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1. Problem Domain and Approach
We present an approach known as Profit-sharing that allows
agents to learn effective behaviors within dynamic and multi-
agent environments, where the agents are competitive and may
have to face resource conflicts, perceptual aliasing and uncertainty
of other agents’ intentions. A dynamic domain based on a NEO
(non-combatant evacuation operation) is described.

1.1 Problem Domain
Non-combatant evacuation operations, or NEOs, have been used
to test a variety of coordination strategies. Though real-world
NEOs have many constraint and resource conflicts, the domain
used in this study models multiple transportation vehicles which
transfer groups of evacuees to safe shelters. Each transport is
operated asynchronously by an autonomous agent, which makes
its own decision based on locally available information.

The Neo domain consists of a grid world with multiple transporter
agents, each of which carries a group of evacuees. The goal of a
transporter agent is to ferry its group to one of the shelters as
quickly as possible. However, there may be conflicts, as
transporters cannot co-exist in the same location at the same time
(Figure 1a). In addition, the location of the shelters changes over
the time. In dynamic domains such as this, agents should exhibit
reactive behaviors rather than deliberative ones.  We claim that
the only effective approach is to learn reactive behaviors through
trial and error experiences, since it is very difficult to know in
advance what effective action should be taken at each possible
state of the environment. Each transporter agent is modeled as a
reinforcement learning entity in an unknown environment, where
there is no communication with the other agents, and there are no
intermediate sub-goals for which intermediate rewards can be
given. It should be noted that there are other agents within the
environment that are also learning independently of each other,
without sharing sensory inputs or policies. As a result, the other
agents appear as additional components within the environment,
whose behavior is dynamic and unpredictable.
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(a)  Conflicting Situation (from (Clement 99))

Figure 1: Two Agents moving within the grid world. Figure(a) has
been reproduced from [1].

1.2 Profit-sharing Approach
Our multi-agent reinforcement learning approach is based on
Profit-sharing, originally proposed by [2]. The original version
used Profit-sharing as a credit assignment method. However, this
approach does not guarantee the rationality of an acquired policy.
To guarantee convergence to a rational policy in a non-Markovian
domain like NEOs which includes multiple learning entities, we
introduce the Rationality Theorem[3](see Figure 2 Eq.1 and Eq.2).
A rational policy is one that is guaranteed to converge on a
solution; i.e. the agent should not become trapped within infinite
loops in the state machine.
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             :  Reward given at Goal in the n-th trial.

    (Ot, at) : Observational State and action  at time t

 W (Ot, at) : Weight of the
                   Observational state-action pair (Ot, at)
           f   : Reward assignment

RT
n
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Figure 2:  Credit Assignment Methods.



2. Experiments
Two NEO grid worlds, as shown in Figure1, were designed to
compare our Profit-sharing approach with Q-learning[4]. In both
cases, two agents started from different locations, and their task
was to learn policies for finding one of two shelters as quickly as
possible.  There are five actions within the action set, At={Stay,
Up, Right, Down, Left}. However, both agents cannot occupy the
same position at the same time. In the grid-world of Figure1a, the
number of location is small and the agents can see the whole
environment. In the grid-world of Figure1b, the perceptual
distance of each agent is only a 55×  region; each agent see a
shelter or the other agent when they are no more than two moves
away.

In each episode, the order in which the two agents move is
determined randomly. Agent always start in the same location (i.e.
(0, 0) & (0, 2) in the smaller world, and (0, 0) & (0, 14) in the
larger one).  The location of the shelters is determined by one of
two experimental settings. In the first, their location is static. In
the second, the location of the shelters varies within the right half
of the grid world in each episode.

The learning parameters were selected as follows:

Profit-sharing: A geometrically decreasing function (common
ratio=0.3) was used as a credit assignment function.

Q-learning: The learning rateα  (=0.05) and discounting factor
γ (= 0.9) in Eq.4 of Figure 2. When the agent reaches the goal

state (i.e. the shelter), it receives a reward of 1.0. The Q-learning
agent uses the Boltzmann distribution (T=0.2) to select its action.

Figure 3 shows the results of the experiment where the location of
the shelters was fixed for each episode. Figure 4 shows the results
of the experiment where the location of the shelters varied in each
episode. Figure 5 shows the results of the experiment where two
grid were used ; the 1515×  world illustrated in Figure 1b, and
similar but smaller 77 ×  world. The results illustrated in Figure 5
indicate that Q-learning fails to converge for either world when
the location of the shelter is varied. However, Q-learning
performs well when the shelter location are fixed. This is not
surprising, as Q-learning learns deterministic policies for Markov
Decision Processes, and hence is unsuited for dynamic and
uncertain domains. However, Profit-sharing collects stochastic
data and reinforces useful rules using the Rationality Theorem.
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Figure 3: Performance of the agent in the Conflicting Situation:
Fixed Goal.

  

Comparison : PS vs QL in the Randomly Arranged Goal P osition
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6.2     Average steps of each agent’s in the optimal plan.
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Figure 4: Performance in the Conflicting Situation: Randomly
Arranged Goals.

  

Comparison: PS vs QL in the presence of Ambiguity
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QL: Env.Size7x7, Goals are rearranged randomly in each episode.
PS: Env.Size15x15, Goals are rearranged randomly in each episode
QL: Env.Size7x7, Goals' positions are fixed in each episode
PS: Env.Size7x7, Goals' positions are fixed in each episode
PS: Env.Size7x7, Goals are rearranged randomly in each episode.

Figure 5: Performance in the Dynamic and Uncertain Domain.

3. ACKNOWLEDGMENTS
This research has been partially funded by Darpa contract
F30602-98-2-0138, ONR Contract N00014-96-1222 and NSF
grant IRI-9612131.

4. REFERENCES
[1] Clement, B. J., and Durfee, E. H. Top-Down Search for

Coordinating the Hierarchical Plans of Multiple Agents. In
Proceedings of the 3rd International Conference on
Autonomous Agents (1999), 252-259.

[2] Grefenstette, J. Credit Assignment in Rule Discovery
Systems Based on Genetic Algorithms, Machine Learning
Vol.3 (1988), 225-245.

[3] Miyazaki, K. and Kobayashi, S. On the Rationality of Profit
Sharing in Partially Observable Markov Decision processes,
In Proceedings of the 5th International Conference on
Information Systems Analysis and Cynthesis,  (1999),
http://www.fe.dis.titech.ac.jp/~teru/papersj.html

[4]  Watkins, C., and Dayan P. Technical note: Q-learning,
Machine Learning Vol.8  (1992), 55-68.


