Varying the User Interaction within Multi-Ag ent Systems

Terry R. Payne
The Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15232 USA

terryp@cs.cmu.edu

ABSTRACT

Agents within an open multi-agent system are located through
their advertisements with middle agents. Such advertise-
ments describe the agent’s capability, ontology, query or task
specification, and details about the data returned once the
task has been completed. Agents may have similar capabili-
ties, but exhibit different models of user interaction. A case
study of a multi-agent system is described which contains a
variety of different agents, some of which have functionally
similar capabilities but involve different types of user inter-
action. We demonstrate how the choice of user interaction
can have a significant effect on the performance of the whole
agent community. This leads to the proposal that an agent’s
interactive style should also be included within its capability
advertisement.

General Terms

Middle Agents, Matchmakers, Task Agents, Interface Agents,
Multi-Agent Teams, Collaboration, Human-Agent Interac-
tion

1. INTRODUCTION

As the number and variety of agents that appear on the
World Wide Web increase, frameworks that allow agents to
seek and cooperate with other relevant agents have emerged.
Various software agents that provide different services have
already been deployed on the Web. These agents may pro-
vide specialized or periodic information from certain infor-
mation sources, or may perform some task or service based
on information they are given. From the perspective of ser-
vices, there are three general agent categories: service pro-
viding agents, service requesting agents and middle agents
that help service providers find service requesters [18]. Ser-
vice providers possess certain know-how or capabilities (e.g.
planning routes between two points within a city) that ser-
vice requesters may desire. In addition, service providers

Katia Sycara
The Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15232 USA

katia@cs.cmu.edu

Michael Lewis
School of Information
Sciences
University of Pittsburgh
135 N. Bellefield Avenue
Pittsburgh, PA, 15260 USA

mi@lis.pitt.edu

have a set of service parameters (e.g. cost, reliability, avail-
ability etc.). Service requesters, on the other hand, have
a set of preferences for particular types of parameters as-
sociated with desired capabilities. Providers advertise their
capabilities and service parameters with one or more middle
agents, and requesters request agents with particular capa-
bilities and select a provider according to their preferences.
There are several different ways in which middle agents in-
teract with service providers and service requesters [18], de-
pending on factors such as reliability, privacy, efficiency etc.
For example, middle agents may have knowledge of both
the capabilities and preferences of different agents, and thus
act as brokers [21]; such middle agents are often used within
market-based systems. Another sub-class of middle agents
are generally known as matchmakers, yellow pages or direc-
tory agent systems [18; 20; 5; 7]. These only have knowledge
about the capabilities of service providers. Thus, if an agent
has some preferences, it can query the middle agent, which
then returns a list of agents whose capabilities match the
preference query.

In addition to middle agents, other classes of agent exist.
Agents may also be classed as information agents, task agents,
and interface agents. In the Retsina system, for example
[17], interface agents interact with the user, providing a
mechanism whereby users can specify tasks, and inspect the
results. They may acquire, model, and utilize user prefer-
ences to guide system coordination in support of the user’s
tasks [13]. Task agents help users perform tasks by formu-
lating problem solving plans and carrying out these plans
through querying and exchanging information with other
software agents [12]. Information agents provide intelligent
access to a heterogeneous collection of information sources
[3]-

The choice of task agent and the approach used by the inter-
face agent to interact with the human can affect the behavior
and utility of the agent society. Many interface agents de-
termine user profiles to personalize the performance of an
agent, or to improve the assistance provided by the agent
[10; 11; 13]. In doing so, the interface agent may have to
contact several different service providing agents, where each
agent might share the same capabilities. The choice of agent
tasked will not only affect the overall utility of the assistance
provided by the interface agent, but may require the agent
to change the way in which it interacts with the human.

In this paper, we examine the role of interaction between the
human and interface agent, and how this interaction is de-
termined by the choice of service provider. We demonstrate

F£ forpubs.dat - Moksaf
File Edit “iew Administrator Help

Start Point (Commander 1)

ToolBar

Terrain: B g

Soil /
River /ﬁ

Forest e
Road

Buildings\

-

Routes:
Commander 1 -1

Commander 2 _—

For Help, press F1

|| @ ~lolw|s| w(o] 2| e
= % 1 —Aﬂ

MokS af Information Pane

- Agent: Mokzaf_Bravo

- AMS: localhost

- Session D etails:

by Map file: /e \Mok zafine

- Group 1D:

- Session Number:

‘o Interface Mode(s):

; Cooperatives&utonol
o Penwidt 14

- Team Members:

none

- Platoor:
i Selected Units:

Amphibious Yehicle [

Fuel Truck

Hed kb Hurnmer

HE kWA Hummer

i b M1 Abrams Tank

o Fuet 148.00 gallons

D & E
3 . [B8 Con |54 »

Details of
selected
units,
available
fuel etc.

/!AdministratorMode |Path %ner.&gent

|00.10400,00.015° 7

/
Start Point

(Commander 2)

Shared
Rendezvous

Intangible (dynamic)
constraint

Figure 1: MokSAF Interface Agent.

that as the interaction varies, the utility of the interface
agent can change. Thus, whist some agents may share sim-
ilar advertisements (in terms of capabilities), the way they
interact with the human through the interface agent can
differ and thus have an effect on the overall utility. This
is illustrated though the MokSAF multi-agent environment
[14], which has been used to explore team dynamics, and
to investigate the roles that different agents can play within
a heterogeneous team of humans and software agents. Fi-
nally, we propose that the advertisement of an agent should
include information about the mode of user interaction, and
suggest that an ontology for interactions should be provided.
Section 2 introduces the MokSAF environment, and describes
the different MokSAF agents. Three different task agents
that have similar capabilities but involve different user in-
teractions are also presented. The experimental scenario
and methodology are described in Section 3. The results
are presented in Section 4 and the implication for agent ad-
vertisements are discussed in Section 5.

2. THE MOKSAF ENVIRONMENT

Emergency response tasks, both military and civilian, are
characterized by environmental uncertainty, stress, and time
criticality of decision making. The decision making process
is distributed across different team members with different
expertise, who are distributed in space and time, and who
act with incomplete information in an uncertain environ-
ment. Hence, high quality computer assistance is critical.
Software agents have emerged as a suitable metaphor for

interacting with computer processes that assist human deci-
sion making. Such software agents can reduce the amount of
interaction between humans and the computer system and
allow the humans to concentrate on other activities, such
as assessing the situation, making decisions, or reacting to
changes in the system [22]. In addition, such agents should
not only retrieve information on request; but they should
actively and intelligently anticipate, adapt and actively seek
ways to support users [1; 19].

However, the benefits of software agents may be undermined
by an increase in complexity and resulting confusion when
interacting with the agent. New skills, such as task decom-
position and delegation, may be required to interact with so-
phisticated software agents or agent communities [19]. Con-
versely, those agents which shield us from complex inter-
actions by quietly looking over our shoulders to anticipate
our actions may actually decrease our situational awareness
and leave us uncertain as to what is being done on our be-
half [9]. It is important that users are able to construct
their own goals and values, then decide, plan and act in
ways to help them achieve goals and values. User auton-
omy can be reduced when users fail to understand what is
happening within a system, when they cannot control the
system, or when the agent and/or system behavior is unpre-
dictable. Deskilling may also occur when the agent makes
decisions for the user rather than just providing advice, or if
the user is prevented from making his/her own decisions [6;
16]. These difficulties can be compounded where multiple
agents and humans are required to work as a team. Under

such conditions, cascading delegation among software agents
and passive assistance may complicate the already challeng-
ing task of cooperating, communicating, and monitoring the
other human team members.

The MokSAF environment is an open architecture multi-
agent environment developed to explore teamwork within
heterogeneous human/agent teams. It consists of a number
of interface agents that present situation information to the
human team members, provide tools to allow the team mem-
bers to investigate a variety of different plans, and to com-
municate and coordinate with other humans through other
interface agents. In addition, a variety of route planning
agents are available within MokSAF that assist the humans
when generating plans. These agents are not contacted di-
rectly, but tasked indirectly through each user’s interface
agent. A Matchmaker middle agent is used by the agents
to register agent capabilities, and locate other agents. The
agents use KQML [5] to communicate with each other, and
with the middle agent.

2.1 MOKSAF Interface Agents

MokSAF interface agents provide a mechanism by which hu-
mans (acting as military commanders) collaborate in plan-
ning a military exercise or mission. A mission plan consists
of one or more platoons of heterogeneous units, an agreed
rendezvous time and location, and a set of routes for each
platoon. The platoons start from different points, and each
route ends at a common rendezvous. Each commander is
responsible for the composition of one of the platoons, and
for determining the route taken by that platoon. The com-
manders determine the individual routes and platoon com-
positions via the MokSAF interface agents and route plan-
ning agents or RPAs. In addition, the interface agents allow
commanders to share routes with each other, and display
the different routes on his/her interface agent (See Figure
1).

MokSAF is loosely based on a virtual battlefield simulation
called MODSAF (MODular Semi-Automated Forces), and
has been implemented within the Retsina multi-agent frame-
work [17]. Although MODSATF is a rich simulation environ-
ment, the training and knowledge requirements are beyond
what can easily be provided to the participants as part of
this research. Figure 1 shows part of a MokSAF interface
agent, including the terrain map and the toolbar.

When MokSAF is invoked, each commander’s interface agent
and several route planning agents register with the Match-
maker. Each interface agent displays a list of other agents
that are registered and that can participate in a mission.
A commander can then use the interface agent to contact
other commanders and other MokSAF agents.

A commander can use the tools supplied by the interface
agent to inspect the characteristics of a variety of different
vehicles and other units, and to form the platoon. There
are a number of factors the commander must consider, such
as limited resources (e.g. fuel and unit types), the local
geography (which may be unsuitable for certain units) and
the speed characteristics of the units themselves. He/she
can also inspect a terrain map, and may have to update the
map to reflect mission data, such as locations that must be
avoided, changes to the destination etc.

To provide effective assistance, a commander’s interface agent
needs to be aware of intangible constraints, which may be
transient and unstructured, such as “when on an ezxercise,

avoid routes that go near schools during a semester, unless
the platoon consists of light vehicles”. These should be en-
coded in a form that can then be shared with other agents.
Some form of feedback should also be provided so that the
commander can verify that the encoding is correct. Intangi-
ble constraints are represented by shaded rectangles drawn
on the terrain map, which represent areas that the platoon
should avoid. Once drawn, these constraints can be shared
with other agents such as the route planning agents, which
can then utilize this knowledge when providing assistance
with future routes.

1) The different RPAs register with the
Matchmaker.

2)An interface agent (Charlie) requests an
agent that has the Plan Route capability.

- 3) The Matchmaker informs Charlie about

.. || |the Naive RPA.

4)Charlie and Naive RPA engage in peer-to-
peer communication.

-
Cooperative

— RPA @m @) -

i

Autonomous
RPA

Interface Agent
(Aipha)

Interfuce Agent
(Charlie)

Interface Agent
(Bravao)

Figure 2: Registering with a Matchmaker.

Each commander can communicate with other comman-
ders through their respective interface agents. These agents
maintain a history of the communications for later reference.
Each sent message is annotated with the name of the issuing
commander. Commanders can elect whether to “broadcast”
their messages to all the other commanders on the team or
whether to send the message to a specific teammate. Mes-
sages consist of textual dialog pertaining to the comman-
der’s plans, negotiations regarding the allocation of units,
recommendations for suggested changes to the rendezvous
location and/or time, and other requests for information.
In addition, commanders may also share their latest routes
with other commanders. These shared routes can then be
superimposed on the individual maps (as illustrated in Fig-
ure 1).

As the commanders formulate their plans, they may request
assistance from a route planning agent or RPA. Three RPAs
have been developed and are described in the following sec-
tion. The mechanism used to register and locate agents is il-

lustrated in Figure 2. As each RPA is created, it registers it’s
capabilities with the Matchmaker (1). For now, all agents
within the MokSAF environment assume the same ontology
to avoid the ontological mismatch problem [2]. Each time
a commander requests assistance with generating a route,
the interface agent contacts the Matchmaker and requests a
list of agents that can provide this service (2). The Match-
maker compares the request with the capabilities that have
been registered by the different RPAs, and returns this list
to the interface agent (3). The interface agent can then di-
rectly contact any of the agents in the returned list (4), and
request assistance with generating a route.

2.2 MOkSAF Route Planning Agents

Three different methods for determining individual routes
have been investigated using three different RPAs: the Naive
RPA, Cooperative RPA and Autonomous RPA. These agents
assist the commanders by helping with one aspect of the
commander’s task; planning a route. Thus the commander
can focus on achieving the correct composition of units at
the rendezvous.

Although several other studies have proposed various route-
planning algorithms [8; 15], the agents described here uti-
lize an off-road route-planning algorithm based on Dijkstra’s
shortest path algorithm [4] to generate or refine minimum
cost routes between two points. Each RPA consults a digital
terrain map that represents several classes of terrain (such
as highways, freeways, forested areas, grassland, waterways
etc.). The cost of traversing each pixel on the map is com-
puted as the weighted sum of several coefficients, where each
coefficient is dependant on the terrain type and two weighted
platoon attributes: speed and fuel economy. The speed at-
tribute is determined by finding the slowest speed of each of
the units within that platoon (i.e. the platoon may travel
no faster than its slowest unit). The fuel-economy attribute
corresponds to the total volume of fuel consumed by the
vehicles within the platoon. As certain units may only tra-
verse certain terrain types, this may also constrain the route
of the final path. Each terrain type has an associated traver-
sal weight; these can be used to favor or discourage routes
from crossing certain terrain. The attribute weights deter-
mine the relevance of the two platoon attributes (speed and
fuel-economy). Thus, by varying these weights, it is possi-
ble to determine the fastest route, the most fuel economic
route, or a route that combines both attributes.

Naive RPA

The Naive RPA acts more as an adviser or critic, than as
an agent that generates routes. When tasked, it requests in-
formation about an existing route, the characteristics of the
platoon, and details of any existing intangible constraints.
The route consists of a series of midpoints between a start
and rendezvous point. The commander is responsible for
plotting these midpoints on the terrain map within his/her
interface agent (Figure 3). The Naive RPA then analyses
this route, and checks it’s validity. A valid route is one that
avoids intangible constraints, and that crosses those terrains
suitable for the platoon (e.g. it checks that a platoon com-
prising of heavy tanks does not attempt to cross a large
river or dense forest). If such violations occur, the route
is annotated to reflect this. In addition, estimates of fuel
consumption and arrival time are calculated. If the platoon
runs out of fuel en-route, the route is also annotated. This

information is then returned to the interface agent, which
presents the annotated map to the commander.

Figure 3: When tasking the Naijve RPA, the interface agent
represents routes drawn by the commander as line segments
between a series of midpoints on the map.

As the Naive RPA provides very simple assistance to the
commanders, it has been used as a baseline from which to
evaluate the performance of the other route planning agents.

Ccooperative RPA

The Cooperative RPA is similar to the Naijve RPA as it
also requests a series of midpoints between a start and ren-
dezvous point, and details about the platoon and intangi-
ble constraints. However, in this case, the midpoints do
not represent a specific route, but represent a wide corridor
which constrains the commander’s desired route (see Figure
4). The Cooperative RPA generates a new route within this
corridor, that maximizes the speed of the platoon and thus
reduces the expected time of arrival of the platoon. This
route takes into account the characteristics of the platoon,
and avoids crossing intangible constraints.

Figure 4: When tasking the Cooperative RPA, the interface
agent represents routes drawn by the commander as corri-
dors across the map. The Cooperative RPA then determines
a route within this corridor.

There is no guarantee that if the platoon follows the route, it
will arrive at the rendezvous point with fuel to spare. Thus,
the agent estimates the fuel costs, and if there is a shortage
of fuel, the route is annotated to reflect this.

Autonomous RPA

The Autonomous RPA differs slightly from the previous two
agents in that it discards the midpoints generated by the
commander. Instead, it determines the optimal route be-
tween the start and rendezvous points, taking into account
the characteristics of the platoon, and any intangible con-
straints that the commander has defined. If estimates of
fuel usage indicate that the platoon will run out of fuel en-
route, then the attribute weights are adjusted until a more
appropriate route is found. If no such route can be gener-
ated, then the fastest route will be annotated to indicate
at what point fuel levels are exhausted, and this annotated
route is sent to the interface agent for presentation to the
commander.

The commander may request alternative routes by modi-
fying the weights associated with each type of terrain. The
commander specifies whether or not a specific type of terrain
should be preferred, and the corresponding weight is then
modified until a new route is generated [15]. Alternatively,
the commander can request a faster or more economic route.

3. EXPERIMENTATION

We conducted three sets of experiments to test the effec-
tiveness of the assistance that the different RPAs and their
interaction modes can provide. Twenty-five three-person
teams were recruited from the University of Pittsburgh and
Carnegie Mellon University communities. Subjects were re-
cruited as intact teams, consisting of friends or acquain-
tances. Teammates needed to communicate with one an-
other to complete their tasks successfully. Within each ex-
periment, only one of the three route planning agents were
made available to the commanders. Thus, the assistance of
each type of RPA can be compared and contrasted. The Au-
tonomous RPA used in this study used static weights, and
thus commanders were unable to request alternative routes
by modifying terrain or attribute weights.

3.1 Experimental Scenario

The problem that the team of commanders has to solve
within an experimental scenario is as follows: each comman-
der must select appropriate vehicles to constitute his/her
platoon so that:

1. The platoon should reach the shared rendezvous point
before a given deadline.

2. The platoon should reach the shared rendezvous point
without running out of fuel.

3. The route taken by each platoon should result in min-
imal possible fuel consumption.

4. The platoon should visit certain mid-points en-route.

5. The route should not violate any physical constraints
(such as crossing densely forested areas with large ve-
hicles).

6. The route should not violate intangible constraints
(where an intangible constraint might specify “avoid
this region as it is a suspected minefield”).

7. The combined platoons should contain a minimum sub-
set of specified units at the rendezvous.

This is a complex constraint optimization problem. Each
vehicle has different characteristics with respect to the types
of terrain it can traverse and moreover, the vehicle’s speed
and fuel consumption depends on the type of terrain being
crossed at a given time interval. In addition, the intangible
constraints must be somehow represented so they can be
taken into consideration during problem solving. Finally,
the problem is of large scale since the planned route can be
off-road i.e. vehicles traverse open spaces, such as desert,
grassy areas, or forests (without the advantage of having
marked roads to constrain the search).

This task has a variety of characteristics, some of which are
easy for humans to deal with and some that are difficult.
What makes the task easy for humans is its visual nature,
namely the fact that routes can be drawn on the map. In
contrast, it is very difficult for humans to calculate path
lengths, vehicle speeds or fuel consumption. These latter
characteristics make the task more amenable to agent-based
team assistance.

Each team member was assigned the role of one of three
commanders (Alpha, Bravo or Charlie). Each commander
was given a different starting point but shared a common
rendezvous point with the others. The commanders were
told to coordinate the number and types of units that they
planned to move from the individual start points to the
rendezvous point. A mission briefing was supplied to the
commanders which listed a minimal subset of vehicles that
should be at the rendezvous point at the end of each session.
In addition, the commanders were instructed to avoid gen-
erating routes that lay on the same path as those generated
by the other commanders, and that they should coordinate
their routes to avoid this. Each commander selected units
for his/her platoon from a list of available units. Comman-
ders were given 15 minutes to determine the composition
of their platoon, and plan a route from a starting point to
the rendezvous point for that platoon. Once a commander
was satisfied with the individual route, this route should be
shared with the other commanders to identify and resolve
any conflicts. Conflicts could arise due to shared routes,
shared resources, or the inability of a commander to reach
the rendezvous point at the specified time.

4. RESULTS

In general, the routes generated with the assistance of the
Naive RPA were found to be longer, and hence platoons con-
sumed more fuel and arrived later at the rendezvous than the
other two RPAs. The route lengths were measured at two
time intervals; when each commander first shared his/her
individual route with the other commanders, and at the end
of the session. Thus the performance of each commander
could be evaluated when the individual routes are first gen-
erated (and hence reflect the commander’s individual goals),
and when the routes (and platoon composition) are refined
in light of the other commander’s routes.

The bar graphs in Figure 5 illustrate the differences in route
lengths when comparing all three RPAs. The routes gen-
erated by the Autonomous RPA or Cooperative RPA were
significantly shorter (p < 0.001) than the Naive RPA. Al-
though there was no significant difference between the routes
generated by either Autonomous RPA or Cooperative RPA,
commanders took longer in generating routes prior to shar-
ing when interacting with the Cooperative RPA than the
users who were assisted by the Autonomous RPA, with more

than a third of them failing to find a valid route before their
team mates initiated route sharing. Despite this, Cooper-
ative RPA users were found to identify shorter paths (p <
0.01) than Autonomous RPA users at time of route sharing
and were found to maintain a slight (though not statistically
significant) advantage by the end of the session (see Figure
5).

Length of Route
(average number of points)

EWhen First
Shared

O At Session End

Cooperative
RPA

Autonomous
RPA
Naive RPA
- - - ‘
0.0 100.0 200.0 300.0
of Messages
. Autonomous | Cooperative

Naive RPA RPA RPA

When First Shared 292.0 160.6 95.3

At Session End 281.8 147.5 127.0

Figure 5: Variation in the length of the generated routes.

The most observable difference between the three route plan-
ning agents was not in the quality of the routes generated,
but rather in the substantially greater time that it took users
of the Naive RPA to construct a route. The coordinated
routes at the end of each experiment were uniformly better
for each of the commanders that interacted with the Au-
tonomous RPA or the Collaborative RPA, and also for the
team as a whole. Despite this clear superiority, subjects
who used the Autonomous RPA frequently expressed frus-
tration with the indirection required to coerce the behavior
of the agent by adding additional intangible constraints to
the map, and then requesting new routes. Several subjects
remarked that they wished they could “just draw the route
by hand”.

With the Naive RPA, subject complaints focused more closely
on the minutiae of interaction. In its current form, the
user “draws” a route within the interface agent. Subjects
commented that this process was both tedious and error
prone. When commanders constructed routes, low fidelity
routes frequently violated terrain constraints (such as pass-
ing through buildings), and failed to follow optimal paths
such as curves in roads. Although the inclusion of additional
points into the route was found to resolve this problem, the
process was time consuming. Hence, subjects found that
they spent more time refining their individual routes, as op-
posed to coordinating with other team members to improve
the overall team task.

Subjects who used the Cooperative RPA seemed satisfied
with their modes of interaction, and yet experienced some

difficulty in rapidly constructing valid routes. This difficulty
was particularly acute for the Alpha commanders. This sug-
gests that neither the Cooperative RPA or Autonomous RPA
provide a panacea for route planning, but that each has it’s
own advantages and disadvantages, depending on the type
of route required.

5. DISCUSSION

We have developed a complex team planning environment in
which users interact with various interface agents, and can
task other agents (in this case, one of three route planning
agents) to assist them in achieving their goals. Although
three very different RPAs were developed, they all had sim-
ilar capabilities, each requested the same input parameters,
and returned the same type of output parameters. How-
ever, each required different types of interaction with the
user. The experiments demonstrated that of the three, the
Cooperative RPA and Autonomous RPA both generated su-
perior routes. In addition, although the routes generated
Cooperative RPA were slightly better, users could generate
routes quicker when using the Autonomous RPA.

Although a matchmaker was used in the above experiments,
in each case only a single type of RPA was registered. In
our current implementation, the advertisements of the three
route planning agents can only be differentiated through id-
iosyncratic labels within the service parameters; i.e. there
is a service parameter which has one of three enumerated
types: {naive, autonomous, cooperative}. This parameter
is also used by the interface agent to determine the type of
interaction to present to the user. Whist this has provided a
short term ad-hoc solution to the problem of differentiating
between the RPAs, it is clearly not ideal. Such an approach
might be acceptable within a closed world agent community.
However, these labels are meaningless within an open agent
community.

Some description of the user interaction is necessary not
only to differentiate the different agents, but also to define
the type of interaction in which the interface agent should
engage the user. One possibility would be to describe the
necessary mode of interaction that an interface agent should
present as a finite state machine. However, such a descrip-
tion would be impractical for all but the simplest agents,
and the formalism would be very difficult to both define
and prove.

We are currently exploring the feasibility of proposing a new
ontology of user interactions. Such an ontology might con-
sist of a taxonomy of interaction types, ranging from higher
level abstract interactions to lower level atomic interface
widgets. Thus, future interface agents would be able to lo-
cate task agents, and from the advertisement, construct new
interface modes based on this new ontology which could then
be presented to the user.

6. ACKNOWLEDGEMENTS

This research was supported by an Office of Naval Research
Grant N-00014-96-1-1222. Special thanks go to C. Domash-
nev & M. van Velsen for their assistance in the development
of this software.

7. ADDITIONAL AUTHORS

Additional authors: Terri L. Lenox (email: t11@lis.pitt.edu)
and Susan Hahn (email: hahns@lis.pitt.edu).

8.
1]

[2

—_—

3]

[4

—_

(5]

[6]

[7]

8

—_

[9]
[10]

[11]

(12]

(23]

(4]

[15]

REFERENCES

J. Bradshaw. Introduction. In J. Bradshaw, editor,
Software Agents, pages 3—48. AAAI Press:Menlo Park,
CA, 1997.

C. Collet, M. Huhns, and W. Shen. Resource Integra-
tion using a large knowledge base in Carnot. Computer,
24(12):55-62, 1991. December.

K. Decker, A. Pannu, K. Sycara, and M. Williamson.
Designing Behaviors for Information Agents. In Pro-
ceedings of the First International Conference on Au-
tonomous Agents (Agents-97), pages 404-412. ACM
Press: New York, 1997.

E. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269-318, 1959.

T. Finin, R. Fritzson, D. McKay, and R. McEntire.
KQML as an agent communication language. In Pro-
ceedings of the third Conference on Information and
Knowledge Management, CIKM94. ACM Press: New
York, 1994.

B. Friedman and H. Nissenbaum. Software agents and
user autonomy. In Proceedings of the First International
Conference on Autonomous Agents (Agents ’97), pages
466-469. ACM Press: New York, 1997.

M. Genesereth and S. Katchpel. Software Agents. Com-
munications of the ACM, 37(7):48-53, 1994.

K. Haigh, J. Shewchuk, and M. Veloso. Exploiting Do-
main Geometry in Analogical Route Planning. Journal
of Experimental and Theoretical AI 9:509-541, 1997.

M. Lewis. Designing for human-agent interaction. Al
Magazine, pages 67-78, 1998. Summer.

P. Maes. Agents that reduce work and information over-
load. Communications of the ACM, 37(7):31-40, 1994.

D. Maulsby and I. Witten. Teaching Agents to
Learn: From User Study to Implementation. Computer,
30(11):36-44, 1997.

M. Paolucci, D. Kalp, A. S. Pannu, O. Shehory, and
K. Sycara. A planning component for retsina agents.
In Lecture Notes in Artificial Intelligence, Intelligent
Agents VI, 1999.

T. Payne, P. Edwards, and C. L. Green. Experience
with rule induction and k-nearest neighbour methods
for interface agents that learn. JEEE Transactions on
Knowledge and Data Engineering, 9(2):329-335, March
1997.

T. Payne, T. Lenox, S. Hahn, M. Lewis, and K. Sycara.
Agent-Based Team Aiding in a Time Critical Task. In
Proceedings of the Thirty-Third Hawai’i International
Conference on System Sciences (HICSS33), 2000.

S. Rogers, C.-N. Fiechter, and P. Langley. An Adap-
tive Interactive Agent for Route Advice. In Proceedings
of the Third International Conference on Autonomous
Agents (Agents-99), pages 198-205. ACM Press: New
York, 1999.

[16]

[17]

18]

[19]

[20]

21]

[22]

N. B. Sarter and D. Woods. From tool to agent:
the evolution of (cockpit) automation and its impact
on human-machine coordination. In Proceedings of the
Human Factors and Ergonomics Society 39th Annual
Meeting, pages 79-83, 1995.

K. Sycara, K. Decker, A. S. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Ezpert,
11(6):36—46, December 1996.

K. Sycara, K. Decker, and M. Williamson. Middle-
agents for the internet. In Proceedings of IJCAI-97,
January 1997.

K. Sycara, K. Decker, and D. Zeng. Intelligent Agents
in Portfolio Management. In N. Jennings and M. Wool-
ridge, editors, Agent Technology: Foundations, Appli-
cations, and Markets, pages 267-283. Springer, 1998.
Chapter 14.

K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic
service matchmaking among agents in open information
environments. SIGMOD Record (ACM Special Interests
Group on Management of Data), 28(1):47-53, March
1999.

M. Wellman. A Market-Oriented Programming Envi-
ronment and its Application to Distributed Multicom-
modity flow problems. Journal of Artificial Intelligence
Research, 1:1-23, 1993.

W. Zachary, J.-C. Le Mentec, and J. Ryder. Interface
agents in complex systems. In C. Ntuen and E. Parks,
editors, Human Interaction with Complex Systems:
Conceptual Principles and Design Practice, pages 267—
283. Kluwer Academic Publishers, 1996. Chapter 14.

