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Abstract Task execution in a multi-agent, multi-task environment often requires
allocation of agents to different tasks and cooperation among agents.
Agents usually have limited resources that cannot be regenerated, and
are heterogeneous in capabilities and available resources. Agent coali-
tion benefits the system because agents can complement each other by
taking different functions and hence improve the performance of a task.
Good task allocation decision in a dynamic and unpredictable environ-
ment must consider overall system optimization across tasks, and the
sustainability of the agent society for the future tasks and usage of the
resources. In this paper we present an efficient scheme to solve the real
time team/coalition formation problem. Our domain of applications is
coalition formation of various UAVs for cooperative sensing and attack.
In this scheme each agent bids the maximum affordable cost for each
task. Based on the bidding information and the cost curves of the tasks,
the agents are split into groups, one for each task, and cost division
among the group members for each task is calculated. This cost sharing
scheme provably guarantees the stability in cost division within each
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coalition in terms of the core in game theory, therefore achieves good
sustainability of the agent society with balanced resource depletions
across agents. Simulation results show that, under most conditions, our
scheme greatly increases the total utility of the system compared with
the traditional heuristics.

Keywords: Coalition formation, Task allocation, Multi-agent coordination

1. Introduction
Task execution in a multi-agent, multi-task environment often requires

allocation of agents to different tasks and coalition formation among
agents. Good task allocation and coalition formation decisions must
consider overall system optimization across tasks as well as agent hetero-
geneity in resources and capabilities. The cost division among coalition
members is also important to sustain a well-functioning agent society in
a dynamic and uncertain environment.

Consider a fleet of UAVs in missions over time to destroy targets that
appear dynamically. The UAVs have different specializations in capabil-
ities, although each can perform multiple functions subject to different
costs (fuel). UAVs have limited resources (fuel) and cannot be refuelled
during the process. The available resources of the UAVs are different
because of the consumption of fuel on different levels. Coalitions of
UAVs are desirable in executing the tasks because UAVs can comple-
ment each other by undertaking different functions that could be done
more effectively with more participating UAVs. At each time there may
be multiple targets that require different capabilities of UAVs to destroy.
A UAV is capable of executing more than one task to destroy a target,
and the UAVs have to be allocated to different coalitions/teams for dif-
ferent targets. The cost of, or the resource to be consumed by, a coalition
to execute a task is deterministic. A coalition formation scheme decides
the allocation of the UAVs into different coalitions, one for each target.
A cost division scheme determines how much cost/effort a UAV should
pay in participating in a coalition to destroy a target. We want the
coalition configuration to be efficient so that the total performance of
executing the multiple tasks is optimized. The cost sharing rule should
be fair so that the resource depletions of the UAVs are balanced, and
as many as possible UAVs can survive as long as possible through the
usage horizon and complement each other in executing future tasks.

The task allocation and coalition formation problem can be charac-
terized by the following important properties or requirements:
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- Coalition formation: Agents can form a coalition and execute a
task together. Agent coalitions benefit the system because agents
can improve the task performance by taking different complemen-
tary functions. When there are more agents in a coalition, the
average cost per agent for executing the task decreases. The rela-
tion between the total cost for executing a task and the number
of agents1 is characterized by a cost curve. Although the average
cost decreases, the total cost for executing a task may increase
with the number of agents in the coalition because more agents
are involved. But the marginal cost imposed by an agent does
not increase with the number of agents, in other words, the total
cost is a non-decreasing concave function of the number of agents.
Because of the contribution made by an agent to the task perfor-
mance, it is always efficient to include an agent in a coalition if the
agent can afford the marginal cost.

- Heterogeneity: The heterogeneity is in both the tasks and agents.
The tasks are heterogeneous because the capability requirements
and cost curves are different. An agent may be qualified in ca-
pabilities for participating in some tasks but not in others. The
efficiency of an agent in executing a task is also different from ex-
ecuting other tasks. Agents are heterogeneous in capabilities and
available resources. We use the maximum affordable cost of an
agent as the measurement of the suitability of an agent to execute
a task. The maximum affordable cost is a function of both the
capability and the available resource. The maximum affordable
cost is higher when an agent has more resources available, or the
agent is more specialized in the capability desired for the task. In
a quasi-linear form the maximum affordable cost can be expressed
as the available resources plus a function of the capability that
calculates the resource saving based on the capability. The index
of the maximum affordable cost and the cost curve allow the com-
parison of the efficiency of allocating different agents with different
capabilities and resources to different tasks.

- Sustainability: We want as many as agents to participate in the
tasks to improve the efficiency, and also to minimize to the extent
possible the depletion of resources across agents so as to retain
agents for future tasks. It is not desirable to have some agents
consume their resources much faster than the others. Sustainabil-
ity does not mean that all agents share the cost equally. The agents
that can afford more cost are reasonably assumed to share more
cost because they have a larger base.
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The objectives of the coalition formation scheme include: (1) to opti-
mize the total performance of the tasks, and (2) to divide the cost among
agents in a fair way to achieve good sustainability. The first objective is
important since it assures the efficiency in executing the current tasks
by forming coalitions and matching agents with the tasks. The second
objective considers the efficiency in executing future tasks by balancing
the resource depletions across agents for current tasks.

If we consider the performance of a task as the value of the coalition
for that task, the coalition formation problem can be translated into a
weighted set packing problem, modelled as a set covering problem, which
is well known as a NP-complete problem [Arkin and Hassin, 1999]. Task
allocations often involve a large agent group in a scale of thousands or
much higher. Additionally, time for calculating a solution is usually lim-
ited so the coalition formation must be performed in real time. Therefore
an efficient algorithm is desired to ensure the real-time application for
large scale problems. We present an efficient coalition formation scheme
in polynomial time for the coalition formation problem. In this scheme
each agent bids the maximum affordable cost for each task that it is
capable of. Based on the bidding information and the cost curves of the
tasks, the coordinator splits the agents into groups, one group for each
task.

We use the core, a concept from cooperative game theory [Moulin,
1988], to measure the fairness of cost division in a coalition. If the cost
division is in the core, there are no agents that can get more total utility
by deviating from the coalition and forming a coalition by themselves.
Therefore a fair cost division scheme in the core achieves the stability of
a coalition. In the task allocation situation the utility of an agent from
a coalition is defined as the maximum affordable cost minus the cost to
share. Agents in a coalition may pay different costs according to their
maximum affordable costs.

As optimizing the total coalition values is, in general, computation-
ally too complex as mentioned above, we take the following approach.
When forming a coalition configuration, we try to maximize the value
of the most valuable coalition, then maximize the value of the second
valuable one, and continue recursively. Then we divide each coalition’s
cost within the coalition. We prove that our coalition formation scheme
based on this approach guarantees the stability of cost division within
each coalition in terms of the core in game theory. Simulation results
show that, under most conditions, our scheme greatly increases the total
utility of the system compared to the traditional heuristics.

This paper is organized as follows. Section 2 describes prior work.
In section 3 the problem is formulated. In section 4 we present the
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coalition formation scheme in detail. Section 5 analyzes the stability
of the coalition formation scheme. Section 6 provides the experimental
results. We conclude in section 7.

2. Prior Work
Works in game theory and microeconomics such as [Moulin, 1988,

Moulin, 1995] have provided concepts of coalition and its stability. A
coalition is a set of agents which cooperate to achieve a common goal, and
the stability requirement is that the outcome of a coalition be immune to
deviations by individual agents or subsets of agents. Those concepts are
important as criteria of coalition formation schemes, and we justify our
scheme based on the core, one of the stability concepts in game theory.
However, game theory does not provide efficient algorithms for coalition
formation.

Finding the maximum total utility of coalitions can be translated into
the weighted set packing problem [Arkin and Hassin, 1999]: Given a set
B and collection of its subsets Col = {C0, ..., Cn} such that each Cihas its
value v(Ci), find a sub collection SubCol ⊂ Col of pairwise disjoint sets
such that

∑
Ci∈SubCol v(Ci) is the maximum among all sub collections.

We can interpret B as the set of agents, SubCol as a collection of coali-
tions, and v as a coalition’s value. The weighted set packing problem is
NP-complete, and several optimization algorithms have been proposed
[Arkin and Hassin, 1999, Chandra and Halldorsson, 1999]. However,
these algorithms rely on the assumption that the maximum size of sub-
sets in SubCol is bounded by a relatively small number k. In the context
of task allocation, bounding the coalition size by a small number is im-
practical.

Research on multi-agent systems also has investigated coalition for-
mation of agents. [Sandholm et al., 1999] proved that, for a given set
A, searching the best coalition configuration among {{A}}∪{{A1, A2} |
A1 ∪ A2 = B,A1 ∩ A2 = ∅} guarantees that the largest coalition value
found is within a bound from the optimal one by |B|, and that no other
search algorithm can establish any bound while searching only 2|A|−1

coalition configurations or fewer. This result means, without some kind
of heuristics or assumptions, bounding the group’s total utility is virtu-
ally impossible because |A| could be large.

[Shehory and Kraus, 1996, Shehory et al., 1997] have provided dis-
tributed coalition formation schemes for multi-agent systems mainly fo-
cusing on increasing the group’s total utility. They also limit the highest
coalition size by an integer k, which means the algorithms proposed can-
not be applied to large coalitions. [Shehory and Kraus, 1999] aims both
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to increase the total utility and to reach the stable payoff division among
agents. Yet, the algorithms restrict the size of each coalition to guarantee
the practical computation time.

[Lerman and Shehory, 2000] has proposed a new model of coalition
formation, and applied it to coalition formation among buyer agents
in an e-marketplace. Their model treats agents as locally interacting
entities; an agent may create a coalition when it encounters another
agent, join an existing coalition, or leave a coalition. The model describes
global behavior of a set of agents from the macroscopic view point by
differential equations, and simulates well how buyer coalitions evolve and
reach the steady state. However, the model does not assist individual
agents to form a coalition nor to negotiate surplus distribution.

3. Problem formulation
The terms and notations are defined and interpreted as follows.

Tasks and Cost Curves: T = {t1, t2, ..., tm} denotes the set of tasks.
Let N and R be the set of natural numbers and real numbers respectively.
A cost curve of tiis represented as a descending function pi : N → R;
pi(n) is the average cost per agent when n agents join the coalition for
the task ti.
Agents: Let A = {a1, a2, ..., an} denote the group of agents to be al-
located for the tasks. Agent ak’s maximum affordable cost for ti is
represented by rki ≥ 0. The maximum affordable cost of an agent for a
task comprises the agent’s available resource, and the agent’s capability
for executing the task. An agent ak’s utility from participating in the
task tiat the cost p is defined as uki = rki − p.
Coalitions: Let Ci ⊂ A denote a coalition for the task ti. A coalition
configuration is Conf = {C1, ..., Cm} such that Ci ∩ Cj = ∅ for i 6=
j. Cican be empty. Conf does not necessarily satisfy ∪i=1,...,mCi =
A; some agents in A may not belong to any coalitions because their
maximum affordable costs are too low.

The value vi(C) of a coalition C for the task ti is defined as

vi(C) def=
∑

ak∈C

rki − costi(C)

where costi(C) is the cost paid by the coalition C to execute the task ti,
i.e., costi(C) = |C| ·pi(|C|). (|C| denotes the cardinality of C.) Since the
cost of the coalition costi(C) is shared by the agents in C, the value of a
coalition is equal to the sum of the utilities of the agents in the coalition.
A coalition C is formed for the task ti only if it can afford to execute the
task ti, i.e., vi(C) ≥ 0. The higher the value vi(C), the more efficient
the allocation of the coalition C to the task ti. It is because a higher
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value vi(C) means that the task ti requires lower cost from the coalition
C, or the agents in the coalition C are more capable of executing the
task ti. To maximize the values of the coalitions is consistent with the
objective to maximize the overall performance of the tasks.

A cost division scheme ck, ak ∈ C for the coalition Ci is in the core
if and only if there does not exist S ⊂ Ci so that the value vi(S) of the
coalition S is greater than the sum of the utilities of agents in S from
the coalition Ci, i.e., vi(S) ≤ ∑

ak∈S uki for any S ⊂ Ci.
The problem of coalition formation can be formulated as

maxCi⊂A,i=1,...,m

∑

ak∈Ci

rki − costi(Ci)

so that Ci ∩Cj = ∅ for i 6= j; and for each i = 1, . . . ,m, find ck for each
ak ∈ Ci so that for any S ⊂ Ci

∑

ak∈S

(rki − ck) ≥
∑

ak∈S

rki − costi(S).

4. Coalition Formation Scheme
We give a simple example to illustrate the model and the approach.

Assume there are three tasks which have the same cost curve shown
in Figure 1.1. The horizontal axis shows the number of agents in the
coalition for a task, and the vertical axis indicates the average cost per
agent. For instance, if there are three agents in the coalition, the average
cost goes down to 90. Table 1.1 shows five agents to be allocated to
these tasks. Each row shows an agent’s affordable cost for each task
that the agent is capable of performing. For instance, a4 is capable of
participating in task1 or task2 and the maximum costs are 85 and 95
respectively.

Table 1.1. Sample agents’ maximum affordable costs

agent task0 task1 task2

a0 100 70
a1 80 95 95
a2 95
a3 65
a4 85 95

The main issues we study are how to split the agents into coalitions,
and how to distribute the cost of the group among agents. In this ex-
ample, there are one possible coalition for task0 ({a0}), three for task1
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Figure 1.1. A sample cost curve

({a1, a2}, {a1, a2, a4}, {a1, a2, a3, a4}), and one for task2({a1, a4}). Our
scheme derives the coalition configuration shown in Table 1.2; {a1, a2, a4}
as a ‘task1’ coalition has the largest surplus among all possible coalitions,
and {a0} as a ‘task0’ coalition is the only coalition which the rest of the
agents can form. Each cell in the table contains the agents’ cost to pay
and the maximum affordable cost between parentheses. The costs to pay
in a coalition differ depending on agents’ maximum affordable costs. For
example, a1 pays 92.5 (a1’s maximum affordable cost is 95), while a4
pays only 85 (a4’s maximum affordable cost is 85). If a4 did not join the
coalition, a1 and a2 would have to pay 95 for executing task1. On the
other hand, the coalition does not include a3 because a3 would bring no
benefit to the coalition.

Table 1.2. A sample coalition configuration

agent task0 task1 task2

a0 100(100)
a1 92.5 (95)
a2 92.5 (95)
a3
a4 85.0 (85)

The rest of this section formally explains this coalition formation
scheme.

4.1. Coalition Configuration Algorithm
As we have mentioned, it is not computationally feasible to obtain

the optimal coalition configuration that maximizes the total coalition
values. We design a computational heuristic to configure the coalitions
that achieves fairly good efficiency in reasonable time. In the heuristic
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approach a coalition configuration Conf = {C1, ..., Cm} is formed so
that the value of the most valuable coalition is maximized first, and then
the utility of the second most one is maximized, etc. This algorithm is
formalized as follows.
Algorithm 1: Coalition Configuration

1 Set Conf = ∅, RestOfTaskIDs = {1, 2, ...,m} and RestOfAgents =
B.

2 For every i ∈ RestOfTaskIDs, calculate a candidate coalition
C∗

i ⊂ RestOfAgents, the set with the largest value as a ticoalition,
as follows.

ACi
def= {C ⊂ RestOfAgents | vi(C) ≥ 0}

V Ci
def= {C ∈ ACi | vi(C) ≥ vi(C ′) for ∀C ′ ∈ ACi}

(ACi is the set of admissible coalitions, V Ci the set of the most
valuable coalitions. )

Select any one of C∗
i ∈ V Ci if V Ci 6= ∅, C∗

i = ∅ otherwise. Cand
def=

{C∗
i | i ∈ RestOfTaskIDs} denotes the set of all candidates.

3 If every C∗
i ∈ Cand is empty, stop this procedure.

4 If there exist non empty candidates in Cand, select one of them
with the largest utility within Cand; that is, select C∗

i such that
vk(C∗

k) ≥ vi(C∗
i ) for ∀C∗

i ∈ Cand. Let Conf = Conf ∪ {C∗
k},

RestOfTaskIDs = RestOfTaskIDs\{k}, and
RestOfAgents = RestOfAgents\C∗

k .
5 Go back to Step 2 if RestOfTaskIDs 6= ∅ and

RestOfAgents 6= ∅. Otherwise, stop this procedure.

This algorithm can be considered as a variation of the greedy algo-
rithm for the weighted set packing problem [Chandra and Halldorsson,
1999]. In general, finding a subset of A which has the largest value
among all subsets could require O(2n) computations at worst.

However, we have an efficient algorithm to calculate our coalition con-
figuration with order O(n · log n), where n is the number of agents in B,
and we assume the number of tasks can be bounded from above by a
positive number K independently from n. This assumption makes sense
even for very large coalitions. The complexity of searching C∗

i at each
recursion is O(n · log n) computations as explained below, each recursion
includes at most K times of the search, and all coalitions are config-
ured within K recursions. Thus, the entire complexity of the coalition
configuration is O(n · log n) computations.

To search C∗
i at each recursion, first arrange all agents in RestOfAgents

in the descending order in terms of the maximum affordable cost for
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ti(O(n · log n) computations). Then calculate the utility of subsets
Cij ⊂ RestOfAgents for j = 1, ..., t (t is at most n) which includes
the top j agents in terms of the maximum affordable cost for ti, and
select C∗

i out of {Ci1, ..., Cit}. This requires O(n) computations. (This
algorithm is supported by Proposition 2 in the next section.)

4.2. Cost Sharing in a Coalition
Agents in a coalition share the cost within the coalition. Let the cost

shared by the agent ak ∈ Ci be ck ≥ 0. The cost sharing rule is defined
as follows.
Definition 1: Cost Sharing Rule When a coalition Cihas value
vi(Ci) > 0, the cost ck shared by an agent ak ∈ Ci is

ck
def=

{
hCi (ak ∈ Ci)
rki (ak 6∈ Ci)

where hCiand Cisatisfies the following conditions:

costi(Ci) = |Ci| · hCi +
∑

ak∈Ci\Ci
rki,

Ci
def= {ak ∈ Ci | hCi ≤ rki}.

Figure 1.2 illustrates this definition. The graph shows each agent’s
maximum affordable cost, her share of cost, and her actual utility. Agents
in Cipay hCiwhich is equal to or lower than their maximum affordable
costs. Others in Ci\Ci pay just their maximum affordable costs.

a0 a1 a2 a3 a4

.....

..... am

ci

Ci

h

Ci

Cost to
share

share
affordable cost
Maximum 

Utility

Cost to

Figure 1.2. The cost sharing rule

5. Stability of Coalition Configuration
As agents in a coalition pay different costs under our scheme, a fair

share of the cost is essential to sustain the agent society, and guarantee
the stability of the coalitions if agents are autonomous to choose the
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tasks driven by self-interest. If agents do not trust the fairness, they
may not join a coalition, nor provide their maximum affordable costs
truthfully, which could prevent successful coalition formation.

In this section, we discuss our scheme’s stability in terms of the core
in game theory[Osborne and Rubinstein, 1994, Moulin, 1988]. The core
is defined as follows.

Definition 2: The Core [Osborne and Rubinstein, 1994]
A coalitional game with transferable payoff consists of (1) a finite set
C of players, and (2) a utility function v which associates with every
nonempty subset S ⊂ C a real number v(S). The core of the coalitional
game with transferable payoff < C, v > is

Core = {(ua)a∈C | v(C) =
∑

a∈C

ua, v(S) ≤
∑

a∈S

ua for ∀S ⊂ C}

In general, the core may contain multiple elements, or it may be
empty. In our case each coalition Cihas a nonempty core. We prove
that the cost distribution calculated by our cost sharing rule is within
the core as the next proposition states.

Proposition 1 (Stability of a coalition)
For ∀Ci ∈ Conf , the cost distribution (ck)ak∈Ci calculated using the
cost sharing rule (Definition 1) is in the core of the coalitional game
with transferable payoff < Ci, vi >. That is, vi(S) ≤ ∑

ak∈S uk holds for
∀S ⊂ Ci.

The stability condition defined by the core is that no subset of agents
in a coalition can obtain utility that exceeds the sum of the current
utility of the members in the subset. Thus, even self-interested agents
in a coalition would not be motivated to deviate from the coalition.

There can be multiple cost distributions within the core. Proposition
2 and 3 below characterize our cost distribution, and we expect these
propositions will encourage an agent to tell its maximum affordable cost
truthfully. (Note that Proposition 1 above is proved via Proposition 2
and 3. The proof is provided in Appendix.)

Proposition 2 (Members in a coalition)
At each recursion of coalition configuration in Algorithm 1, for ∀ak ∈
RestOfAgents and ∀i ∈ RestOfTaskIDs, if ∃ah ∈ C∗

i such that
rki > rhi, then ak ∈ C∗

i .

Proposition 2 means that C∗
i consists of the top |C∗

i | agents in terms
of the maximum affordable cost. The higher an agent’s maximum af-
fordable cost is, the more likely it will be able to join a coalition.
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Proposition 3 (Cost sharing)
At each recursion of coalition configuration in Algorithm 1, for ∀i ∈
RestOfTaskIDs and ∀C ∈ ACi, hC∗i ≤ hC .

The last proposition assures that, at each recursion, the highest cost
anybody in C∗

i pays, hC∗i , is the lowest among all the costs afforded by
any sets of agents.

6. Evaluation
We have conducted a series of simulations to evaluate the effectiveness

of our coalition formation scheme in increasing the system’s performance.
We simulated agents’ behaviors under three coalition formation schemes
(our scheme, a traditional scheme and an optimal scheme) under partic-
ular conditions, and compared them by the groups’ total utility.

6.1. Assumptions
We make the following assumptions.
Tasks and Cost Curves: The cost curve for each task is a predeter-

mined non-increasing step function. The highest value of the function
is called the highest average cost. There is no limit to how many agents
can join a coalition.

Agents: An agent has several choices of tasks. We model the distri-
bution of capabilities for multiple tasks by RAMT (the Ratio of Agents
who are capable of Multiple Tasks). RAMT is an array (ra1, ..., ram),
where m is the number of tasks and ra1 + ... + ram = 1 holds. rai de-
notes the ratio of agents who can participate in i tasks out of m tasks.
For instance, in the example shown by Table 1.1 in Section 4, RAMT is
(0.4, 0.4, 0.2); out of five agents, two agents can only participate in one
task, two agents can work for two tasks, and one agent can take part in
three tasks. RAMT does not specify which particular tasks each agent
is qualified for. An agent randomly selects the tasks that it is capable
of performing.

Some agents’ maximum affordable costs (MAC) for a given task may
be greater or equal to the highest average cost. These agents are sure
to be included in the candidate coalitions because they do not need the
joining of other agents to form a coalition with a non-negative value.
Let the ratio of the number of the agents with MACs no less than the
highest average cost be called RMH (the Ratio of Maximum affordable
costs which are the Highest average cost). Other MACs for the task
are randomly distributed between its highest average cost and a certain
lower value. We denote the lowest possible MAC by LAC. The environ-
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ment (other agents’ behaviors, cost curves, etc.) does not affect agents’
capabilities or maximum affordable costs.

An Optimal Scheme: At every simulation, we calculate an optimal
coalition configuration for comparison. The optimal scheme exhaustively
searches all possible coalition configurations and selects one of the con-
figurations which has the largest value2. Agents in a coalition share their
cost within the coalition, but the optimal scheme does not care about
how to share.

A Traditional Scheme Under a traditional coalition formation scheme,
each agent first selects one task, and then the agents that select the same
task and can afford the cost are formed as a coalition. All agents in a
coalition pay the same cost.

An agent can know the cost curve, current average cost and the num-
ber of agents in each coalition at any time. An agent akselects one task
out of the tasks it is qualified for by following one of the selection rules
listed below.

Random Rule: Randomly Select a task.

Lowest Price Rule: Select a task whose current average cost is the
lowest in proportion to the highest average cost.

Highest MAC Rule: Select a task with the highest maximum afford-
able cost in proportion to the highest average cost.

Highest Utility Rule: Select a task which currently brings the highest
utility (maximum affordable cost - current cost share).

6.2. Simulation and Parameters
For every set of parameters, we simulate agents’ behavior under our

scheme, the optimal scheme and the traditional scheme 1000 times, and
calculate the average data for the evaluation criteria. For the traditional
scheme, we simulate four experimental conditions. At every condition,
all agents follow the same selection rule out of four rules listed above.

Table 1.3 summarizes the simulation parameters in the evaluation.
The range of the number of tasks is 1,3 and 5. We assign the identical
cost curve to all tasks such that the highest average cost is 100, the lowest
is 80, and the average cost decreases by 5 in proportion to the number of
agents. We only vary the average cost decreasing ratio (CDR), the ratio
of ‘the least number of agents which assures the lowest average cost’ to
‘the number of agents in a group.’ CDR characterizes how steeply the
average cost decreases. Figure 1.3 shows sample cost curves with CDR
of 0.4 and 1.0, and 100 agents in a group. In the simulation, CDR varies
among 0.2, 0.4, 0.6, 0.8 and 1.0.
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Table 1.3. Simulation Parameters

Parameter Range

Tasks The number of tasks 1, 3, 5

Cost
Curve

CDR
(price decreasing ra-
tio)

0.2, 0.4, 0.6, 0.8, 1.0

Agents The number of
agents

100, 200, 400, 800

RAMT
(the ratio of agents
capable of multiple
tasks)

(1), (1, 0, 0), (.7, .2, .1),
(.5, .3, .2), (1/3, 1/3,
1/3),
(1, 0, 0, 0, 0),
(.7, .2, .05, .03, .02),
(.5, .3, .1, .05, .05),
(.2, .2, .2, .2, .2)

RMH (the ratio of
MACs which are no
less than the highest
average cost)

0, 0.25

LAC (the lowest
MAC)

70, 80

The range of the number of agents is 50, 100, 200 and 400. We also
vary RAMT, RMH and LAC as shown in Table 1.3 so that the effect of
the agents’ capability and resource distributions can be observed. Note
that the optimal scheme can handle only the cases with 50 agents and
RAMT of (1), (1,0,0) or (0.7, 0.2, 0.1) because of its high computational
complexity.
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6.3. Results
For a given number of agents and tasks, the three schemes showed

common relations between agents’ total utilities and the simulation pa-
rameters. The factors which affected the total coalition value favorably
included smaller CDR, larger RMH and LAC, and more distributed
RAMT (for instance, (1/3, 1/3, 1/3) brought larger a large objective
value than (1, 0, 0) did). Among them, CDR brought a clear contrast
between the three schemes. Here, we analyze the simulation results fo-
cusing on CDR.

Out of the four experimental conditions for the traditional scheme,
the one where all agents followed the highest utility rule produced the
highest objective value in almost all simulations. Thus, in this section
we refer only to this condition as the traditional scheme’s output.

Optimality: First, we compare our scheme to the optimal one by
examining the case that the number of tasks is 3, the number of agents
is 50 and RAMT=(0.7, 0.2, 0.1). In summary, (1) our scheme came
out more than 80 percent of the optimal utility under all conditions
on average, and (2) as CDR became larger, the difference between our
scheme and the optimal one became smaller; when CDR = 1.0, our
scheme’s outputs were nearly the same as the optimal ones.

LAC = 70,   RMH = 0.25
RAMT = (0.7, 0.2, 0.1)
The number of agents = 50
The number of tasks = 3

Our scheme

Traditioal scheme
Optimal scheme

with high utility rule

Coalitions’

0

500

400

300

200

100

0.2 0.4 0.6 0.8 1.0 CDR

total value

Figure 1.4. Comparison between our scheme, the optimal one and the traditional
one

Figure 1.4 shows the average objective value under the conditions
where LRP = 70 and RRMP = 0.25. 3 The horizontal axis is CDR,
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and the vertical axis is the total coalition value. When CDR is 0.2, the
total utility gained by our scheme was slightly worse than the one by
the optimal scheme and even the one by the traditional scheme. But,
the average total utility under our scheme was still above 91 percent of
the optimal one. As CDR became larger, our scheme performed better
in the sense that the objective value became close to the optimal ones.
When CDR ≥ 0.6, the objective value is within 96 percent of the optimal
one. On the other hand, the traditional scheme became much worse
when CDR was 0.4 or larger. When CDR = 1.0, the traditional scheme
scarcely brought value to the system.

Cases with a large number of agents: Next, we examine the cases
that 400 agents are involved in a group. (We compare only ours and the
traditional scheme. Our implementation of optimal scheme could not
handle such large number of agents.) Regardless of the number of agents,
the comparison results showed the same tendency as the previous case of
50 agents: (1) when CDR=0.2, ours and the traditional scheme brought
the best objective values, and the traditional scheme slightly outper-
formed ours under some conditions, and (2) as CDR became larger, our
scheme performed better than the traditional one.

with high utility rule

Our Scheme

Trad. Scheme

RAMT = (1, 0, 0), (0.7, 0.2, 0.1), (0.5, 0.3, 0.2), (1/3, 1/3, 1/3)
RMH = 0,  0.25

The number of agents = 400, LAC=80
The number of tasks = 3

of the total value by trad. scheme
to one by our scheme

0

0.2

0.4

0.6

0.8

1.0

1.2

0.2 0.4 0.6 0.8 1.0

The ratio

CDR

Figure 1.5. Comparison between our scheme and the traditional scheme

Figure 1.5 supports the above statements. The graph shows the ra-
tio of the objective value by the traditional scheme to the one by our
scheme. The horizontal axis of the graph is CDR. The vertical axis is
the performance ratio. The value 1.0 means two schemes have the same
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performance, the value under 1.0 indicates our scheme is better, and the
value above 1.0 does the opposite. The graph includes the data under
eight conditions; RAMT = (1,0,0), (0.7, 0.2, 0.1), (0.5, 0.3, 0.2) or (1/3,
1/3, 1/3), and RMH = 0 or 0.25. Other parameters are fixed (three
tasks, 400 agents, and LAC = 80). In terms of the total coalition value,
the traditional scheme outperformed ours only when CDR = 0.2. When
CDR ≥ 0.4, our scheme was better under all conditions.

7. Conclusions and Future Work
In this chapter, a coalition formation scheme was proposed to allo-

cate agents to different tasks and divide the task execution cost among
coalition members, considering heterogeneity of agents and tasks. We
showed that our scheme has enough scalability to handle a large number
of agents, guarantees the stability in cost division within each coalition,
and performs better in increasing the system’s performance compared
to a traditional coalition formation scheme.

Future work includes to investigate strategies of agents and the mech-
anism design. In the evaluation reported in this paper, we simply as-
sumed agents truthfully reveal their maximum affordable costs. Agents,
however, may underreport the maximum affordable costs to share less
cost in a coalition. We need to examine the relations between the mecha-
nism design and agents’ strategies to effectively solve the task allocation
problem when agents are self-interested and strategic.

Notes
1. Precisely the cost of a coalition depends on the functions of the agents and the co-

ordination mechanism. Since we consider the task allocation on a high level and do not
consider the specific function allocation or scheduling of the agents, the cost of a coalition is
approximated as a function of the number of participants.

2. Exhaustive search is only computationally possible for a small problem size.

3. We got similar results for other combinations of LAC (70 or 80) and RMH (0 or 0.25).
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Appendix: Proof of Propositions
Proof of Prop.2. Suppose ∃ak 6∈C∗i ,∃ah ∈ C∗i such that rki > rhi. From the

definition of vi, vi(C
∗
i ∪ {ak}\{ah}) > vi(C

∗
i ) holds, which contradicts the definition

of C∗i (vi(C
∗
i ) be the largest).

Lemma 1. For ∀C ⊂ B and ∀ak 6∈C, if hC ≤ rki then (1) hC∪{ak} ≤ hC , and

(2) ak ∈ C ∪ {ak}, where hX and X for any X are calculated as a ticoalition.
Proof of Lemma 1 (1). Suppose hC∪{ak} > hC , and we will show it leads to a
contradiction, costi(hC∪{ak}) < costi(hC∪{ak}).

Let D
def
= C ∪ {ak}. Then we have

costi(D)
def
= sumah∈Ci\Ci

rhi + |D| · hD

=
∑{rhi | ah ∈ D, rhi < hD}+ |D| · hD

>
∑{rhi | ah ∈ D, rhi < hD}+ |D| · hC ( since hC < hD)

=
∑{rhi | ah ∈ D, rhi < hD}
+

∑{rhi | ah ∈ D, hC ≤ rhi < hD}+ |D| · hC

=
∑{rhi | ah ∈ C, rhi < hC}+

∑{rhi | ah ∈ D, hC ≤ rhi < hD}
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+ |{ah ∈ D | {hD ≤ rhi}| · hC (by hC ≤ rki and Def. of D)
≥ ∑{rhi | ah ∈ C, rhi < hC}+ |{ah ∈ D | hC ≤ rhi}| · hC

≥ ∑{rhi < hC | ah ∈ C}+ (|C|+ 1)hC

= costi(C) + hC (from Def. of C)
≥ |C| · pi(|C|) + pi(|C|) (from Def. of costi and pi(|C|) ≤ hC)
≥ |C| · pi(|D|) + pi(|D|) = |D| · pi(|D|) (since |D| = |C|+ 1)

= costi(D) .
Proof of Lemma 1 (2). From hC ≤ rki and (1)hD ≤ hC , we have hD ≤ rki, which
means ak ∈ D = C ∪ {ak}.

Lemma 2 (A general form of Lemma 1). For ∀C ⊂ B and ∀D ⊂
{ak ∈ B | hC ≤ rki}, (1)hC∪D ≤ hC , and (2)D ⊂ C ∪D, where hX and X for any X
are calculated as a ticoalition.
Proof of Lemma 2. The proof of Lemma 2 (1) is by induction on the cardinality of
D. Begin with the first step. When |D| = {ak} and ak ∈ C, (1) is trivial. If ak 6∈C,
(1) is supported directly by Lemma 1. For the inductive step, suppose (1) holds for
all D such that |D| ≤ n, and we will show that (1) holds for D ∪ {ak} whereak 6∈D
and hC ≤ rki. By the induction hypothesis, we have hC∪D ≤ hC ≤ rki. In the case
ak 6∈C, the above inequation and ak 6∈C∪D lead hC∪D∪{ak} ≤ hC∪D by using Lemma
1 (1). In the case ak ∈ C, hC∪D∪{ak} ≤ hC∪D also holds since C ∪D∪{ak} = C ∪D.
Using the induction hypothesis again, we have hC∪D∪{ak} ≤ hC . (2) follows trivial
by (1).

Proof of Prop.3. Suppose ∃C ∈ ACi s.t. hC < hC∗
i

... (1). By applying

C∗i to D in Lemma 2, we have h
C∪C∗

i
≤ hC ... (2), and C∗i ⊂ C ∪ C∗i ... (3). Using

(1), (2) and (3), we see vi(C ∪C∗i ) > C∗i as follows, which contradicts that C∗i be the
largest by its definition.
vi(C ∪ C∗i ) =

∑
ak∈C∪C∗

i

(rki − h
C∪C∗

i
)

>
∑

ak∈C∪C∗
i

(rki − hC∗
i
) (by combining (1) and (2))

≥ ∑
ak∈C∗

i
(rki − hC∗

i
) = vi(C

∗
i ) (from (3)).

Lemma 3. For any coalition Ci and any subset S ⊂ Ci, costi(S) ≥ |S ∩Ci| ·hCi +∑
ak∈S\Ci

rki.

Proof of Lemma 3. By Prop. 3, hCi ≤ hS ...(1) holds. Then, the following two
equations are straightforwardly proved using (1): S = S ∩Ci, and (S\S)\Ci = S\Ci.
Therefore,
costi(S) = |S| · hS +

∑
ak∈S\S

rki

= |S| · hS +
∑

ak∈(S\S)∩Ci
rki +

∑
ak∈(S\S)\Ci

rki

≥ |S| · hCi +
∑

ak∈(S\S)∩Ci
hCi +

∑
ak∈(S\S)\Ci

rki

= |S ∩ Ci| · hCi + |(S\S) ∩ Ci| · hCi +
∑

ak∈(S\S)\Ci
rki

= |S ∩ Ci| · hCi +
∑

ak∈(S\S)\Ci
rki

= |S ∩ Ci| · hCi +
∑

ak∈S∩(Ci\Ci)
rki .

Proof of Prop.1. By Lemma 3 and the definition of group utility vi(S)
def
=∑

ak∈S
rki − costi(S), we have∑

ak∈S
rki − vi(S) ≥ |S ∩ Ci| · hCi +

∑
ak∈S\Ci

rki .

Using Definition 2, this inequation yields
vi(S) ≤ ∑

ak∈S
rki −

∑
ak∈S\Ci

rki − |S ∩ Ci| · hCi
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=
∑

ak∈S∩Ci
rki − |S ∩ Ci| · hCi

=
∑

ak∈S∩Ci
(rki − hCi) =

∑
ak∈S

xk.


