Adding Security and Trust to Multi-Agent Systems*

H. Chi Wong and Katia Sycara
Carnegie Mellon University
Pittsburgh, PA, 15213

hcwong@cs.cmu.edu, katia@cs.cmu.edu

Abstract

Multi-agent systems (MASs) are societies whose individuals are software-delegatees (agents) act-
ing on behalf of their owners or delegators (people or organizations). When deployed in an open
network such as the Internet, MASs face some trust and security issues. Agents come and go, and
interact with strangers. Assumptions about security and general trustworthiness of agents and their
deployers are inadequate in this context. In this paper, we present the design of a security infras-
tructure applicable to MASs in general. Our design addresses both security threats and trust issues.
In our design, we have mechanisms for ensuring secure communication among agents and secure
naming and resource location services. And two types of trusts are addressed: trust that agents will
not misbehave and trust that agents are really delegatees of whom they claim to be. To establish the
first type of trust, we make deployers of agents liable for the actions of their agents; to establish the
second type of trust, we propose that agents prove that they know secrets that only their delegators
know.

1 Introduction

Agents are software entities that have enough autonomy and ‘intelligence’ to carry out various tasks
with little or no human intervention. They are software delegates of individuals and organizations, and
can act on behalf of their delegators. In multi-agent systems (MASs), agents interact with other agents,
non-agent software, and humans. When deployed in wide-area networks, such as the Internet, agents
can access remote service providers, search for information on the web, and carry out sale transactions.
Agent-mediated electronic commerce is seen as a major application area of agent technology [15].

Open-network M ASs face some security and trust issues, however. Agents come and go, and interact
with strangers. Assumptions about general trustworthiness of agents and their deployers are inadequate
in this context. Instead, we should assume that agents are not trustworthy and can misbehave, unless
there is reason to believe otherwise. For examples, agents may eavesdrop on message exchanges between
two other agents; they may masquerade as some other agent; or they may not comply with their
obligations, e.g., an agent may not want to pay for goods received. MASs should provide mechanisms
that their agents can use to defend themselves against attacks of other agents and humans.

The goal of our research is to identify some security and trust issues faced by MASs, and to design a
security infrastructure applicable to MASs in general. This leads us to focus on application-independent
issues.

*This research has been supported in part by DARPA contract F30602-98-2-0138, and by ONR Grant N00014-96-1222.



To be concrete, the discussions in this paper are based on Retsina [20], a reusable multi-agent in-
frastructure for building agents with capabilities of inter-agent, message-passing communication. The
Retsina infrastructure can be used by agent developers to quickly develop agents for different appli-
cations. Retsina was developed having Internet applications in mind. We use Retsina as an example
because it is the most general and flexible MAS infrastructure known today.

We take the following steps to achieve the goal of introducing security and increasing levels of trust
in MASs. First, we identify some of the issues that MAS applications face in general. Then we propose
solutions for these problems. Finally, we design a security sub-system that embeds our solutions. An
implementation is in progress.

Whenever applicable, we leverage on well-known mechanisms from the security literature, and avoid
‘reinventing the wheel’.

The paper is organized as follows. In Section 2, we describe the Retsina model of MAS. In Section 3,
we identify some security threats in MASs. In Section 4, we propose solutions to counteract the security
threats discussed in Section 3. In Section 5, we lay out a design of a security infrastructure in which
the solutions proposed in Section 4 can be implemented. In Section 6, we discuss related work, and in
Section 7 our contributions and future work.

2 The Retsina model of MAS

In Retsina, there are three classes of agents: interface, task, and information agents. Interface agents
interface humans with the rest of the system. They may have different degrees of automation: totally
manual, semi-automated, or completely automated. It is through them that humans delegate tasks to
the agent system. Interface agents are typically users of the services provided by other agents of the
system. Task agents are agents that can perform specific tasks. An agent that advises on stock buying
and selling is an example. They are typically users of information agents, and providers of services
to interface agents and other task agents. Information agents are associated with information sources,
such as stock quotes from the NYSE. They provide information to other agents in the system.

At a higher level, Retsina agents are bound to each other by producer-consumer relationships. Given
a Retsina application, there are a number of services. Portfolio keeping and stock buy/sell advising are
examples of services in a portfolio management application. Services are provided by service providers
and used by consumers. A portfolio-keeper is a provider for portfolio-keeping service. Consumers of
this service include stock buy/sell advisors and interface agents. As expected, a given agent can be a
provider of one service and a consumer of another.

Underlying a Retsina MAS, there are two types of infra-structure entities: ANSs (agent name
servers), and matchmakers [2]. ANSs keep a mapping of agent ids to agent’s physical addresses, and
are queried whenever an agent plans to contact another agent whose address it does not know about.
Matchmakers keep a mapping of agent ids to agent capabilities. When an agent first comes up, it ad-
vertises its capabilities with a matchmaker, who stores the advertisement in its advertisement database.
Matchmakers are queried when an agent needs a service from the system, and does not know who to
contact. By matching requests to stored advertisements, a matchmaker can locate service providers
for interested consumers. A language for advertisement and requests, called LARKS, that allows agent
locating and interoperation has been developed [10].

Retsina has been instantiated to several applications [20], including a visitor hosting system [19],
aircraft maintenance [16], and financial portfolio management [18].



3 Some Security Threats in M ASs

Intuitively, adding security and trust to MASs is about increasing users’s confidence that a system of
agents will handle tasks the way they (the users) expect them (the agents) to. In a insecure MASs,
there are different types of threats that can undermine the users’s confidence. We identify a number
of them, which we list below. In what follows, matchmakers are optional entities: Retsina uses them;
other MASs may not 1.

e Corrupted naming and matchmaking services?:

Naming and matchmaking are two critical services in a MAS system. Application agents de-
pend on ANSs to locate other agents, and matchmakers to find service providers. Naming and
matchmaking services can be corrupted by untrustworthy ANSs and matchmakers. For example,
a misbehaving ANS may map an agent id to an address other than the one given by the regis-
tering agent, and a misbehaving matchmaker may arbitrarily delete an advertising entry. They
can also be corrupted by untrustworthy application agents, who can for example unregister their
competitors at the ANS and the matchmaker.

e Insecure communication channels:

Since agents in MASs are distributed, secure communication is of paramount importance. Agents
should know, with certainty, that they are talking to agents they think they are talking to (au-
thentication); that messages they receive are not corrupted during transmission or injected by
some third party (integrity); that communication is private (confidentiality) if they choose so;
and sometimes that nobody can deny having sent a message they have sent (non-repudiation).

Secure communication can be compromised by any agent in a MAS. Agents can spoof each other,
listen in to third party conversations, alter messages in transit, and repudiate wha they have said.

e Insecure delegation:

Agents act on behalf of their deployers. In certain applications, we may want to know that agents
are in fact delegates of whom they claim to be. For example, before giving out my account
information to an agent, my bank would want to know that the agent is in fact my delegatee.
Unless some secure delegation mechanism is in place, an agent can always impersonate as a
delegate of someone who did not entrust to it.

e Lack of accountability:

In MASs deployed in open networks, where agents interact with strangers that come and go, there
is no reason for agents to trust each other. Deployers may be dishonest, software may be buggy;
agent wrongdoings can certainly happen. If no one is held accountable for potential problems
caused by misbehaving agents, then users will hesitate to use the technology.

'"However, if a MAS operates in an open environment where agents may appear and dissapear, it needs some sort of
middle agent (e.g., a matchmaker or a broker) to allow a requester to locate a service provider.

2 A naming service is not corrupted, or satisfies integrity if its entries correctly map agents to their physical addresses.
In such a service, two agents can never be mapped to the same address. A matchmaking service is not corrupted, or
satisfies integrity if its entries correctly map agents to what the agents themselves claim are their capabilities. Note that
agents can lie about their capabilities; but this is a different issue.



4 Adding Security and Trust to MAS

We propose the following solutions to counteract the threats discussed in Section 3.

e Use trusted ANSs and matchmakers:

ANSs and matchmakers that behave as they should are critical in guaranteeing the integrity of
naming and matchmaking services. ANSs and matchmakers should

— Service only valid requests. A request is valid if it comes from a rightful requester (someone
that requests service for oneself), and the request itself ‘makes sense’ in the current state
of the ANS or the matchmaker. For example, a request for unregistering an agent at a
matchmaker is invalid if the agent is not currently registered.

— Insert (remove) an entry in their address/capability databases in a way that is consistent
with the request; and

— Give responses that are consistent with the content of their databases, when queried.

Make agents uniquely identifiable, and give them unforgeable proofs of identity:

Spoofing can be prevented if agents have unique ids, and are required to show proofs of identity
when interacting with other agents. In particular, ANSs and matchmakers can use these ids to
prevent agents from registering and unregistering someone other than themselves.

Protect communication channels:

All messages should be authenticated and any corruptions should be detectable by their recipients.
Also, communicating parties should be able to make their communication confidential.

Make agents prove that they are delegates of whom they claim to be:

Whenever the identity of an agent’s delegator matters (e.g., when application-level services are
restricted by access control), the agent should be able to prove that it is indeed the delegatee. One
way of achieving this is to have delegatees show knowledge of secrets that only their delegators
know about. For instance, my banking agent should show knowledge of my PIN.

Make deployers of agents liable for the actions of their agents:

MAS on the Internet are intended to be open systems. Anyone is allowed to join and to leave
freely. Due to the openness and the expected scale of such systems, it is infeasible to ensure that
only trustworthy agents are allowed in the system.

If we make deployers liable for the actions of their agents, then they are less likely to deploy buggy
agents, and to initiate cheating themselves. Also, when misbehaviors occur, we can hold someone
accountable, and apply punishment, or demand indemnification. This can indirectly increase the
level of trust users have on MASs.

To establish this liability, and to make deployers aware of it, we require that agents be given proofs
of identity (without which they could not interact with other agents) only when their deployers
allow their own identities to be linked with those of their agents.



5 A Design of a Security Infra-structure for M ASs

In this section, we propose a security infra-structure for MASs, that takes into account the guidelines
in Section 4. It requires adding new modules and new protocols to existing MASs. For concreteness,
we use Retsina as our running example here.

5.1 Assumptions

We assume that deployers of agents are people or organizations that have public key certificates binding
their ‘physical’ identities (social security numbers, company names, etc) to their public keys. They
also have the private keys corresponding to the public keys in their public key certificates. Deployer
certificates are issued by Deployer Key Certificates (DCAs). DCAs are assumed to exist, but they lie
outside our security infra-structure. ([9] discusses one possible approach of incorporating them into our
system.)

The ANSs and the matchmaker are trusted agents whose ids (or names) and public keys are publicly
known. The addresses of the ANSs are also publicly known.

5.2 Architecture

We describe the different components of our architecture in a way that maps them to the solutions they
implement.

In what follows, D denotes agent deployers. A — B : m denotes A sending message m to B.
Given an agent X (or agent deployer D), z denotes X’s private key, and pub(z) denotes the public key
corresponding to z. m;’s denote messages. Given a message m, and a private key z, (m), denotes m
signed with key z.

5.2.1 Uniquely Identifiable Agents and Liability

In our system, we use public key cryptography to make agents uniquely identifiable. Agents are given
a public key certificate and a matching private key. An agent proves its identity by signing with its
private key. Such a signature is valid only if the correspondent public key is certified.

In our design, only deployers of agents are authorized to request certifications for their agents, and
certifications are not granted unless the deployer proves its own identity. This requirement binds an
agent id to its deployer’s id, and makes the deployer aware of his or her liabilities.

Our security architecture requires adding one new module to the Retsina framework. It is a key
certification authority used to certify the binding of agents’s ids to their public keys. We call this
certification authority ACA (Agent Certification Authority) to distinguish it from DCA.

ACA is the certification authority for agent keys and is part of our infrastructure; DCA is the
certification authority for deployer keys and lies outside our infrastructure.

The following protocols are used for agent key certification and revocation. These protocols lie
outside the realm of Retsina, in the sense that D is not (required to be) a Retsina agent.

Certifying An Agent’s Public Key

Before starting up an agent, a deployer chooses an id (name) for the agent, generates a public key
pair, and gets the public key certified by the ACA. Fig. 1 shows a high-level description of a protocol for
agent key certification. Note that all protocols discussed in this section are to be used in conjunction
with SSL, a security protocol from Netscape we discuss in subsection 5.2.3. Thus, all communicating



parties have public key certificates of each other, and all the message exchanges in these protocols can
satisfy authentication, integrity, and confidentiality.

D : — chooses an agent id ag-id;
— generates a public key pair {a, pub(a)};

D — ACA: my, where my = (certify [ag-id, pub(a), timestamp]) 4;

ACA : — Is the request valid?
. is timestamp recent?
. can the signature in m; be verified with the public key in D’s certificate?
. has pub(a) been used before?
— generates mgy, where my = a ACA-signed certificate binding pub(a) to ag-id;
— creates an entry [D’s public key certificate, my] in the certification database;

ACA— D: my

D : — verifies the signature in mg with the public key in ACA’s certificate;
— stores the certificate.

Figure 1: Agent key certification protocol.

After getting the certification request (my), ACA verifies the validity of the request®. A request is
valid if it has been recently generated (the timestamp? shows when the request was generated, which
must be within a § of ACA’s current clock time), the signed message can be verified® using D’s public
key, and pub(a) has not been used (ACA checks both its certification and revocation databases).

If the request is valid, then ACA generates a signed certificate my binding pub(a) to ag-id. With
this certificate, agent ag-id can prove its identity by signing with the private key a. Before sending
the certificate to D, ACA creates the entry [D’s public key certificate, m;] in its certification database.
This entry allows ACA to map an agent back to its deployer. ACA does not, however, reveal the id
of the deployer of an agent unless ‘cheating’ occurs, and the deployer needs to be tracked down for
accountability.

D checks ACA’s signature upon receiving my, because only ACA-signed certifiates are accepted in
Retsina.

Revoking An Agent’s Public Key

To revoke an agent’s key, D engages in a key revocation protocol (Fig. 2) with ACA.

ACA only processes a revocation request if it is valid (a revocation request is valid if it comes
from the same deployer that requested certification). ACA then removes ag-id’s certificate from the
certification database, and adds it to the revocation database. The revocation request is also kept in the

#Note that unlike in other protocols such as SPKI [6, 5] and PKIX [14], our certification request message m; does not
prove D’s possession of private key a. This is an issue only if @ is under some other deployer D’s possesion, who happens
to also have d (in this case, D can deploy an agent A with key a, and have D held accountable for A’s actions). But D
would have d only if D lends it or d is compromised.

*The use of timestamps to guarantee freshness of messages requires that agents have synchronized clocks. In MASs
that do not have synchronized clocks, nonces can be used instead.

® Abstractly, a signed message [m], can be verified with a public key y if y = pub(x).



D — ACA: mg, where ms = (revoke [ag-id’s key certificate])q;

ACA: — Is the request valid?
. Does the public key in D’s certificate have the authority to request the
revocation of the key?
(It does if it is the one used in the certification request.)
. Can the signature in mg be verified with the public key in D’s certificate?
— move the entry corresponding to ag-id from the certification database to
the revocation database;
— append mgz to the newly added entry in the revocation database;
ACA — D: my, where my = (revoked [ag-id, pub(a)])sca-

Figure 2: Agent key revocation protocol.

revocation database for possible future disputes. For example, D may claim that it has not requested
the revocation.

5.2.2 Trustworthy Naming and Matchmaking Services

To achieve integrity of naming and matchmaking services, we extend existing protocols in Retsina.
We also need to assume that ANSs and matchmakers are trusted entities, in that they will follow the
extended protocols described below.

Registering, Unregistering, and Looking up Addresses at an ANS

To make the Retsina naming service secure, current address registration, unregistration, and lookup
protocols need to be extended. Figures 3, 4 and 5 present the Retsina registration, unregistration, and
lookup protocols with security added. In these protocols, we assume that principals have public key
certificates of each other.

To register its address, an agent A uses the address registration protocol (Fig. 3).

A submits a signed request to an ANS. Upon receiving a registration request, ANS verifies the
validity of the request. A request is valid if it satisfies the following conditions. 1) The requester is
registering itself (aid appears in A’s certificate, and the signature in m; can be verified by the public
key in A’s certificate). 2) Agent A has not been registered (aid has not been registered with the same
public key). 3) addr is not occupied by other agents. And 4) the request has been generated recently,
and the signed message has not been used for a registration that has been unregistered (ANS checks
its unregistration database for such replays).

If the request is valid, then ANS tries to confirm that A is in fact located at addr. It does so by
sending a nonce n (challenge) to address addr, and requiring the message n + 1 (response) in return.
A will not be able to receive n (and consequently return n + 1) unless it is running at addr. This
challenge and response protocol prevents denial-of-service attacks, where an agent tries to register all,
or a substantial number of the available addresses, or even a targetted attack with a single address.

If A responds to ANS’s challenge successfully, ANS registers A (it saves a copy of the request for
possible future disputes), and returns a confirmation. The confirmation indicates expiration time, after
which A is automatically unregistered. To stay registered, A must submit a new registration before
the expiration time. Keeping addresses at an ANS for limited time period takes care of agents that



A — ANS : my, where my = register [aid, addr, timestamp)|,, aid is the agent id,
and addr is the physical address of A.

ANS : — Is the request valid?
. does aid appear in A’s certificate?
. has aid been registered with the public key in A’s certificate?
. has addr been taken by another agent?
. is timestamp recent?
. can the signature in m; be verified by the public key in A’s certificate?
. has the signed message being used before?

ANS — A(addr) : n,where n is a nonce;
A— ANS: n+1;
ANS : — If the request is valid, create the entry [my, A’s certificate] in the address database;
ANS — A: my, where my = registered [aid, addr, timestamp’, expiration)q,s;

A: — Is the confirmation valid?
. can the signature in my be verified by the public key in ANS’s certificate?
. is ttmestamp’ recent?

Figure 3: Address registration protocol.

do not unregister before disappearing. Disappearing before unregistering at the ANS does not lead
to security threats, since no illegal occupants of this address can impersonate the legal occupant: the
illegal occupant does not have the right private key to prove that it is the legal occupant.

To unregister itself at an ANS, an agent uses the address unregistration protocol (Fig. 4).

Upon receiving the unregistration request, ANS checks its validity. An unregistration request is
valid if the agent is registered, the request comes from the agent that requested the registration, and
the request was generated after the agent has been registered. Some of the checks that ANS does before
unregistering may actually help in detecting some abnormalities. For instance, if the submitted aid can
not be found in the registration database, then it could be that the agent’s key has been compromised,
and someone took the agent down.

If the request is valid, then A NS moves the entry from the registration database to the unregistration
database. The unregistration request itself is also added to the unregistration database. All this record
keeping is intended for potential future disputes.

To look up an address, an agent A uses the protocol in Fig. 5.

Given that agents are uniquely identified by their public keys, A submits both an agent’s id and its
certificate when looking up the agent’s address. Since address lookup is a publicly available service, A
does not sign the request.

aid may be registered at this particular ANS or somewhere else. If it is not registered locally, ANS
needs to contact the appropriate name server, using the same protocol. The lookup result is signed by
ANS, for possible future disputes. For an address mapping obtained remotely, ANS keeps a copy of it
as it was returned by its peer (with the appropriate signature), also for possible future disputes.



A — ANS : my, where my = unregister [aid, timestamp|,;

ANS : — Is the request valid?
. Is there an entry e with aid and A’s certificate in ANS’s registration database?
. Can the public key in e verify the signature in m;?
. Is the time in timestamp more recent than the registration time?
— If the request is valid,
. move the entry e from the registration database to the unregistration database;
. Append the entry e just added to the unregistration database with my;

ANS — A: my, where my = unregistered [aid, timestamp’| 4s;

A: — Is the confirmation valid?
. Can the signature in my be verified with the public key in ANS’s certificate?
. Is timestamp’ recent?

Figure 4: Address unregistration protocol.

A — ANS : lookup (ans-z.aid, aid’s certificate);

ANS . if ans-z is self then
get aid’s address from its registration database
else lookup (ans-z.aid, aid’s certificate) at ans-z;

ANS — A: my, where my = lookup-resull [ans-z.aid, aid’s certificate, addr, timestamp),,s

A: — Is the response valid?
. is timestamp recent?
. can the signature in m; be verified by the public key in ANS’s certificate?

Figure 5: Address lookup protocol.

Registering and Unregistering Capabilities, and Looking up Service Providers at the
Matchmaker

The workings of a matchmaker (MM) are analogous to that of an ANS. The modifications we
introduce to the protocols here, that agents use to interact witht the matchmaker, are therefore very
similar to those introduced for the ANS.

The MM-registration protocol is identical to the ANS-registration protocol, except that while a
physical address may not be shared by more than one agent, capabilities may. This difference is
reflected in the validity check of a registration request. Another difference is the name agents use to
register with the matchmaker; they are of the form ANSname.Agentname.

The update protocol is identical to the registration protocol, except that the requesting agent must
already be in the ‘directory’ (registration) database. This difference is reflected in the validity check of
an update request.

The lookup protocol is shown in Fig. 6. Note that since agent ids do not identify agents uniquely,
the matchmaker returns both the agent id and the agent certificate for each agent.



A — MM : my, where my = recruil capabilities;

MM — A: mg, where mg =
[capabilities, ([ans-z1.aidl, certl], ..., [ans-zn.aidn, certn]), timestamp| pm;

A : — Is the response valid?
. can the signature in mgy be verified by the public key in MM’s certificate?
. is the timestamp recent?

Figure 6: Service provider lookup protocol.

Finally, the MM-unregistration protocol is identical to the ANS-unregistration protocol.

Even though MM- and ANS-protocols are very similar in terms of message exchanges, they differ
in their requirement of confidentiality. Agent deployers may not care that someone eavesdrops their
agents’s communication with an ANS, and finds out where the agents can be found (although some
agent deployers may want to keep this confidential too). But it is more likely that they will not want
eavesdroppers to find out what their agents do, specially if the agents deal with “sensitive” tasks or
information. Thus, we should be able to make all message exchanges between an agent and the MM
confidential.

5.2.3 Secure Communication Channels

To realize communication security in Retsina, we plan to layer the SSL (Secure Socket Layer) protocol [8]
underneath the agent communication layer.

Two principles guided us towards this decision. First, security should be layered in our system, i.e.,
details related to communication security should be kept transparent from the application. Second,
since it is hard to get cryptographic protocols right, both at the design and the implementation levels,
off-the-shelf trustworthy technology should be prefered over home-brew products.

In addition to providing transparency, and trustworthiness (SSL has been carefully analyzed [22]),
SSL provides extensibility. Its framework allows new public key and bulk encryption methods to be
incorporated. And as new methods are incorporated, they are readily available to applications that use
it.

Adding SSL to Retsina is a localized effort: it only requires incorporating SSL into the Communi-
cator module in Retsina. The Communicator is the module that implements all inter-agent commu-
nication, and it was designed and implemented with interoperability in mind. As a result, it can be
flexibly adapted to support different inter-agent communication languages (other than KQML), and
is a module that can be used as a plug-in by other agent infrastructures. By incorporating SSL to
the Communicator, we are building a secure communication module that can be used by other agent
systems, talking in whichever language they please.

6 Related Work

Even though agents have been the subject of intense research for some time, only recently have re-
searchers in the area examined security in the context of agents and multiagent systems ([15, 7, 21, 9,

13]).

10



In [7], a security architecture was proposed for Yenta, a matchmaking agent designed to find people
with similar interests on the Internet and introduce them to each other. The main security concern
in Yenta is privacy, and the main issues addressed in [7] are traffic analysis, gathering of one’s private
data by other Yenta agents, and how to find out the profile of the real person behind a Yenta agent (in
case a user decides to reveal his or her identity to another person). For communication security, the
author suggested using PGP-based schemes, but did not provide details.

In [21], KQML is extended with performatives and parameters that allow an agent to manage com-
munication security at the application level. Agents can use appropriate performatives to authenticate
each other, and appropriate parameters to specify details of cryptographic algorithms and keys used for
each message. This approach sharply departs from ours in that all the details of securing communication
channels are exposed to application agents.

[9] proposed an agent-based public key infrastructure (PKI). In this proposal, specialized agents
called security agents are used as key certification authorities. These agents can handle multiple cer-
tificate formats and trust hierarchies. The goal is to enable interoperability of agent systems using
multiple PKIs.

[17] is a framework and set of tools that can be used for developing multiagent systems. It provides
mechanisms that enable agents to authenticate each other and to establish encrypted communication
channels. The design of the security component, however, is not provided.

In [13], the focus is on secure marketplaces for mobile Java agents. In addition to security issues
specific to mobility, [13] discusses some of the issues we cover here. The discussion there, however, stay
at a fairly high level. In fact, they only suggest possible approaches to solve the problems. For example,
they vaguely suggest the necessity of having different kinds of ids for agents and their deployers. But
they do not provide further details.

Outside of agent research, however, there have been extensive research on security, specially as
applied to distributed systems ([11] is such an example). And ever since the Internet (and later on
the World Wide Web) showed promises of becoming universally accessible, there have been work on
different aspects of security systems that are intended to be deployed in global scale. X.500 name
directory [1], secure DNS [3, 4], and public key infra-structures such as PKIX [14] and SPKI [6, 5] are
some of the examples. Our design has been inspired by them.

7 Contributions and Future Work

We have identified a number of security threats faced by MASs in general, and proposed a security
architecture that counteract these threats and increase the level of trust one can have on a MAS.

In our security architecture, communication security is dealt with by giving agents unique ids, and
transparently layering SSL. underneath the communication interface used by agents. To guarantee the
integrity of system-level services (such as naming and matchmaking services), we rely on unique ids of
agents and add access control mechanisms to these services (we assume that ANSs and matchmakers
are trusted entities in the system). Finally, to establish accountability for what agents do, we use a
certification mechanism that requires deployers to register their agents before the deployment. This
mechanism links deployers to their agents for the purpose of accountability.

The building blocks we use in our architecture are well-known in the security literature. In fact, our
goal was to use off-the-shelf, well-understood, and trustworthy security technology, and add security to
MASSs in a way that is as transparent as possible.

A Java implementation of our design is underway, and will be added to the Retsina infrastructure.

11



In this paper, we proposed making delegations secure by having delegatees show knowledge of secrets
that only their delegators know. This can be accomplished straightforwardly by allowing delegatees
to have access to these secrets. This solution is not satisfactory, however, because nothing prevents a
delegatee from misusing a secret. We are working on coming up with a more secure mechanism for
doing delegation.

So far, we have assumed that agents are able to decide whether a certificate from a DCA is valid.
Agents may not accept a certificate as valid because there may be multiple DCA’s, not all of which are
trusted by all agents. This problem is general to any public-key-based system, and we are investigating
how to deal with it in the context of MASs. We believe that [9] may offer solutions, but the topic
requires further research. Also, we have assumed a single ACA in our system. We plan to looking into
having multiple distributed ACAs.

Finally, we would like to find other security issues faced by MASs in general. We plan to do this by
examining concrete Retsina applications in different domains. But even within this paper, there is an
issue that we have not brought to the foreground; and it has to do with “honesty” of agents themselves.
Briefly, even if agents are who they say they are, and are legitimate delegatees for tasks at hand, they
may still not carry out a task or a transaction as expected. This is so because software may be buggy
or the agents themselves may be cheating. In our current system, such failures cannot be prevented,
but only dealt with by holding deployers of “dishonest” agents accountable for the wrongdoings of their
agents. A solution that can prevent such failures from occurring in the first place would be desirable.

References

[1] D Chadwick. Understanding X.500 - The Directory. Chapman and Hall, 1996.

[2] K. Decker, K. Sycara, and M. Williamson. Middle-agents for the internet. In Proceedings of the
Fifteenthe International Joint Conference on Artificial Intelligence (IJCAI-97), pages 578584,
Nagoya, Japan, August 1997.

[3] D. Eastlake. Domain name system security extensions. IETF Network Working Group RFC 2065,
January 1997.

[4] D. Eastlake. Secure domain name system (dns) dynamic update. IETF Network Working Group
Internet Draft: draft-ietf-dnssec-update2-00.txt, August 1998.

[5] C. Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen. Spki certificate theory.
IETF Internet Draft: draft-iet{-spki-cert-theory-04.txt, November 1998.

[6] Carl Ellison. Spki requirements. IETF Internet Draft: draft-ietf-spki-cert-req-02.txt, October 1998.

[7] Leonard N. Foner. A security architecture for multi-agent matchmaking. In Proceedings of the
Second International Conference on Multi-Agent Systems, pages 80-86, 1996.

[8] Alan O. Freier, Philip Karlton, and Paul Kocher. The ssl protocol version 3.0. March 1996.

[9] Qi He, Katia Sycara, and Tim Finin. Personal security agent: Kqml-based pki. In Proceedings of
the Second International Conference on Autonomous Agents, May 1998.

[10] Sycara K., Lu J., , and Klusch M. Interoperability among heterogeneous software agents on
the internet. Technical Report CMU-CS-92-131, Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA, 1998. Technical report.

12



[11]

[12]

[13]

[18]

[19]

[20]

[21]

[22]

B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Authentication in distributed systems:
Theory and practice. In ACM Trans. Computer Systems 10 (4), pages 265-310, 1992.

Kay Neuenhofen and Matthew Thompson. A secure market place for mobile java agents. In
Proceedings of the Second Inlernalional Conference on Autonomous Agents, pages 212-218, May
1998.

Kay Neuenhofen and Matthew Thompson. A secure marketplace for mobile java agents. In Pro-
ceedings of the Second International Conference on Autonomous Agents, pages 212-218, May 1998.

Housley R., W. Ford, W. Polk, and D. Solo. Internet x.509 public key infrastructure certificate
and crl profile. IETF Network Working Group RFC 2459, January 1999.

Jefl Rosenschein, Tuomas Sandholm, Carles Sierra, Pattie Maes, and Rob Guttmann. Agent-
mediated electronic commerce: Issues, challenges and some viewpoints. In Proceedings of the
Second International Conference on Autonomous Agents, pages 189-196, May 1998.

O. Shehory, K. Sycara, G. Sukthankar, and V Mukherjee. Agent aided aircraft maintenance. In
Proceedings of the Third International Conference on Autonomous Agents, Seattle, Washington,
May 1999.

Rahul Sukthankar, Antoine Brusseau, and Ray Pelletier. Jgram: Rapid development of secure mul-
tiagent systems. In submitled to Agents 99 — Third International Conference on AUTONOMOUS
AGENTS.

K. Sycara, K. Decker, and D. Zeng. Intelligent agents in portfolio management. In N. Jennings
and M. Woolridge, editors, Agent Technology: Foundations, Applications, and Markels, chapter 14,
pages 267-283. Springer, 1998.

K. Sycara and D. Zeng. Coordination of multiple intelligent software agents. International Journal
of Intelligent and Cooperative Information Systems, 5(2 and 3):181-211, 1996.

Katia Sycara, Anandeep Pannu, Mike Williamson, Dajun Zeng, and Keith Decker. Distributed
intelligent agents. In IFEFE Fzpert, pages 36-45, December 1996.

Chelliah Thirunavukkarasu, Tim Finin, and James Mayfield. Secret agents — a security architecture
for kqml. In CIKM’95 Intelligent Information Agents Workshop, December 1995.

David Wagner and Bruce Schneier. Analysis of the ssl 3.0 protocol. In Proceedings of the Second
USENIX Workshop on FElectronic Commerce, pages 29-40, November 1997.

13



