
GOMS Architectures 1

GOMS Models - Simplified Cognitive Architectures

David E. Kieras

University of Michigan

GOMS Architectures 2

Introduction to the Session

GOMS models are a well-developed tool for Model-based Evaluation that in
their current modern form, are based on simplified cognitive architectures.

This session presents the most important forms and uses of GOMS models.

One computational tool for using GOMS will be summarized; Bonnie John
will present another in Session 3b.

GOMS Architectures 3

GOMS Models

GOMS Models: A Family of Engineering Models

GOMS Model Family as Simplified Cognitive Architectures

GOMS Architectures 4

GOMS Models: A Family of Engineering Models

Definition of GOMS model:
An approach to describing the knowledge of procedures that a user must have in
order to operate a system.
• Proposed by Card, Moran, & Newell (1983).
Goals - what goals can be accomplished with the system.
Operators - what basic actions can be performed.
Methods - what sequences of operators can be used to accomplish each goal.
Selection Rules - which method should be used to accomplish a goal.

GOMS is limited to describing procedural knowledge.
Interfaces have other aspects!

Family summarized here:
Keystroke-Level Model (KLM).
Critical-Path Method GOMS (CPM-GOMS).
Natural GOMS Language (NGOMSL)/Cognitive Complexity Theory.
Executable GOMS Language (GOMSL)/GLEAN.

See John & Kieras (1996) papers for more complete presentation.
Including example applications.

GOMS Architectures 5

GOMS Model Family as Simplified Cognitive Architectures

Simple Stage Model Architecture.
A sequence of stages, with characteristic times, produces behavior.
Keystroke-Level Model.

Elementary Human Performance Architecture.
Cognitive system executes a procedural knowledge representation.
A shared working memory for temporary task information.
Simple stage model for rest of activity.
Original CMN-GOMS, CCT, NGOMSL models.

Multiple Parallel Processor Architecture.
Perceptual, cognitive, motor processes run in parallel.
• E.g. Card, Moran, & Newell (1983) Model Human Processor.
CPM-GOMS model.
GOMSL/GLEAN.

GOMS Architectures 6

The Keystroke-Level GOMS Model

The Keystroke-Level Model (KLM) Method

Operators and Times for the Keystroke-Level Model

Example: File Deletion in MacOS, Original Design, Experienced User

Example: Command Key File Deletion, Experienced User

Summary: The Keystroke-Level Model

GOMS Architectures 7

The Keystroke-Level Model (KLM) Method

Adapted from Card, Moran, & Newell (1983)

1. Choose one or more representative task scenarios.
2. Have design specified to the point that keystroke-level actions can be listed.
3. List the keystroke-level actions (operators) involved in doing the task.
4. Insert mental operators for when user has to stop and think.
5. Look up the standard execution time to each operator.
6. Add up the execution times for the operators.
7. The total is the estimated time to complete the task.

GOMS Architectures 8

Operators and Times for the Keystroke-Level Model

K - Keystroke (.12 - 1.2 sec; use .28 sec for ordinary user).
Pressing a key or button on the keyboard.
Different experience levels have different times.
Pressing SHIFT or CONTROL key is a separate keystroke.
Use type operator T(n) for a series of n Ks done as a unit.

P - Point with mouse to a target on the display.
Follows Fitts' law - use if possible.
Typically ranges from .8 to 1.5 sec, average (text editing) is 1.1 sec.

B - Press/release mouse button (.1 sec; click is .2).
Highly practiced, simple reaction.

H - Home hands to keyboard or mouse (.4 sec).

W - Wait for system response.
Only when user is idle because can not continue
Have to estimate from system behavior
Often essentially zero in modern systems

M - Mental act of thinking.
Represents pauses for routine activity (not problem-solving).
New users must often pause to remember or verify every step.
Experienced users pause and think only when logically necessary.
Estimates ranges from .6 to 1.35 sec; 1.2 sec is good single value.

GOMS Architectures 9

Example: File Deletion in MacOS, Original Design,
Experienced User

Assumptions:
Experienced user thinks of selecting and dragging an icon as a single operation.
Finding the to-be-deleted icon is still required, since it is different every time.
Moving icons to the trash can is highly practiced:
• The trash can does not have to be located, so finding the trash can is overlapped

with pointing to it.
• Finding the trash can is overlapped with pointing to it.
• Verifying that the trash can has been hit is overlapped with pointing to it.
• Final result (bulging can) is not checked since it is redundant with verifying that

the can has been hit.
Pointing to the original window is overlapped with finding it.

General procedure
Find the file icon to be deleted and drag it to the trash can.

Operator sequence
1. initiate the deletion M
2. find the file icon M
3. point to file icon P
4. press and hold mouse button B
5. drag file icon to trash can icon P
6. release mouse button B
7. point to original window P

Total time = 3P + 2B + 2M = 5.9 sec

GOMS Architectures 10

Example: Command Key File Deletion, Experienced User

Assumptions:
User operates both mouse and command key with right hand.
Right hand starts and ends on the mouse.

General procedure
Select the file icon to be deleted and hit a command key.

Operator sequence
1. initiate the deletion M
2. find the icon for the to-be-deleted file M
3. point to file icon P
4. click mouse button BB
5. move hand to keyboard H
6. hit command key KK
7. move hand back to mouse H

Total time = P + 2B + 2H + 2K + 2M = 5.06 sec
Only slightly faster, due to need to move the hand!

GOMS Architectures 11

Summary: The Keystroke-Level Model

Illustrates how to consider the details of user behavior.
Specification of task situations (scenarios, task instances).
Specific procedure user must follow.
Exploration of alternative situations and procedures.

A simple, useful method.
No reason not to use it when it applies.
Extensive record of successful application.

GOMS Architectures 12

CPM-GOMS

CPM-GOMS Concept

The CPM-GOMS Method

Example Templates

Fragment of a CPM-GOMS Model

GOMS Architectures 13

CPM-GOMS Concept

Analyze task based on Card, Moran, & Newell (1983) Model Human Processor.
Cognitive, Perceptual, Motor GOMS, or Critical Path Method GOMS

Pattern
Recognition

Muscle Control
Output

Motor
Processor

Cognitive
Processor

Encoding

Perceptual
Processor

Auditory
Processor

Visual
Input

Auditory
Input

Pattern
Recognition

Visual
Processor

Auditory
Image Store

physical
1500 ms
5 letters

Visual
Image Store

physical
200 ms

17 letters

Working
Memory
acoustic
7-73 sec

3-7 chunks

70 ms cycle time

70 ms cycle time

Long-Term
Memory
semantic
infinite
infinite

100 ms cycle time

10 sec/chunk
write time

Production
Memory
procedural
knowledge

An informal architecture of cognitive, perceptual, and motor processors with some
basic characteristics and time parameters - my slightly modified version.

GOMS Architectures 14

The CPM-GOMS Method

Start with a task decomposition into basic activities, such as READ-SCREEN
or ENTER-COMMAND.

Express these activities in terms of Model Human Processor.

Use a PERT chart tool to describe activities in MHP terms.
John & Gray have described many common activities as "templates" - fragments
of PERT charts that can be assembled into more complex models.

First assemble the activities sequentially, then attempt to interleave them
where possible.
PERT chart tool identifies critical path and required execution time.

Especially useful when concurrent perceptual/motor activity may be limiting
execution speed.

GOMS Architectures 15

Example Templates

See John & Gray (1995)
Goal: READ-SCREEN, when an eye-movement is required in the task.

info (x)
attend

30 msec

Eye Movement

Cognitive
Operators

Visual Perception

initiate eye
movement (x)

eye movement
(x)

perceive
info (x)

verify
info (x)

50 msec50 msec 50 msec

100 msec if perceiving a
 simple binary visual signal
290 msec if perceiving a complex
 visual signal similar to a
 6-letter word

Goal: READ-SCREEN, when no eye-movement is required.

50 msec

info (x)
attend Cognitive

Operators

Visual Perception perceive
info (x)

verify
info (x)

50 msec

100 msec if perceiving a

 simple binary visual signal

290 msec if perceiving a complex

 visual signal similar to a

 6-letter word

GOMS Architectures 16

Fragment of a CPM-GOMS Model

From John & Kieras (1996), including annotations.

Complete model hardcopy often several feet long.

Very labor-intensive, but can be extremely effective.
E.g. save millions of dollars (Gray, John, Atwood, 1993).

A research goal: Get the same information, but computationally!

GOMS Architectures 17

NGOMSL

NGOMSL Models

NGOMSL Methodology

NGOMSL Example:
Methods for Recording a Program with a VCR

Methods for Recording a Program (continued)

GOMS Architectures 18

NGOMSL Models

A high-level structured natural language procedural representation of a
simple production-rule cognitive architecture.

"Natural" GOMS Language
Cognitive Complexity Theory (CCT) - GOMS as production rules.

Kieras & Polson (1985) implementation of basic GOMS concept in
production-system form.
• Production-rule actions contain Keystroke-Level Model operators.
• Research shows considerable empirical validity.

Predicts both learning and execution time from number of rules involved.
• Assumes that GOMS methods are strictly hierarchical and sequential.

NGOMSL Model - GOMS as a ordinary programming language.
Based on CCT research results, but suitable for practical use.
• Production systems are too difficult for use in routine design.
• NGOMSL notation looks like an ordinary programming language.

One NGOMSL statement is one CCT production rule (basically).
Predicts:
• Relative learning time from a specified design.
• Execution time given a specified design and task scenario.
• Especially sensitive to the consistency of the procedures.
Useful for many conventional desktop computing interface design situations.

GOMS Architectures 19

NGOMSL Methodology

Top-down breadth-first task decomposition.
Start with the user's top-level goals.
Write a step-by-step procedure for accomplishing each goal in terms of subgoals
or keystroke-level operators.
• Use NGOMSL syntax for the procedure.
Recursively write a method for each subgoal until all methods contain only
keystroke-level operators.
Write a selection rule to specify which method to use if more than one for a goal.

Count number of statements in methods to predict learning time.
Consistency can be directly reflected by presence of re-used submethods,
reducing learning time.
Similar methods also reduce learning time.

For a specific task scenario, count number of statements and operators
executed to predict execution time.

If methods have been written to be general, any subsumed scenario can be
handled by the model.
Not limited to specific sequences of actions.

GOMS Architectures 20

NGOMSL Example:
Methods for Recording a Program with a VCR

Selection rule set for goal: record a program
If you are present when the program starts
and you will be present when the program ends
then accomplish goal: record a program manually

If you are present when the program starts
and you will not be present when the program ends
and you know how long the program lasts
and the VCR clock is set
then accomplish goal: record a program with One-Touch Recording

If you will not be present when the program starts
and you know when the program will start
and you know how long the program lasts
and the VCR clock is set
then accomplish goal: record a program with Timer Recording

Return with goal accomplished

GOMS Architectures 21

Methods for Recording a Program (continued)

Method for goal: record a program manually
Step 1. Wait for program to start.
Step 2. Hold down REC button.
Step 3. Press PLAY button.
Step 4. Release both buttons.
Step 5. Verify that display shows "REC" and arrow is moving
Step 6. Wait for program to end
Step 7. Press STOP button.
Step 8. Return with goal accomplished.

Method for goal: record a program with One-Touch Recording
Step 1. Wait for program to start
Step 2. Press OTR button.
Step 3. Press OTR button.
Step 4. Decide: If time shown is less than length of program, go to Step 3.
Step 5. Return with goal accomplished.

GOMS Architectures 22

Overview of GLEAN

GOMSL and GLEAN

Example of GOMSL

Steps in Using GLEAN

GOMS Architectures 23

GOMSL and GLEAN

GOMSL - a formalized and executable version of NGOMSL.
GOMS L anguage

GLEAN - a simplified version of the EPIC simulation system.
GOMS Language Evaluation and ANalysis
Keystroke-Level model representation of perceptual & motor timing.

Device
Behavior

Simulation

Cognitive Processor

Vocal Motor
Processor

Visual
Input

Auditory
Input

Auditory
Processor

Visual
Processor

Manual
Motor

Processor

Simulated
Interaction

Devices

Working Memory

Object Store Tag Store

Task
Instance

Descriptions

Long-Term
Memory
Contents

GOMSL
Methods

GOMS Architectures 24

Example of GOMSL

Method_for_goal: Close Track_data_window
Step 1. Accomplish_goal: Click_on Button using "Close".
Step 2. Return_with_goal_accomplished.

Method_for_goal: Click_on Button using <click_on_button_label>
Step 1. Look_for_object_whose Label is <click_on_button_label>,

and Type is Button and_store_under <click_on_button>.
Step 2. Point_to <click_on_button>.
Step 3. Click Left_mouse_button.
Step 4. Delete <click_on_button>; Return_with_goal_accomplished.

GOMS Architectures 25

Steps in Using GLEAN

1. Choose and represent the benchmark tasks.
2. Write the GOMS model entailed by the interface design.

3. Describe the device behavior as needed.
A passive "dummy" device may be adequate.
A scenario-driven interactive device may be required.

4. Debug the model by running it with GLEAN.
Look for correct task performance, intended strategies followed.

5. Obtain predictions by running final version of model.
Time-stamped actions on device, workload profiles.

6. Examine predictions, profiles, GOMS methods to identify problems and
possible improvements.

7. Modify the design and GLEAN representations, and obtain new
predictions.

GOMS Architectures 26

Example Application of GLEAN

Example Application of GLEAN
Current Typical Watch Station
MultiModal Watch Station (MMWS)
MMWS Main Display
Modeling a Team with a Team of Models
Team Model Results
Team Model Results (continued)
General Lessons Learned

GOMS Architectures 27

Example Application of GLEAN

Collaborator: Tom Santoro, NSMRL
Sponsored by: ONR SC-21 Manning Affordability Initiative

Domain is CIC teams, and how future computer systems could support
them better, enabling reduced number of watch-standers on the job.

MultiModal Watch Station (MMWS)
• Glenn Osga, SPAWAR

Basic task: monitor radar display, take various actions, working as a team.
Verify ID of new tracks, monitor suspicious tracks, issue ESM reports, warnings,
queries, engagement instructions.

Project Goal:
Model aspects of the design of the MultiModal Watch Station and its software to
determine whether and how GOMS and GLEAN can contribute to the design of
complex systems.

Use simplified version of interface and system to target key issues quickly.
Details of design and usage procedures were constantly changing.
Could scale up to more complete versions later when design solidifies.

GOMS Architectures 28

Current Typical Watch Station

GOMS Architectures 29

MultiModal Watch Station (MMWS)

GOMS Architectures 30

MMWS Main Display

GOMS Architectures 31

Modeling a Team with a Team of Models

Evaluate team design for a reduced-manning CIC using MMWS.
A model run consisted of 1.5 hr of simulated time at a 1 ms time grain.

Four simulated humans:
Each with a GOMS model for their role, communicating with each other by speech.
Methods based on stated rules of engagement.

Four simulated devices:
Driven by a single input scenario of about 650 external events.
State of displays was dynamically computed 1/sec; dozens of objects displayed.

Master
Device Scenario

Events

AWC

WS

ICQ1

WS

IQC2

ESM

TAO

WS

Humans

Devices

Intercom

GOMS Architectures 32

Team Model Results

Model compared to data obtained from six actual teams.
In verification stage, data from first half of scenario used to refine model:

Must complete actions on critical tracks.
Estimate scaling from GLEAN-generated workload values to workload
assessments in data.

In validation stage, model tested against data from second half of scenario.
Average absolute error of prediction, variance accounted for, determined.

GOMS Architectures 33

Team Model Results (continued)

Performance Measure Verification Validation
Critical tracks actions complete 11 of 11 13 of 14
New track report time (abs. error) 13.0% 33.27%
Query time (abs. error) 32.7% 45.50%
Warning time (abs. error) 9.6% 8.89%
ESM report time (abs. error) 13.9% 9.80%
Workload variance accounted for 53% 31% (40% post-hoc)

Data is problematic in many ways, but model is promising.
Small sample size - actual intact Navy teams were used.
The model was based on a specified team design concept, but humans were
apparently using their own, different, team procedures.
• A problem in validation for models in complex real-world tasks.

Queries turn out to have not been well-behaved in human data.
Not tightly determined by rules of engagement.

Principled prediction of workload measures from model looks promising.

GOMS Architectures 34

General Lessons Learned

GOMS really is relatively easy for non-specialists.
Computational GOMS models can scale to complex domains.

Modeling a team can be done with a team of models.
A GOMS model for each human.
Models interact using the specified team procedures.
Should work well anywhere the team’s activity consists of routine procedures.

Data on real tasks at this level of complexity is expensive to obtain and
likely to be problematic for model validation.

Later discussion in Practical Issues.

GOMS Architectures 35

Using GOMS in Design of Functionality

Need for Systematic Design of Functionality

Connecting Task Analysis, Functionality, and Performance

High-Level GOMS Models

Example High-Level GOMS Model

Using a High-Level GOMS Model to Analyze Functionality

GOMS Architectures 36

Need for Systematic Design of Functionality

Usual design process: Choose functionality, then design user interface.
Functionality often chosen haphazardly, independently of usability.

But choice of functionality is most important factor in usability.
A superior interface can't compensate for an inadequate set of functions!
Examples:
• A word processor with no footnote function - can't fix in the interface!
• First generation digital diaries - no time/date or alarm functions!

Indirect damage due to poor choice of functionality: Divert development
resources to useless functions.

Need to know what functions are important!
Examples:
• Database that after usability improvements turned out to be unnecessary.
• Word processor with useless multiple-column functionality.

Functions need to be chosen based on task analysis.
Provide those functions that result in a product that is both useful and usable.

GOMS Architectures 37

Connecting Task Analysis, Functionality, and Performance

Usually a disconnect between task analysis methods and modeling human
performance.

Human Factors (HF) task analysis methods do not predict performance.
Though some HF experts think they should.
In fact, usually a "jump" between a task analysis and a human performance model.
But note close similarity between Hierarchical Task Analysis (HTA) and GOMS.
• HTA is most popular single method in HF.

Problem: How to combine task analysis, choice of functionality, and
performance modeling?

Just guess, then see how it turns out?
Or can we move systematically from initial task analysis and functionality concepts
to detailed design and human performance model?

Use High-Level GOMS models to represent task at basic functionality level.

GOMS Architectures 38

High-Level GOMS Models

A GOMS model, but at a level above specific interface methods.
Goals:

Refer only to non-interface aspects of user's task.
Operators:

High-level mental operators.
• Think-of operators.
• Decide operators.
Invocations of system functions.
• Unanalyzed high-level operators.
• E.g., update the database.
May not be specific interface interactions.
• Much higher-level than keystroke.
• Right: update the database.
• Wrong: click on UPDATE button.

Methods
Show order in which mental operators and system functions are executed.

The model can include:
What information users need for system functions and decisions.
How users will detect and correct errors

GOMS Architectures 39

Example High-Level GOMS Model

Method for goal: Verify circuit with ECAD system
Step 1. Think-of circuit idea
Step 2. Accomplish Goal: Enter circuit into ECAD tool
Step 3. Run simulation of circuit with ECAD tool
Step 4. Decide: If circuit performs correct function, then

Return with goal accomplished
Step 5. Think-of modification to circuit
Step 6. Make modification with ECAD tool
Step 7. Go to 3

Method for goal: Enter circuit into ECAD system
Step 1. Invoke drawing tool
Step 2. Think-of object to draw next
Step 3. If no more objects, then Return with goal accomplished
Step 4. Accomplish Goal: draw the next object
Step 5. Go to 2

Selection rule set for goal: Draw an object
Step 1. If object is a component, then Accomplish Goal: draw a component
Step 2. If object is a wire, then Accomplish Goal: draw a wire
Step 3. ...
Step 4. Return with goal accomplished

Method for goal: Draw a component
Step 1. Think-of component type
Step 2. Think-of component placement
Step 3. Invoke component-drawing function with type and placement
Step 4. Return with goal accomplished

Method for goal: Draw a wire
Step 1. Think-of starting and ending points for wire
Step 2. Think-of route for wire
Step 3. Invoke wire drawing function with starting point, ending point, and route
Step 4. Return with goal accomplished

GOMS Architectures 40

Using a High-Level GOMS Model to Analyze Functionality

Choose functionality based on high-level GOMS model of the task.
1. Write out high-level methods for user's top-level goals.

• Methods should be independent of specifics of user interface design.
• Methods can be used as the top level of final GOMS model of the interface.

2. Choose functionality that allows simple high-level methods.
• Ensures that system will be both useful and at least reasonably usable.

3. Elaborate design by writing lower-level methods, down to keystroke-level.
• Introduce interface design specifics in the lower-level methods.
• Can now identify problems, predict learning and execution time.

4. Revise functionality, methods, interface choices as needed.
Smooth transition between task analysis to detailed design for usability,
with a human performance model at the end.

A more precise, usability-oriented, form of conventional requirements analysis.

GOMS Architectures 41

Summary

Examined a range of GOMS models, going from a trivial architecture to fully
computational one.

Simplified architectures permit complex tasks to be modeled with a
practical amount of effort.
GOMS methodology is useful from beginning of design to evaluation of
different detailed designs.

