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ABSTRACT

In an electronic marketplace, coalition formation allows buy-
ers to enjoy a price discount for each item, and combinatorial
auction enables buyers to place bids for a bundle of items
that are complementary. Coalition formation and combina-
torial auctions both help to improve the efficiency of a mar-
ket, and they have received much attention from economists
and computer scientists. But there has not been work study-
ing the situations where both coalition formation and com-
binatorial auctions exist. In this paper we consider an e-
market where each buyer places a bid on a combination of
items with a reservation cost, and sellers offer price discounts
for each item based on volumes. By artificially dividing the
reservation cost of each buyer among the items, we can con-
struct optimal coalitions with respect to each item. These
coalitions satisfy the complementarity of the items by reser-
vation cost transfers, and thus induce the optimal solution.
We focus on the systems with linear price functions and
present a polynomial-time algorithm to find a semi-optimal
solution and a payoff division scheme that is in the core of
the coalition. Simulation results show that the algorithm
obtains a solution close to the optimal value.

1. INTRODUCTION

Coalition formation and combinatorial auctions have re-
ceived much attention from both economists and computer
scientists. Suppliers drive customers to buy in wholesale
lots by offering price discounts. By forming coalitions cus-
tomers can take advantage of the price discount without
purchasing more than their real demand([14]). Auction is
an efficient market mechanism to determine resource alloca-
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tion. We say goods g and h are complementary to buyer b
if up({g, h}) > us({g}) + us({h}), where uy(G) is the utility
of the set of goods G to b([3]). In combinatorial auctions,
bidders can explicitly express the complementarity of items
by placing bids on combinations of items([8]).

It is common in real markets that price discounts and
complementarity among items exist simultaneously. In this
condition, coalition formation and combinatorial auctions
are both needed to improve the efficiency of the markets.
For example, there are two buyers b; and b;. They both
need a cellular phone g; and a battery g2. A customer must
pay $500 to buy one unit of g; or $405 for each to buy
two units. Also one needs to pay $50 to buy one unit of
g2 or $40 for each to buy two units. The utility of both
of g1 and g2 for each buyer is $450, while either g1 or g»
alone gives utility zero for both b; and bs. Suppose only
the mechanism of coalition formation is considered. b; and
b2 need to split the value of {g1,92} and bid for g1 and g2
separately. Assume ps, ({g1}) = $405, ps,({g1}) = $400,
Py, ({g2}) = $45, pp,({g2}) = $50, where ps(G) is the bid-
ding price of buyer b for a set of goods G. Then b; and
by only get g» since ps, ({g1}) + pr,({g1}) < $810, which
is the cost for two units of gi by coalition. However, get-
ting g2 alone has no use for the customers, although they
enjoy the price discount. On the other hand, suppose only
the mechanism of combinatorial auctions is considered. Let
Py, ({91,92}) = pe,({91,92}) = $450, which are the highest
bidding prices they can afford. In this case neither b; nor
b> can win their bids without coalition since each one needs
to pay $550 > $450 for his request. Finally suppose both
of the mechanisms are applied, then both b; and b2 can win
their bids and furthermore have $10 profit together.

Although economists have provided much insight into the
stability analysis of coalitions([7]) and the mechanism de-
sign of combinatorial auctions([2, 8]), both the determina-
tion of optimal coalition structure and stable payoff division
in coalition formation problems, and the winner determina-
tion in combinatorial auction problems are computationally
intractable. There are some discussions about the computa-
tional problems by computer scientists in each of these two
fields, for instance, [12, 5, 13, 11] in coalition formation, and
[3, 10, 15, 1, 9, 4] in winner determination in combinatorial
auctions. But no work has been published to date that deals
with both behaviors simultaneously.

In this paper we consider an electronic market in which
both coalition formation and combinatorial auctions exist.



Each buyer may want a bundle of items that complement
each other and have a reservation cost, the highest cost he
can pay for his request. Suppose a one-round sealed auction
mechanism(the buyers submit sealed bids and the allocation
and payment are determined at one round of bidding) is
applied to the market and each buyer unstrategically places
a bid that is equal to his reservation cost for the bundle of
the items he desires. Assume a part of the bundle has value
zero to the buyer!. Each seller has a price schedule for each
item and offers price discounts in each transaction based on
the quantity of the item that is sold. The larger the quantity,
the lower the price. By forming coalitions buyers can enlarge
the quantity in each transaction and take advantage of price
discounts. Such a coalition formation problem is called a
Combinatorial Coalition Formation(CCF) problem. Since
buyers are self-interested a stable payoff division mechanism
is needed so that no coalition members have incentive to
leave the coalitions. In this paper we consider the problem
of CCF and payoff division in such an electronic market.
The objective is to find a subset of the buyers who have the
maximum coalition value among all the possible coalitions
and distribute the payoff among the coalition members such
that the division is in the core[7].

In [16] an efficient algorithm of coalition formation and
payoff division was given for the case where each buyer wants
an XOR listing of multiple items within a category(for in-
stance, a buyer wants to buy either a camera A for $300
or lower, or a camera B for $400 or lower). Based on the
approach with respect to one item in [16], our solution to
the CCF problem is as follows. By artificially dividing the
reservation cost of each buyer among the items, we can con-
struct optimal coalitions with respect to each item. We then
try to make these coalitions satisfy the complementarity of
the items by reservation cost transfers, and thus induce the
optimal solution. We focus on the systems with linear price
functions and present a polynomial-time algorithm to find a
semi-optimal solution to CCF and a payoff division scheme
that is in the core of the coalition.

The paper is organized as follows. In Section 2 we formu-
late the CCF problem mathematically. In Section 3 the ap-
proach is introduced. The algorithms for optimal subcoali-
tion formation and payoff division, basic transfer scheme,
and approximation algorithm of combinatorial coalition for-
mation are presented correspondingly in Section 4, 5 and
6. Section 7 gives the experimental results and Section 8
concludes.

2. PROBLEM FORMULATION
Let G = {g91,92,... ,9x} indexed by k and B = {b1, b2, ...

by} indexed by n denote the collection of items and buyers
respectively. Each buyer b, places a bid, bid, = {Qn,rn},
where Q,, = {qp,... ,qX} is the quantity of each item that
b, requests, and r, is the reservation cost, the highest cost
that b, can pay for his request @,. Denote by G, = {gx €
G|g¢E > 0} the set of items that b, requests, and by By =
{b,, € B|gt > 0} the set of buyers that request gx. Denote
by ¢& = Ebnec g%, C C B, the sum of the bid quantities for
gr by members of C. For each item provided, each seller has
a unit price schedule which is a decreasing step function of

!Otherwise a buyer needs to place multiple bids, one for
each set of items that has positive value for him. This case
is discussed at the end of the paper.

the volumes sold together. If we assume the sellers have no
capacity constraint, we can obtain an integrated price func-
tion px(m) : Zt — RY for each item, which is the minimum
price of gr when m units are sold together among all those
price schedules offered by the sellers. The price function
pr(m) is also a decreasing step function.

A coalition C is a subset of the buyers with a coalition
value which is the difference between the sum of the reser-
vation costs of the coalition members and the minimum cost
needed to satisfy the requests of all the members:

v(C) = > (ra =D dn x Pr(ac)).

b EC

A payoff division X¢ of a coalition C'is a vector (z¢(b) :
b € C) with the sum of the elements equal to the value of
C:

> we(b) = v(0).

beC
The core[7] of a coalition C' is the collection of all payoff
divisions of C such that each element X¢ satisfies, for any

' cC,
ver < xc(C/)

where z¢(C') = Ebec' zc(b). With a payoff division in the
core any subset of the coalition members can get at least as
much by joining the coalition as the value of the coalition
formed by themselves. If the payoff division X¢ is in the
core of the coalition C, we say C' is stable in the core.

The objective of the problem is to find a set of exclusive
coalitions such that the sum of the coalition values is max-
imized, and to distribute the payoff for each coalition such
that they are stable in the core. Under the assumption that
the price functions are decreasing, we have the conclusion
that the values of disjoint coalitions are superadditive:

CLam 1. 2 IfCY,C? C B, C* N C? =0, then
v(C'UC?) > u(CY) + o(C?).

From Claim 1 the optimal coalition configuration always
consists of no more than one coalition which is the optimal
coalition with the largest non-negative value among all pos-
sible coalitions. The problem is to find an optimal coalition
C* and the payoff division in the core of C*.

Example 1 gives a simple example of the problem:

EXAMPLE 1. The set of buyers is B = {b1,b2,b3}, the set
of items is G = {g1,92}. Buyer b1 asks for one unit of g»
with the reservation cost 1, b2 and b3 ask for one unit of
both g1 and g2 with the reservation cost 5 and 6 respectively.

T 2
n n

b | q q 'n
by |0 1 1
by | 1 1 5
bs | 1 1 6

The price functions for the two items are decreasing step
functions:

3 f 0<m<3

pi(m) = { 2 if

m >3
3 if O<m<2
pQ(m)_{z if m>2

2The proof of Claim 1 and all subsequent claims is in the
Appendix.



where m is the quantity of each item sold together.

We can see that an optimal coalition C* is {b2,53}. The
value of C* is v(C™*) = 1. The payoff division X¢+ = {0,1}
is in the core of C*.

3. APPROACH

Considering that coalition formation is motivated by price
discounts of each item, and multiple items requested by a
buyer complement each other, we can artificially divide the
reservation cost r, of each buyer to rf k= 1,... K, for
each item such that r, = ngeG r¥_ find the optimal coali-
tions for each item with the reservation cost division, and
then balance the coalitions to satisfy the complementarity
of the items required by the buyers. We call a coalition with
respect to an item gx a subcoalition denoted by Ck.

Definition 1. (Reservation Cost Division) A reservation

cost division RD € RKN is a set of K-dimensional real

numbers {{rf}7Z,}2_, satisfying

k=1

and r¥ = 0if ¢¥ = 0. Call r* the virtual reservation cost
and pt = rk / g* the virtual reservation price of the buyer b,
for the item gy.

Definition 2. (Subcoalition) A subcoalition Cr C By with
respect to the item g is a subset of buyers requesting g with
the coalition value vi(Ck) equal to

ve(Cr) = Y (rn — @i - pr(ats,))-

breCy

Denote by Cf(RD) or Cf the optimal subcoalition of the
item gr with or without specifying the reservation cost di-

vision RD.

With a reservation cost division, a set of optimal subcoali-
tions can be constructed one for each item. If a buyer b,, is
involved in all or none of the subcoalitions of the items he
requests, we say that the subcoalitions are compatible with
respect to the buyer b,, because b, will not cause invalidity
of the coalition induced by the set of subcoalitions.

Definition 3. (Compatible) A set of subcoalitions Ci, ... ,
Cx are compatible with respect to the buyer b, if b, €
ﬂgkeGn Cy or by, ¢ ngeGn Ck. A set of subcoalitions are
compatible if they are compatible with respect to all the
buyers. If the set of subcoalitions C4,...,Ck are compat-
ible, we can induce a coalition C = U?:l Cy which is com-
posed of all the members in the subcoalitions.

The optimal subcoalitions have properties stated in Claim
2: The coalition induced by compatible optimal subcoali-
tions is optimal. Furthermore, if the payoff division for each
subcoalition is in the core of the subcoalition, then if we let
the payoff of a member in the induced coalition be the sum
of his payoffs in the subcoalitions, we get a payoff division
which is in the core of the optimal coalition.

CLAIM 2. If the optimal subcoalitions of all the items are
compatible, then C* = U£"=1 C} is an optimal coalition and
Xcor = {$C*(bn)|bn S 0*7:[;0*(13") = Zk:bnec’: oy (bn)} 18
in the core of C*, where Xc; 18 a payoff vector in the core

of Cy.

Balancing the subcoalitions to make them compatible can
be realized by transferring virtual reservation costs among
the items. For one buyer who is involved in the optimal
subcoalitions of some of the items he desires, but not in
the optimal subcoalitions of the other items, we can make
the optimal subcoalitions compatible with respect to him by
transferring some virtual reservation cost of the buyer from
the former items to the latter ones. If the transfers end up
with a reservation cost division such that all the optimal
subcoalitions are compatible, then the coalition induced by
the subcoalitions is optimal.

EXAMPLE 2. Suppose in Fxample 1 the initial reservation
cost division RD° is:

bn | T r; ri
by 1 0 1
by | 5 2 3
by | 6 3 3

The optimal subcoalitions with RD° of each item are:
CH(RD®) = {b3}, C3(RD°) = {b2,b3}. The two subcoali-
tions are compatible with respect to b; and bs but not b2.
If b2 has 1 virtual reservation cost transferred from item g-
to g1, then with the new reservation cost division RD?

by | T r,ll ri
by 1 0 1
by | 5 3 2
by | 6 3 3

we have CF(RD') = {b2,bs}, C3(RD') = {bs,bs}. The
payoff divisions X;(CF(RD')) = {0,0}, X»(C3(RD")) =
{0, 1} are in the core of C} (RD') and C3(RD") respectively.
Then C* = {bz,b3} induced from C'l*(RDl) and C'Q*(RDI)
is an optimal coalition, and X (C*) = {0, 1} constructed by
summing up X;(C}(RD")) and X,(C3(RD")) is in the core
of C*.

Although we can find an optimal coalition by inducing it
from compatible optimal subcoalitions, compatible optimal
subcoalitions do not exist for all problem instances. But the
existence is always true for the problems with linear price
functions(the price decreases at a constant step when the
quantity increases by one unit).

Definition 4. (Linear price function) A linear price func-
tion px(m): ZT — R* for the item gy is given by

pr(m) = —di - m + ax

where dg,ax € Rt and m < ax/(2dy). (By bounding m
from above we ensure that the purchasing cost px(m) - m is
an increasing function of the quantity m.)

CLAIM 3. Suppose the price functions are linear price func-
tions, then there exists a reservation cost division such that
the optimal subcoalitions are compatible.

The focus of the rest of the paper is restricted to the
systems with linear price functions. We need to answer the
following questions:

o How to efficiently form an optimal subcoalition and
distribute the payoff in the core

e How to transfer the virtual reservation cost among
items to make the optimal subcoalitions compatible



e How to reduce the computational complexity and con-
struct an approximation algorithm in polynomial time

These problems are solved in Section 4, 5 and 6 respec-
tively. The notations with a ”'” are used to denote the terms
with the reservation cost division after a transfer.

4. OPTIMAL SUBCOALITION FORMATION

AND PAYOFF DIVISION

In [16] an efficient and accurate algorithm for subcoalition
formation and stable payoff division is given for the situa-
tion where each buyer asks for one unit of each item. The
algorithm can be extended to the situation with multiple
units.

CLAIM 4. Supposeb; and b; ask for the same quantity of
gr with the virtual reservation cost r* and rf respectively,

r¥ >k Ifbj € Cf, thenb; € C}.

From Claim 4 to form an optimal subcoalition for the item
gk, we can first sort the buyers with the same bid quantity
for gi by their virtual reservation cost in a descending or-
der. The candidates for the optimal subcoalition can be
iteratively constructed by consecutively extracting n; buy-
ers from each queue 1 from the head, where n; goes from zero
to the length of the queue :. For example, if we have two
queues {b1,b2} and {bs}, then the candidates are 0, {b:},
{b1,b2}, {bs}, {b1,bs}, {b1,b2,b3}. The subcoalition with
the largest value among these candidate subcoalitions is the
optimal subcoalition. Let M be the number of different bid
quantities for the items®. Since the length of each queue is
no greater than N, the number of coalitions to be consid-
ered is no greater than (N + I)M and the complexity of the
optimal subcoalition formation scheme is O(N™).

Claim 5 gives a strategy to divide the payoff of the optimal
subcoalition such that the payoff division is in the core of
the subcoalition.

CramM 5. Letcosty(Cr) denote the purchasing cost to sat-
isfy the requests for gi of the members in Cy, i.e. costy(Cr) =
q’ék ~pk(q’8k). The payoff division X¢, is in the core of Cy
with

_ [ (ph—he,)-ah (bn €Cy)
xck(b")_{op ! (bn & Tr)

where hc, and Ck satisfy

k E ok
coste(Ck) = az, ~ho, + Z Pn - Gn
b €CK\Cx

Ck = {bn € Cxlhc, < pp}

The rule of payoff division for a subcoalition Ck is shown
in Figure 1. Each bin by solid lines represents the bid quan-
tity of a buyer for the item gg, and is divided by dotted lines
into units. The area of the bins below hc, is equal to the
purchasing cost of the subcoalition Cy for the item gx. The
shaded area in each bin is equal to the payoff assigned to
that buyer.

#Based on the goods traded in electronic markets to personal
buyers, for instance, books, electrics, parts and accessories,
we can reasonably assume M be a small number.

Virtual

Reservatio? = Share o
’ Ck
Price’ (" Surplu
Per Unit Virtual
hck § — . Reservatiol
Price Price

\

"'bl b2 b3 b4 bn
Ck

Figure 1: The payoff division rule for a subcoalition

For one subcoalition Cj the payoff division can be im-
plemented in three steps: First, sort the buyers by their
virtual reservation prices for the item gr in a descending
order {b*,?,...,b”}. Second, check the buyers one by one
from the end and choose the buyer b such that p’gj* >
hc, > piiegr. Third, let Cx = {#’]j < j*} and he, =
(costr(Cr) — E] > rgj)/q%k. The complexities of the three
steps are O(NlogN), O(N) and O(1) respectively. There-
fore the complexity of payoff division for one subcoalition
is O(NlogN). When there are K items, the complexity of
payoff division is O(K - NlogN).

5. RESERVATION COSTTRANSFER SCHEME

The general reservation cost transfer scheme starts with
an initial reservation cost division and checks the buyers
one by one. If the optimal subcoalitions are not compatible
with respect to the buyer b,,, b, makes a virtual reservation
cost transfer such that the new optimal subcoalitions formed
after the transfer are compatible with respect to b,. This
scheme stops when the optimal subcoalitions are compatible
with respect to all the buyers.

The amount of reservation cost to be transfered among
items in each round for one buyer is decided by his offers
and requests.

Definition 5. (Offer & Request) Assume the reservation
cost division of other buyers remains the same.

Offer Of f¥ of the buyer b, € C; with respect to the item
gr 1s the maximum amount of virtual reservation cost of
b, for gr that can be reduced from rfl while keeping b, €
C:I, i.e., Offf = vk(C}) — vr(CF) where C7 is the optimal
subcoalition of g that does not include b,,.

Request ReqF of the buyer b; ¢ C} with respect to the
item gg 1s the minimum amount of virtual reservation cost
of b; for gr that needs to be added to rf, such that b &€
Czl, i.e., Reqf = vr(C}) — vk (C}) where Cf is the optimal
subcoalition of gx that includes b;.

Denote by difn = 32, ca,v,ec; Of fa=2 g, canmngc; Betn
the difference between the sum of offers and the sum of re-
quests of by,.

Decision of the transfer amount in each round to have the
optimal subcoalitions compatible with respect to one buyer
is stated in Claim 6.

CLAIM 6. Suppose the optimal subcoalitions are not com-
patible with respect to b,. Let K} = {gr € Gnlbn € C;} and
K2 = {gi € Gulba & C}}.

(i) If difn # 0, let rfll =rE _OffF+ i for gr € K} and

rfll = 1" 4 Reqk + v& for gr € K2, where vx <0 if difn <



0 and v > 0 if difn > O for gr € Gp, and Ei;le =
difn, then by is excluded from all the optimal subcoalitions
if difn, < 0, or involved in all the optimal subcoalitions he
desires if dif, > 0.

(it) If difn, = 0, let rE = % — Of f% for gx € K} and
rfll =r* + Req® for gr € K2, thenb,, can cither be involved
in or excluded from all the optimal subcoalitions he desires.

Claim 7 states that the offer of a member in an optimal
subcoalition is an increasing function and the request of a
nonmember is a decreasing function of the virtual reserva-
tion cost of other buyers for the item.

CLAIM 7. Make a transfer for b, € By such that 7‘5 >
rk . Suppose b; is a member while b; is a nonmember of the
optimal subcoalition of the item gr both before and after the

transfer. Then (I)Offfl > OffF and (Q)Reqfl < Reqt.

With respect to the evolution of the optimal subcoalitions
in the transfer procedure, we have the following conclusions
which are summarized in Claim 8. They guarantee the con-
vergence of the transfer scheme to a set of compatible opti-
mal subcoalitions(Please refer to [6] for a formal statement
and proof), and also guarantee the polynomial complexity
of the approximation algorithm stated in Section 6.

CLAaM 8. Make a transfer for b, € B.

Ifby, € CF and b, € CF, then CF = C}.
Ifby € C} and b, € CF', then C}' C C}.
Ifb, & C} and b, € C}, then C} D Cf.

6. APPROXIMA TION ALGORITHM OF COM-

BINATORIAL COALITION FORMATION

Although the reservation cost transfer mechanism stated
in Section 5 leads to an optimal coalition and payoff division
in the core of the coalition, polynomial computational com-
plexity is not guaranteed, because the number of iterations
may be very large. The heuristic of the approximation algo-
rithm is that once a buyer is excluded from all the optimal
subcoalitions, the possibility that he will be involved in the
final optimal coalition is very small. We maintain a subset
of the buyers B which shrinks while excluding buyers. The
coalition formation and payoff division is considered within
B instead of B assuming the buyers out of B are not con-
tained in the optimal coalition. In each iteration, a reser-
vation cost transfer is made for one buyer in B such that
the new optimal subcoalitions are compatible with him af-
ter the transfer. If the buyer is discarded by all the optimal
subcoalitions he is excluded from B, else the next buyer in
B is visited.

Actually even if a buyer is rejected by all the optimal sub-
coalitions at some time of the transfer procedure it is still
possible that he is involved in the optimal coalition. The
reason is that there exist dependency relations between the
buyers: The joining of a buyer to an optimal subcoalition
may have some other buyers also join it, and the leaving of
a buyer from an optimal subcoalition may have some other
buyers also leave it(Claim 8). Even if a buyer b; is rejected
by an optimal subcoalition Cj temporarily, it is possible
that he can get into it upon the joining of some other buyer
b; when b; increases rf. This exception is considered in
Option 1, which can be integrated into the main algorithm

to improve the solution quality at the expense of increasing
the computational complexity. Since the offer of a mem-
ber in a subcoalition is non-decreasing and the request of
a nonmember is non-increasing with the increasing of the
virtual reservation cost of other buyers for the item(Claim
7), Option 1 uses a greedy transfer procedure as follows to
increase the chance of a buyer to stay. For a buyer b,, whose
sum of offers cannot cover the sum of requests, the items
desired are visited one by one. When an item g is vis-
ited, all the buyers desiring gx transfer all their extra virtual
reservation cost(the offers) to g from other items, and the
offers/requests of b, are recalculated. The visit to the next
item is stopped when the sum of offers covers the sum of
requests, in which case a reservation cost division of b, is
constructed by some transfer to have b,, included in all the
desired optimal subcoalitions. If all the items desired by b,
have been visited and the stop condition is not reached, b,
is excluded.

The approximation algorithm of combinatorial coalition
formation is described in Algorithm 1, and the complexity
is analyzed in Claim 9.

ALGORITHM 1.

STEP 0: Initialization )

Make an initial reservation cost division. Let B = B.

STEP 1: Optimal subcoalition formation

Construct the optimal subcoalitions for each item and go
to Step 3.

STEP 2: Transfer

For a buyer b, € B with whom the optimal subcoalitions
are not compatible, if dif, > 0, change the division of ry,
and update the optimal subcoalitions such that b, is involved
in all the optimal subcoalitions he desires; else B = B\ {b,,}
or go to Option 1.

STEP 3: Termination judgement

If the optimal subcoalitions are compatible, stop; else go
to Step 2.

OpTION 1. Let the item index be k = 1, the index in B
bet1=1.

STEP J: Let the index of the buyer B[z] be j. If b; ¢ Bu
or b; = by, go to Step 5; else for the buyer b; make a reser-
vation cost transfer such that rf = rf + El#k,bjecl* Off]l,

r; = r; — Off]l forl#k and C! 5b;, go to Step 5.

STEP 5: 1 =14+ 1. If1 < |B|, go to Step 4; else update
the optimal subcoalition C},.

If dify, > 0, change the division of r,, and update the opti-
mal subcoalitions such that b, s involved in all the optimal
subcoalitions he desires, go to Step 3; else go to Step 6.

STEP 6: k=k+1. If k < K ,lett =1 and go to Step
4; else by, s excluded from B and go to Step 3.

CrAaM 9. The complexity of Algorithm 1 is: O(K-N2+M)
without Option 1 and O(K - N™*?) with Option 1, where M
18 the number of different bid quantities for the items.

7. EXPERIMENT

This section reports on an evalution of the performance
of our approximation algorithm of combinatorial coalition
formation by simulation. The value of the coalition gener-
ated by Algorithm 1 with or without Option 1 is compared
to the value of the optimal coalition generated by exhausted
search. The comparison is conducted in two dimensions:
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Figure 2: A sample price function

system scale(number of buyers and items) and system char-
acteristics(characterizing the price schedules and bids).

7.1 Instancegeneration

The framework of instance generation is partially inspired
by [16]. An instance is characterized by three parameters:
DS(Discount Slope) determines the magnitude of profit to
form coalitions, RBMI(the Ratio of Buyers preferring Mul-
tiple Items) models the extent of complementarity among
the items, RBBR(the Ratio of Buyers Bidding at the Retail
Prices) reflects the extent of dependency among the buy-
ers(to how much extent they need to form coalitions) to win
their bids.

Price schedule generation:

Let DS(Discount Slope) denote the ratio of the step height
to the step length of the price function. The larger DS, the
more beneficial to form coalitions. Denote by RP(the Re-
tail Price) the highest price without discount. Assume the
sum of quantities requested by all the buyers for one item
is bounded from above by UBSQ(the Upper Bound of the
Sum of Quantities requested by all the buyers for one item).
By having RP = 2- DS - UBSQ we ensure that the purchas-
ing cost is an increasing function of the quantity requested
for the item. Therefore a linear price function is modeled
by two parameters, DS and UBSQ. Define LDP(the Lowest
Discount Price) to be equal to RP/2, which is the lowest
price that could be reached assuming the price function was
a continuous linear function with the slope —DS. Figure 1
shows a sample of the linear price function used in the exper-
iment. Assume all the items have identical price schedules
without decreasing the complexity of the problem.

Bid generation:

Suppose before the decision of the reservation cost, each
buyer b, has a virtual reservation price p% for each item gx
he desires. The reservation cost is decided by summing up
the reservation prices multiplied by the quantity he requests
for each item, i.e., rp, = Ei\;l pE - gk, Let the lower bound
of the virtual reservation price be equal to LDP and the
upper bound equal to RP. Let the ratio of buyers who have
virtual reservation prices at RP equal to RBBR(the Ratio of
Buyers Bidding at the Retail Prices). Small RBBR means
many of the buyers cannot win their bids if they do not form
coalitions. The virtual reservation prices of other buyers are
randomly distributed between LDP and RP.

The distribution of preferences for multiple items is mod-

eled by RBMI(the Ratio of Buyers preferring Multiple Items).

RBMI is a vector {v‘bl, ..

. . K
buyers who desire k items and ) ,_, rbx = 1. For exam-

,rbK} where rby is the ratio of

Table I: Simulation Parameters
Parameter Values
the number of buyers N 5,10, 15, 20, 25}
the number of items K 3,5, 7}
UBQB(the largest quantity 3}
to be requested for one item
by a buyer)
DS(the discount slope) {0.2,0.4, 0.6, 0.8, 1}
RBMI(the ratio of buyers | {1.0, 0, 0};{0.7, 0.2, 0.1};{0.5,
preferring multiple items) 0.3,0.2};{0.333,0.333,0.334};{1.0,
0, 0, 0, 0};{0.7, 0.2, 0.05,
0.03, 0.02};{0.4, 0.2, 0.15, 0.15,
0.1};{0.2, 0.2, 0.2, 0.2, 0.2};{1.0,
0,0,0,0,0,0};{0.5, 0.2, 0.1, 0.05,
0.05, 0.05, 0.05};{0.3, 0.2, 0.2, 0.1,
0.1, 0.05, 0.05};{0.14, 0.14, 0.14,
0.14, 0.14, 0.15,0.15};
RBBR(the ratio of buyers | {0.1, 0.25, 0.4, 0.55, 0.7}
bidding at the retail price)

)

0
1

ple, when the number of items is 3, the number of buyers
is 10, RBMI = {0.2,0.3,0.5} means there are 2 buyers bid
for 1 item, 3 buyers for 2 items, 5 buyers for 3 items. Large
numbers at the end part of RBMI mean that many items
are complementary for many buyers. The number of desired
items of each buyer is randomly decided following the distri-
bution consistent with RBMI. The quantities requested by
each buyer for each item desired are generated randomly in
the range [1, UBQB], where UBQB(the Upper Bound of the
Quantity requested by one Buyer for one item) is defined by

UBSQ = UBQB - N.
7.2 Results

The simulation is based on the instances generated with
combinations of the parameter values listed in Table 1. For
each set of parameters three instances are randomly gener-
ated. For each instance we construct the optimal coalition
by exhaustive search, and the approximate solutions by Al-
gorithm 1 with and without Option 1. The average coali-
tion value of the instances with identical parameters is set
as the coalition value for the condition with that parameter
set. The comparison is made among the optimal value and
the value of the coalitions obtained by our algorithm. The
largest number of buyers that is used for the comparison
is limited to 25 because of the complexity to compute the
optimal value.

Comparison with respect to the number of buyers
and the number of items:

We calculate the ratio of the approximate value over the
optimal value and take the average of the ratios under all
the conditions with the same number of buyers and number
of items. Figure 3 shows the distribution of the average ra-
tios with respect to the number of buyers and the number of
items. From Figure 3 we can see that the value of the coali-
tion generated by Algorithm 1 is very close to the optimal
one. Option 1 improves the performance of the algorithm
remarkably.

Comparison with respect to DS, RBBR and RBMI:

Since DS, RBMI and RBBR are three characteristic pa-
rameters of an instance, we would like to compare the coali-
tion values on the three dimensions to see their impact on
the performance of the algorithm. The experimental results
imply that generally the performance of the algorithm hurts
from the increase of RBMI but does not depend on DS or
RBBR. The average performance of the algorithm with re-
spect to RBMI when the number of items is equal to 5 and
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Figure 3: Compare the value of the coalition ob-
tained by Algorithm 1 with the optimal value, with
respect to the number of buyers and the number of
items

the number of buyers is equal to 20 is shown in Figure 4.
The result is understandable since the algorithm aims to
generate compatible subcoalitions. When more items are
complementary to more buyers, it is more difficult to find
compatible subcoalitions.

8. CONCLUSION

In this paper we study the combinatorial coalition forma-
tion problem of buyers in a electronic marketplace where
sellers offer price discounts based on volumes and buyers
have preferences for combinations of items. We focus on lin-
ear price functions and present an approximation algorithm
in polynomial time for combinatorial coalition formation.
The payoff division produced is in the core of the coalition
formed. Experimental results show that the algorithm gives
a good ratio to the optimal value.

When the price functions are general decreasing step func-
tions, the properties in Claim 8 do not hold any more and
the compatible optimal subcoalitions may not exist. In [6]
a solution is given for this condition.

In the situation studied in this paper, one buyer can only
place one bid. More generally a buyer may have desire for
multiple bundles of items and needs to place a bid for each
bundle. The relation between the bundles can be OR or
XOR. If the bundles of a buyer are exclusively in OR rela-
tion, we can generate a dummy buyer for each bundle and
this leads to a CCF problem with the dummy buyers. If
some bundles are in XOR relation, we can construct all the
maximal sets of unconflicting bids for each buyer. The op-
timal coalition can be obtained by solving a CCF problem
for each combination of the sets one from each buyer, and
choosing the optimal result.
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APPENDIX
A. PROOF OF CLAIMS

Proof of Claim 1 Since the price functions are non-increasing,
Pr(aE1,02) < min{pe(ely), pr(052)}, and pr(aby o2) 05102
< pk(qél)qél +pk(q;é2)'qé2~ But Ebecluc2 ry = Ebecl ry+
Ebecg 7p, it follows that v(C! U C?) > v(C1) + v(C?).0

Proof of Claim 2 Let (C); = C N Bg. If a coalition C

is induced from a set of compatible subcoalitions Cq,...,Cg,
(C)x = Ck. Since Ty, rk = r, v(C) = 5, Ty, eclrh -
an X pr(a8)]. But w((C)r) = Ty, cclrn — an % pr(af)] it
follows that v(C) = E?:l v ((C)k)-

Prove C* is an optimal coalition: Suppose C # C* and v(C) >
v(C*), then E?:1Uk((c)k) > z?:l vE((C*)r). There exists
some k such that v ((C)g) > vk ((C*)x). But (C*)r = C}.

Prove X ¢+ is in the core of C*: For any C C C*, z¢+(C) =
E?:l $C;((C)k) Since C} is stable in the core, v ((C)r) <
xc;((C)k) Then v(C) < zc+(C). O

LeEMMA 1. Let the collection of buyers B = By U Ba, and the
optimal coalitions of B, By be C, C! respectively . Then C D C1
with linear price functions. It follows that the optimal coalition
contains all the optimal coalitions of subsets of the buyers.

Proof: Suppose C! Z C. Let C° = C'NC and c'o=c!t \CO.
Then C'0 # 0. Let r¢ = zbnecr"' Then v(C) — v(C%) =
To\co — Ei\zl [q}é\co (—d 'q}é\co +ag) _2‘1}50 “dg 'q}é\cﬂ] and
W(CUCP) =€) = royoo - LI 0% o~ (~d -2, ot ax) —
Zqél ~dy 'q’é\cﬂ]' Since q’él > q’éo and the strict inequality holds

for at least one g € G, by comparing the above two equations,

v(C U C'0) — u(Cl) > w(C) — v(CO). Since v(C°) < u(Cl),
v(C'U CIO) > v(C). But C is optimal.O

Proof of Claim 3 By induction with the number of buyers N:
When N = 1 it holds straightforwardly. Suppose the statement
stands for N < n.

When N = n+1: Let the optimal coalitionof By = {b1, b2, ... ,bn}

be CO. Let B’ = (Bo\ C%°)U{bp41}. Let the optimal coalition of

B =By U{byt1} be C. From Lemma 1 we have C' D C°. Then
o\ CO

= argmang(B\cu)v(CO uT)

m’gmazTg(B\cu){v(CO uT)—v(C%}

= argmazpc(p\coy{rr - Che1loh (=dk - of + ax — di - 205,01}
Therefore C \ C° is an optimal coalition of B \ C° with the

price functions p; (m) = —dg -m+a —dg ~2qé0. This is a linear

price function and from the assumption of induction there exists
some reservation cost division for all the buyers b; € B\ C° such
that (C'\ C%)y is an optimal subcoalition among all the subsets
of (B\ C%) N By, with respect to gx with the linear price function

p; (m). With this reservation cost division {rf}, k=1,...,K,
b; € B\ CO,

(C\C%y
= argmazpc(p\co)np, rh — ¢F(=dn - 9 + o — dk - 20¢,)}
argmazTg(Bk\(cu)k){vk((T UC%%) — v ((CO)r)}
= argmazTg(Bk\(Cu)k)vk((T)k u(C%)y)

From Lemma 1 the optimal subcoalition C* of Bj, with respect
to g includes (Co)k for every k. The above equation means that
(C)r = (C\C%) U (CO)y is an optimal subcoalition with respect
to gy if (C°) is an optimal subcoalition of the buyers in (C?)y
with respect to gi. Let the reservation cost division of C° to
be that with which (C?)}, is optimal with respect to the item gy
among all the subsets of (C?)y, for every k.(From the assumption
of induction such a reservation cost division exists.) Then (C)y is
an optimal subcoalition of the item gj with the reservation cost
division stated above and (C)g, kK = 1,..., K are compatible. O

Proof of Claim 4 If b; ¢ C}, construct a subcoalition C;C by
replacing b; with b; in C}}. This does not change the discount

price of the item with the subcoalition since qf = qf. But rf >

7‘;, hence v (C}) < v (C;) and this contradicts the optimality
of Cp.0O

Proof of Claim 5 The conclusion follows from Proposition 1
in [16] by regarding a buyer b, asking for qﬁ units of g, with the
reservation cost rfl as qfl buyers each one asking for 1 unit of g
with the same reservation price be/qﬁ~‘:‘

Proof of Claim 6 When dif, < 0, more than Offff is trans-
fered out for g; € K1 and less than Reqfl is transfered in for
gk € K2. When dif, > 0, less than Off,’f is transfered out for
gx € K and more than Reqﬁ is transfered in for g € K2. When
di fn, = 0, after the transfer Uk(CZI) = vk(Cfl) = vk(Cgl).

Proof of Claim 7 and 8 Please refer to [6] O

Proof of Claim 9 The complexity of the sub-algorithms are:
Construct the optimal subcoalition for one item: O(NM) Con-
struct the optimal subcoalitions for all items: O(K - NM) Calcu-
late the offer(request) of one buyer with one item: O(N™). Cal-
culate the offers(requests) of one buyer with all items: O (K -N™).

With the number of buyers to be considered currently being
|B| = n the largest number of iterations needed without Option
1 to exclude a buyer is n. Therefore in the worst case the number
of iterations needed without Option 1 is N 4+ (N — 1)+ ...+ 1
which is of complexity O(NQ). The complexity of the algorithm
is O(K - NM . N?) = O(K - N>tM) without Option 1.

The complexity to construct the optimal subcoalition for one
item is O(NM) There are at most 2K N iterations to construct
the optimal subcoalition for one item in each round of Option 1.
Therefore the complexity of Option 1 is O(K - N™+1) and the
complexity of Algorithm 1 with Option 1is O(K - NM+1.N2) =
O(K - N3+M) 1O



