker Emulator, 679
Transform Editor, 521
transformations, 616
TriangleQuality, 337
Trimesh format, 558, 567

uniform coordinates, 607
unknown identifier,629
unresolved symbol, 630
update method, 590

upgrading to amiraDev 3.1, 537

vector fields,102
VectorProbe, 340
Vectors, 342
Vectors (Tetrahedra), 343
Vectors/Normals (Surface), 345
Vertex Morph, 346
Vertex View, 347
VertexDiff, 350
VertexSet, 429
VertexSets, 103
VertexShift, 351
View menu

Axis, 85
Background, 84
Fading effect, 85
Fog, 85
Layout, 84
Lights, 85

ViewBase, 351
Viewer, 90, 627

Edit Background Color, 92
Home, 92
interaction mode, 90
Perspective/Ortho toggle, 92
Pick, 92
rotate button , 92
Seek, 92
Set Home, 92
Snapshot, 92
View, 92
View All, 92
viewing directions YZ, XZ, XY, 92
viewing mode, 90
zoom, 90

viewer toggles, 97
virtual memory, 122
Visual Studio

debug code, 535
release code, 535
version, 530

VolPro-1000, 355
Voltex, 360
VolumeEdit, 363
voxel size, 469, 490

INDEX 687

VoxelView, 365
VRML, 469
VRML Export, 338

warning dialog, 626
Windows, 530
work area, 89, 580, 627
world coordinates, 616
write routine

adding new one, 546
example, 563

688 INDEX

	amira User's Guide
	Introduction
	Overview
	Features
	Direct Volume Rendering
	Isosurfaces
	Segmentation
	Surface Reconstruction
	Surface Simplification
	Generation of Tetrahedral Grids

	Application Areas
	Extensions

	First steps in amira
	Getting Started
	Loading Data
	Invoking Editors
	Visualizing Data
	Interaction with the Viewer

	How to load image data
	The amira file browser
	Setting the file format

	Reading 3D image data from multiple 2D slices
	Setting the bounding box
	The Stacked Slices file format
	Working with Large Disk Data

	Visualizing 3D Images
	Orthogonal Slices
	Simple Data Analysis
	Resampling the Data
	Displaying an Isosurface
	Cropping the Data
	Volume Rendering

	Working with Multi-Channel Images
	Loading Multi-Channel Images into amira
	Using OrthoSlice with a MultiChannelField
	Using ProjectionView with a MultiChannelField
	Using Voltex with a MultiChannelField
	Saving a MultiChannelField in a Single AmiraMesh File

	Segmentation of 3D Images
	Interactive Image Segmentation
	Volume Measurement
	Threshold Segmentation
	Refining Threshold Segmentation Results

	Surface Reconstruction from 3D Images
	Extracting Surfaces from Segmentation Results
	Simplifying the Surface

	Creating a Tetrahedral Grid from a Triangular Surface
	Simplifying the Surface
	Editing the Surface
	Generation of a Tetrahedral Grid

	Warping and Registration Using Landmarks
	Displaying Data Sets in Two Viewers
	Creating a Landmark Set
	Registration via a Rigid Transformation
	Warping Two Image Volumes

	Alignment of 2D Physical Cross-Sections
	Basic Manual Alignment
	Alignment Via Landmarks
	Optimizing the Quality Function
	Resampling the Input Data
	Using a Reference Image

	Registration of 3D image datasets
	Basic Manual Registration
	Automatic Registration
	Image Fusion

	Visualization of Vector Fields
	Loading the Wing and the Flow Field
	Line Integral Convolution
	Illuminated Stream Lines

	Creating animated demonstrations
	Creating a Network
	Animating an OrthoSlice module
	Activating a module in the viewer window
	Using a camera rotation
	Editing or removing an already defined event
	Overlaying the bone with skin
	Using clipping to add the skin gradually
	More comments on clipping
	Breaks and Function Keys
	Loops and go-to
	Storing and replaying the animation sequence

	Creating movie files
	Attaching MovieMaker to a camera path
	Attaching MovieMaker to DemoMaker

	Program Description
	Interface Components
	File Menu
	Load
	Load Time Series
	Save Data
	Save Data As
	Save Network
	Recent Files
	Recent Networks
	Jobs
	Quit

	Edit Menu
	Hide
	Remove
	Duplicate
	Rename
	Show
	Show All
	Remove All
	Database
	Preferences

	Create Menu
	View Menu
	Layout
	Background
	Transparency
	Lights
	Fog
	Axis
	Fading effect

	Online Help
	Main Window
	Object Pool
	Working Area

	Viewer Window
	Console Window
	File Dialog
	Changing Directories
	Selecting Files
	Using the Filename Filter
	The File Dialog's Popup Menu

	Job Dialog
	Preference Dialog
	Snapshot Dialog
	System Information Dialog
	The OpenGL Tab
	The Libraries Tab

	General Concepts
	Class Structure
	Scalar Field and Vector Fields
	Scalar Fields
	Vector Fields

	Coordinates and Grids
	Regular Grids
	Tetrahedral Grids

	Surface Data
	Vertex Set
	Transformations
	Parameters

	Technical Information
	Data Import
	Command Line Options
	Environment Variables
	User-defined start-up script
	Frequently Asked Questions
	System Requirements
	On System Stability
	Microsoft Windows
	Silicon Graphics
	HP-UX
	SunOS
	Linux

	Acknowledgments and Copyrights
	Contact and Support

	Scripting
	Introduction
	Introduction to Tcl
	Tcl Lists, Commands, Comments
	Tcl Variables
	Tcl Command Substitution
	Tcl Control Structures

	amira Script Interface
	Predefined Variables
	Object commands
	Global commands
	Viewer command options
	Main window command options
	Console command options
	Common commands for top-level windows
	Progress bar command options
	Application command options
	Other global commands

	amira Script File
	Configuring Popup Menus

	amira Reference Manual
	Alphabetic Index of Modules
	Access LargeDiskData
	AlignPrincipalAxes
	AlignSlices
	Tool Bar
	Resize options
	Menu Bar
	Options
	View
	Align

	Alignment Methods
	Landmarks
	Help

	Image Viewer
	Key Bindings

	AlignSurfaces
	Animate
	Annotation
	AnonymizeImageStack
	Apply Transform
	ArbitraryCut
	Arithmetic
	Axis
	BoundaryConditions
	BoundingBox
	CastField
	ChannelWorks
	ClippingPlane
	ClusterDiff
	ClusterGrep
	ClusterSample
	ClusterView
	Color Combine
	Colorwash
	CombineLandmarks
	CompareLatticeData
	ComponentField
	ComputeContours
	ConePlot
	ConnectedComponents
	ContourView
	ContrastControl
	ConvertToLargeDiskData
	CorrectZDrop
	CorrelationPlot
	Curl
	Cutting Plane
	CylinderSlice
	DataProbe
	Delaunay2D
	DemoMaker
	Digital Image Filters
	Displace
	DisplayColormap
	DisplayISL
	DisplayTime
	DistanceMap
	Divergence
	DoseVolume (Tetrahedra)
	DuplicateNodes
	FieldCut
	GetCurvature
	Gradient
	GridBoundary
	GridCut
	GridView
	GridVolume
	Grouping
	HeightField
	HexToTet
	HexaView
	Histogram
	IlluminatedLines
	InterpolLabels
	Interpolate
	InterpolateLabels
	Intersect
	Isolines
	Isolines (Surface)
	Isosurface (Hexahedra)
	Isosurface (Regular)
	Isosurface (Tetrahedra)
	IvDisplay
	IvToSurface
	LabelVoxel
	LandmarkSurfaceWarp
	LandmarkView
	LandmarkWarp
	LegoSurfaceGen
	LineProbe
	LineSetProbe
	LineSetView
	LineStreaks
	MagAndPhase
	Magnitude
	Measuring
	Merge
	MovieMaker
	MoviePlayer
	The Amira Movie Format
	Optimized Amira Movies
	Which movie or image format should I use ?

	ObliqueSlice
	OrthoSlice
	Parametric Surface
	PlanarLIC
	PointProbe
	PointWrap
	ProbeToLineSet
	ProjectionView
	ProjectionViewCursor
	Registration
	Relabel
	Resample
	Resampling non-labeled data fields
	Resampling labeled data fields
	Coordinates of the resampled data set
	Resampling in progress

	Scale
	ScanConvertSurface
	SeedSurface
	SelectRoi
	Shear
	Smooth Surface
	Splats
	SplineProbe
	StandardView
	StreamRibbons
	StreamSurface
	SurfaceArea
	SurfaceCut
	SurfaceDistance
	SurfaceField
	SurfaceGen
	SurfaceLIC
	SurfaceView
	TetToHex
	TetraCombine
	TetraGen
	TetraQuality
	TimeSeriesControl
	TissueStatistics
	TriangleQuality
	VRML_Export
	VectorProbe
	Vectors
	Vectors (Tetrahedra)
	Vectors/Normals (Surface)
	Vertex Morph
	Vertex View
	VertexDiff
	VertexShift
	ViewBase
	VolPro-1000
	Voltex
	VolumeEdit
	VoxelView

	Alphabetic Index of Ports
	Port
	Connection
	MasterConnection
	Port3DPointList
	PortButtonList
	PortButtonMenu
	PortChannelConfig
	PortColorList
	PortColormap
	PortDoIt
	PortDrawStyle
	PortFilename
	PortFloatSlider
	PortFloatTextN
	PortGeneric
	PortInfo
	PortIntSlider
	PortIntTextN
	PortMultiChannel
	PortMultiMenu
	PortRadioBox
	PortSeparator
	PortTabBar
	PortText
	PortTime
	PortToggleList

	Alphabetic Index of Data Types
	AnnaScalarField3
	AnnaVectorField3
	CameraRotate
	Cluster
	ColorField3
	Colormap
	Data
	Field3
	IvData
	LabelField3
	LandmarkSet
	LargeDiskData
	Lattice3
	Light
	LineSet
	Movie
	MultiChannelField3
	Object
	ScriptObject
	SpatialData
	SpreadSheet
	Surface
	TetraGrid
	Time
	VertexSet

	Alphabetic Index of File Formats
	ACR-NEMA
	AVS Field
	AVS UCD Format
	Amira Script
	Amira Script Object
	AmiraMesh Format
	Fields with uniform coordinates
	Fields with stacked coordinates
	Fields with rectilinear coordinates
	Fields with curvilinear coordinates
	Label fields for segmentation
	Landmarks for registration
	Line segments
	Colormaps

	AmiraMesh as LargeDiskData
	Analyze 7.5
	AnalyzeAVW
	BMP Image Format
	Bio-Rad Confocal Format
	DICOM
	DXF
	Encapsulated Postscript
	FIDAP NEUTRAL
	Fluent / UNS
	HTML
	HxSurface
	Hypermesh
	IDEAS universal format
	Icol
	JPEG Image Format
	LargeDiskData
	Leica 3D TIFF
	Leica Binary Format (.lei)
	Leica Slice Series (.info)
	Metamorph STK Format
	Open Inventor
	PNG Image Format
	PNM Image Format
	PSI format
	Plot 3D Single Structured
	Ply Format
	Raw Data
	Raw Data as LargeDiskData
	SGI-RGB Image Format
	STL
	Stacked-Slices
	Stacked-Slices as LargeDiskData
	TIFF Image Format
	VRML

	Alphabetic Index of Editors
	CameraPath Editor
	Color Dialog
	Colormap Editor
	Description of the user interface elements
	How to modify a colormap

	Digital Image Filters
	Minimum Filter
	Maximum Filter
	Unsharp Masking
	Laplacian Zero-Crossing Filter
	Median Filter
	Gauss Filter
	Sobel Filter
	Histogram Filter
	Edge-Preserving Smoothing
	Lanczos Filter
	Sigmoid Filter
	Brightness and Contrast Filter
	Moments Filter

	Grid Editor
	ImageCrop Editor
	Cropping an image by dragging and moving the box
	Cropping an image by setting values explicitly in the text fields
	Adding new slices
	Changing the size of the bounding box
	Flipping slices in one dimension
	Exchanging two dimensions

	LandmarkEditor
	LineSet Editor
	Parameter Editor
	Plot Tool
	Plot basics
	Editing parameters
	Editing axis parameters
	Editing annotation parameters
	Editing legend parameters
	Editing markerline parameters
	Editing lattice parameters
	Editing colormap parameters
	Editing (analytical)
curve parameters

	Working with plot objects
	Printing
	Saving data
	Data formats

	Saving the plot state

	Segmentation Editor
	Overview of the segmentation editor
	Manipulating the material list
	Working in 4 viewer mode
	Edit buttons
	Segmentation tools
	Selection Filters
	Active Contours

	Label Filters
	Key bindings

	Simplification Editor
	Surface Editor
	Menu Entries
	File Menu
	Edit Menu
	View Menu
	Buffer Menu
	Tests Menu

	Selectors
	Tools

	Transform Editor

	amira Programmer's Manual
	Introduction
	Overview of the amira Developer Version
	Packages and Shared Objects
	Package Resource Files
	The Local amira Directory
	External Libraries

	System Requirements
	SGI IRIX
	HP-UX
	Sun Solaris
	Linux
	Windows

	Structure of the amira File Tree
	The amira Root Directory
	The Local amira Directory

	Quick Start Tutorial
	Compiling and Debugging
	Windows Visual Studio 6
	Unix

	Maintaining Existing Code
	Upgrading to amiraDev 3.1
	Renaming an Existing Package

	The Development Wizard
	Starting the Development Wizard
	Setting Up the Local amira Directory
	Adding a New Package
	Adding a New Component
	Adding an Ordinary Module
	Adding a Compute Module
	Adding a Read Routine
	Adding a Write Routine
	Creating the Build System Files
	The Package File Syntax

	File I/O
	On file formats
	Read Routines
	A Reader for Scalar Fields
	A Reader for Surfaces and Surface Fields
	More About Read Routines

	Write Routines
	A Writer for Scalar Fields
	A Writer for Surfaces and Surface Fields

	The AmiraMesh API
	Overview
	Writing an AmiraMesh File
	Reading an AmiraMesh File

	Writing Modules
	A Compute Module
	Version 1: Skeleton of a Compute Module
	Version 2: Creating a Result Object
	Version 3: Reusing the Result Object

	A Display Module
	Version 1: Displaying Geometry
	Version 2: Adding Color and a Parse Method
	Version 3: Adding an Update Method

	A Module With Plot Output
	A Simple Plot Example
	Additional Features of the Plot API

	Data Classes
	Introduction
	The Hierarchy of Data Classes
	Remarks About the Class Hierarchy

	Data on Regular Grids
	The Lattice Interface
	Regular Coordinate Types
	Label Fields and the Label Lattice Interface
	Color Fields

	Unstructured Tetrahedral Data
	Tetrahedral Grids
	Data Defined on Tetrahedral Grids

	Unstructured Hexahedral Data
	Hexahedral Grids
	Data Defined on Hexahedral Grids

	Other Issues Related to Data Classes
	Procedural Interface for 3D Fields
	Transformations of Spatial Data Objects
	Parameters and Materials

	Documentation of Modules in amiraDev
	The documentation file
	Generating the documentation

	Miscellaneous
	Time-Dependent Data And Animations
	Time Series Control Modules
	The Class HxPortTime
	Animation Via Time-Out Methods

	Important Global Objects
	Save-Network Issues
	Troubleshooting
	Compile-Time Problems
	Run-Time Problems
	Debugging Problems

	Online Class Documentation

	amiraVR Manual
	amiraVR Configuration
	amiraVR essentials
	Flat screen configurations
	Example: A two-channel passive stereo configuration
	Example: A super-wide configuration with soft-edge blending
	Example: A tiled four-channel 2x2 monitor configuration

	Immersive configurations
	Example: A Workbench configuration
	Example: A Holobench configuration
	Example: A 4-side CAVE configuration

	Calibrating the tracking system
	The amiraVR cluster version

	Working with amiraVR
	3D user interaction
	The 3D menu

	User-defined 3D menu items
	3D module controls
	Navigation modes
	Tcl event procedures
	The 2D mouse mode

	Writing amiraVR custom modules

	amiraVR Reference
	Config file reference
	amiraVR control module
	amiraVR show config module
	Tracker Emulator
	amiraVR - Tracking module

