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Abstract

Cooperation among autonomous agents has been discussed in the DAI commu-
nity for several years. Papers about cooperation [6,45], negotiation [33], distributed
planning [5], and coalition formation [28,48], have provided a variety of approaches
and several algorithms and solutions to situations wherein cooperation is possible.
However, the case of cooperation in large-scale multi-agent systems (MAS) has not
been thoroughly examined. Therefore, in this paper we present a framework for co-
operative goal-satisfaction in large-scale environments focusing on a low complexity
physics-oriented approach. The multi-agent systems with which we deal are mod-
eled by a physics-oriented model. According to the model, MAS inherit physical
properties, and therefore the evolution of the computational systems is similar to
the evolution of physical systems. To enable implementation of the model, we pro-
vide a detailed algorithm to be used by a single agent within the system. The model
and the algorithm are appropriate for large-scale, dynamic, Distributed Problem
Solver systems, in which agents try to increase the benefits of the whole system.
The complexity is very low, and in some specific cases it is proved to be optimal.
The analysis and assessment of the algorithm are performed via the well-known
behavior and properties of the modeling physical system.
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1 Introduction

Multi-agent systems (MAS) have been developed in recent years to address
a variety of computational problems of a highly distributed nature. Although
a large body of this research is theoretical, one may find an increasing num-
ber of simulated and implemented systems of agents (for example [55]). Usu-
ally, either simulations or implementations consist of merely dozens of agents.
However, during the course of their development, many researchers have re-
alized that, in order to provide solutions to real-world problems, MAS should
scale up. Such a scale-up must allow hundreds and thousands of agents to be
involved in the execution of highly distributed, dynamically changing large
numbers of tasks. Several attempts have been made to allow scalability of this
type, and theoretical models which have been developed may be applicable
(e.g. [60]), however this is yet to be investigated.

The problems arising in large scale MAS are myriad, and due to their sig-
nificance should be thoroughly studied. In this paper we cannot address all,
hence we concentrate on investigating one facet of this diversity — the issue
of task allocation and execution within large-scale cooperative MAS'. More
specifically, we consider cases in which cooperative autonomous agents allo-
cate themselves to tasks. We provide a model that allows for the dynamic
agent-task allocation and is appropriate for large-scale MAS. To support our
theoretical claims, we provide a simulation of a dynamic agent system that
follows our suggested mechanisms and consists of thousands of agents and
tasks. To our best knowledge, up to date, this is the largest simulation of a
task allocation and execution in a dynamic, open MAS. The model we pro-
pose provides a solution to problems which were not addressed previously in
MAS. and may be the basis for future solutions for a larger class of problem
domains.

Regardless of their size, MAS are designed to satisfy goals, usually by executing
tasks to which these goals may be decomposed. To allow for goal-satisfaction in
dynamic systems of multiple agents and goals and, correspondingly, multiple
tasks, MAS should be provided with a mechanism for task-agent allocation.
Task-allocation methods in DAI (e.g., [14,51,54]) usually require coordination
and communication [15,25]. In very large agent-communities, direct rapid con-

*This material is based upon work supported by NSF grant No. IRI-9423967,
ARPA /Rome Labs contract F30602-93-C-0241 and the Army Research Lab contract
No. DAALO0197K0135. Preliminary results of this research appear in the proceedings
of ECAI-96 and ATAL-98.

! Cooperative MAS are frequently referred to as a Distributed Problem Solvers
(DPS) agent systems. In DPS agent systems as in cooperative MAS, agents attempt
to increase the common outcome of the system. A variety of algorithms for agent-
cooperation as a DPS system have been presented e.g., in [2,13,37].



nection between all of the agents is usually prohibited, as such connection may
clog the communication network ?. Negotiation processes for establishing co-
operation are rather complex. Moreover, coordination-related computations
which are based on on-line, bilateral communication among all of the agents
may be too complex as well. Therefore, complexities of cooperation methods
in MAS become unbearable when the number of agents increases.

To resolve this problem, we apply methods from classical mechanics to model
large-scale MAS [50,52]. We adopt methods used by physicists to study in-
teractions among multiple particles. The physics-oriented methods are used
to construct a coordinated task-allocation algorithm for cooperative goal-
satisfaction. This algorithm is to be used by the single agent within the system,
and enable coordination without negotiation and with limited communica-
tion [17]. There are many differences between particles and computational
systems. Nevertheless, we show that the physics-oriented approach enables
low-complexity coordinated task-allocation and execution in very large MAS.

The physics methods, although they may be viewed as restricted to physical
domains, allow for a model that is more expressive than other models, e.g., the
tileworld model [41], as we discuss in section 8. In addition, unlike most task
allocation methods for multiple agents, it consists of an inherent interleav-
ing planning and execution®. And, as stated previously, while several models
prove to work successfully for systems that consist of few agents (usually less
than 20), e.g. [16,17], their computational complexity would prohibit scaling
up. Even when the model is based on market equilibrium, as in [39], simula-
tions are limited to less than 20 agents. In contrast, we present a theoretical
justification to the ability of our model to scale up. Moreover, we further sup-
port these claims by simulations results that consist of thousands of agents
and tasks. These results show no increase in computation and communication
per task and per agent when the size of the system grows.

Note that since we use a physics metaphor, our model can more easily be ap-
plied to problems of physical nature (e.g., transportation, as we demonstrate
later). We believe that applying our model to other problem domains is possi-
ble as well. We illustrate this possibility by example (section 5.3), however do
not prove it in this paper. One may be concerned that using classical mechan-
ics requires continuity of progression of the agents towards goal-satisfaction.
This may be simpler to model, however continuity is not a requirement. Ap-

2For instance, assume that for each task each agent communicates with all other
agents. If n is the number of agents, even O(n) communication operations per agent,
which total to O(n?) in the network are most likely overwhelming when the system
consists of thousands of agents.

3 Note that the weak commitment algorithm [62] does allow for interleaving plan-
ning and execution, but requires that inconsistent plans will be abandoned, then
starting from scratch.



propriate modeling of the goals in continuous or semi-continuous terms will
suffice. We have performed such modeling in the simulations presented later in
this paper. Cases where continuity modelling is inadequate will be discussed
in future work. A simple example where our model can be applied is a system
in which agents have to block holes of various sizes in a planar surface (which
has similarities to the tileworld [41]). Each hole to be blocked is a goal, and
the filling for blocking holes is the agents’ resource. The purpose of the system
is to block as much hole-area as possible. Some holes cannot be blocked by a
single agent and thus cooperation is necessary .

1.1 Definitions, assumptions and notations

We describe the systems with which we deal as a set of agents N and a set of
goals G, both possibly dynamically changing, located in a goal-space G. An m-
dimensional displacement vector is a vector D =< dy,---.d,, >. The distance
between D', D? is defined by r'? = /3 ;(d? — d})?. Each agent A € N and a
each goal g € G have a displacement vector D which is their location in the
m-dimensional goal-space G. Since in some domains goals do not have physi-
cal properties, the components of a displacement vector D are not necessarily
physical distances ® . We refer to such distances as virtual and denote as virtual
the goal-space. We assume that the agents with which we deal have the ability
to perceive the virtual displacement in the goal-space, and can perceive the
properties of other adjacent agents and goals. This may be done by sensors ©
integrated into the agents. We also assume that each agent knows about the
types of resources that other agents may have, but may be uncertain of the
particular resource-holdings of any other individual. These two assumptions
are necessary since agents who progress within the goal-space need some infor-
mation regarding properties of other agents and goals. We assume that each
agent has a performance capability that can be measured by standard mea-
surement units, which enable quantification of the agents’ task execution. In
addition, we assume that there is a scaling method which is used to represent
the displacement of the agents in the goal-space and to evaluate the mutual
distances between goals and agents within this space. This assumption is nec-
essary since virtual distances (or physical distances) are a significant factor
in the model we present. We assume that goal-satisfaction can be achieved
progressively. That is, a goal may be partially satisfied at one instant, and its
remaining non-satisfied part may be completed at another point in time.

4 More detailed examples will be presented in section 5.

® For instance, one can view the number of incorrect letters in a misspelled word
as its distance from its correct form.

6 The interpretation of sensors is extended in this paper to any information recep-
tion device.



1.2 Physics notations and background

To present our model, we review several concepts and notations from physics 7.

We start by listing general mathematical notations which we use. A vector is
a physical property which has both a direction and a magnitude. Any vector
x will be denoted by #. Physical analysis consists of derivation of functions
with respect to time. The first order time-derivative of x is denoted by & and
the second order time-derivative is denoted by Z. The gradient operation is
denoted by V. This operator is a vector-derivative and (in Cartesian coordi-
nates) is given by

> ag. o0, 0,

where j denotes a unit vector in the direction of coordinate j. We continue
by listing physical concepts. The displacement of a particle ¢ is denoted by
r;. Usually it is referred to as r;, the vector of displacement, which is the
(24, i, z;) coordinates of the particle. v; denotes the velocity, which is the rate
of change of displacement, and a; denotes the acceleration, which is the rate
of change of velocity. The kinetic energy of a particle ¢ is represented by k;,
and the potential is represented by V. The potential is a spatial function and
therefore is sometimes called a field of potential or a potential-well (the latter
refers to a specific shape of a potential function). Forces can be derived from
the potential. Each particle :’s mass is denoted by m;, its displacement is
denoted by the displacement vector 7;, its momentum is denoted by p; and
the force that acts on it is denoted by E.

(Classical mechanics provides a formal method for calculating the evolution of
the displacement and the momentum of particles. Given the initial displace-
ment 75(0) and momentum p;(0) of a particle 7, its displacement r;(¢) and
momentum p;(t), at any other time ¢, can be derived via the solution of the
equations of motion. These equations are first and second order differential
equations. The boundary conditions (that is, the arbitrary constants) of the
exact solutions of the equations are the initial displacement and momentum
of the particle. For a particle 7, the equations of motion are:

" The notations and concepts we present here are described in many introductory
physics books, e.g., [34].



The nature of the motion of a particle depends on the field of potential in
which it moves. This dependency is given by:

—

Fy = —m;V,. V(7) (4)
For some types of potential V', the solutions of the equations, either exact or
approximated, are well known or can easily be derived. In our model we employ
only such types of potential functions. By relying on the known solutions from
physics we may predict the behavior of the agents who follow our model.
Simulations (see section 7) are performed to further support the validity of
the model.

1.8 Adapting physics to DAI

DAI

Physics

identifying the environments where
physics-oriented models are
appropriate; matching between particle

properties and agents/goals properties

locating particle models and

their properties

selecting the states of matter that can
be used for modeling automated agent-

systems

identifying states of matter and

the particle properties within

developing goal-satisfaction
algorithms; adjusting the agent system
to the physics system for the

validity of the algorithm

using mathematical formulation
to predict and describe the
properties and evolution of the

selected state of matter

analysis of the complexity and

properties of the algorithms

theoretical and simulation-based
analysis of physical

particle systems’ behavior

Fig. 1. Steps in applying a physics-oriented model to a Distributed Al, DPS problem
domain.

As stated previously, we consider large sets of agents and goals. Each agent has
a goal-satisfaction capability and should advance toward satisfying goals. We
use a physics-oriented model that consists of particles to represent agents and
goals and to develop a distributed cooperative goal-satisfaction mechanism.



Automated Agents Physical Model

community of agents satisfying goals | non-ionic liquid system

agent dynamic particle
goal static particle
agent’s capability particle’s mass

agent’s location in agent-goal space | location of particle

goal satisfaction static-dynamic collision

algorithm for goals allocation formal method for calculating

the evolution of displacement

Fig. 2. The match between the physics model components and the large-scale auto-
mated agents’ environments.

The first step in applying the physics model to DAI is the match between par-
ticles and their properties, agents and their capabilities, and goals and their
properties (see Figure 1). The next step is to identify the most appropriate
state of matter for modeling an ensemble of agents and goals. The mathemat-
ical formulation that is used by physicists, either to describe or to predict the
properties and evolution of particles in these states of matter, will serve as
the basis for the development of algorithms for the agents’ behavior. However,
several modifications of the physics-oriented model are necessary to provide
an appropriate algorithm for automated agents. In the rest of this paper we
shall elaborate on these issues.

The general idea of our model is that entities of the MAS are modeled by par-
ticles. Agents and goals are modeled by dynamic particles and static particles,
respectively. The properties of a particle 7, i.e., its mass m;, its displacement
and momentum vectors r; and p;, its potential V; and its kinetic energy k; are
abstractions of the properties of the modeled agents and goals as described in
Figure 2. The agent’s goal-satisfaction capability is represented by the mass
(and the potential energy) of its modeling particle. The mass of a static par-
ticle represents the size of the goal it models. The displacement of a particle
in the physical space models the displacement of the agent in the goal-space.

We model goal-satisfaction by a collision of dynamic particles (that model
agents) with static particles (that model goals). However, the properties of
particle collisions are different from the properties of goal-satisfaction and
several adjustments are needed in order to provide the agents with efficient
algorithms. These modifications are described in detail in this paper.



2 The physics-agent-system (PAS) model

The model we present entails treating agents, goals and obstacles as if they
were particles. That is, each agent will have an initial state and its equations
of motion. Note that an agent’s equations of motion do not necessarily entail
real physical motion; they may represent the progress towards the fulfillment
of goals. The potential field in which an agent acts represents the goals, the
obstacles and the other agents in the environment. Subject to the potential
field, an agent will solve the equations of motion and, according to the results,
progress towards the solution of goals and either cooperate or avoid conflicts
with other agents. Note that cooperation and conflict-avoidance are emergent
properties of our physics-oriented model.

2.1 State of matter for PAS

In order to construct an appropriate potential field to represent the multi-
agent environment, we shall examine the properties of physical states and
locate the most appropriate one. An appropriate physical state must consist
of a potential that, when adapted to the agent-model, will lead the agents
to beneficial goal allocation and satisfaction. In the solid state particles are
localized, i.e., they are bound strongly to their initial position; this prevents
evolution of the system. Thus, when applied to MAS, dynamic goal satisfaction
by the agents is prevented. In the gas state, interactions between particles are
very weak. In such a case, the system can evolve, but the lack of intensive
interaction means that cooperation and conflicts will rarely occur. This may
be an interesting issue for future research, but presently we are interested in
cases where there are both cooperation and conflict among the agents. The
liquid state lies between these two states. As opposed to the solid state, a
liquid evolves more rapidly. However, unlike the gas state, a liquid is dense
enough to cause interaction among its particles®. Therefore, the liquid model
is preferred as a more appropriate model for the MAS under consideration.

Among the liquids, there are two main types: ionic and non-ionic liquids.
[onic liquids are such that the mutual potential among each pair of particles
is a Culombic potential ?. This potential is proportional to 1/r, where r is the
distance between the particles. Such a potential diminishes slowly with respect
to r, and therefore entails a long-range interaction among the particles. This
type of interaction means that all of the particles in the system should be
considered when calculating the interactions and the evolution of the state of

8 Note that interactions occur among gas particles too, however the rate of inter-
actions is extremely smaller than this rate in liquids.
9 Culombic potential is the potential that results from electric charges.
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Fig. 3. A typical one-dimensional Lennard-Jones potential-well

each single particle in the system. Typically used to describe the potential of
a particle ¢ in a non-ionic liquid, corresponding to its distance r;; from particle
7 is the Lennard-Jones potential:

Vs, = (1~ o 5

where ¢ is a mass-dependent coefficient that scales the potential. Because of
the shape of the curve of function 5 (see figure 3), the potential is sometimes
called a “potential-well”. Such a potential function entails a potential that
vanishes after a short distance r, due to the high powers of r that are present.
The short distance here implies that the interactions between the particles in
the system are limited to short distances. That is, a particle interacts only
with particles in a limited neighbourhood, and only these are considered for
the calculations of the evolution in the state of each particle. The properties
of the non-ionic liquid, and in particular the short-range potential, make it
appropriate for use as a model for the large-scale MAS with which we deal.
In such systems, communication with all of the agents!° and computations of
all possible interactions may be too complex. Note that this implies that the
information accessible to an agent regarding its environment is incomplete.

2.2 Matching physical properties to agents and goals

Physical particles may have different masses. As a result of the different
masses, particles subject to the same field of potential will have different mo-
mentum and kinetic energy. This is because the momentum is expressed by
p = mv and the kinetic energy is expressed by k = muv?/2, and both are
products of the mass. In the PAS model, the agent’s capability to satisfy

19 The communication required for each agent is O(#agents x #tasks), which is not
considered large. However, in large systems this will most probably be overwhelming
(e.g., 1000 agents and 1000 tasks, as we have in our simulation).



goals is represented by the potential energy of the particle that models it.
Particles with greater potential energy model agents that can satisfy larger
or more difficult goals and sub-goals. This means that a greater mass of a
dynamic particle (that models an agent), other properties remaining constant
(and thus causing a greater potential energy), entails a larger capability of
goal-satisfaction by the agent. The mass of a fixed particle (which models a
goal or an obstacle) represents the size of the goal or the obstacle. This means
that in order to satisfy a greater goal, which is modeled by a static particle
with a greater mass, additional efforts are necessary on the part of the agents.

The displacement vector of a particle r; models the displacement of the agent
in the goal-space. This space can be either physical or abstract, since goals
are not necessarily (and are usually not) physical.

Example 2.1 An example of an abstract goal-space is the space of queries
in a multi-database domain. In such a domain, each database is represented
by an agent, and the goals that the agents must fulfill are the answering of
queries that were directed to their databases. The displacement of an agent
in the query-space represents the logical proximity of the information stored
in its database, either to the information stored in other databases or to the
information necessary for answering a query. Virtual distances in the multi-
database domain can be calculated if a pre-defined logical-proximity of a key-
words scale is given! . Note that modeling such a space may be rather difficult
and require many adjustments.

According to the virtual displacement of an agent, one can calculate its dis-
tances from other agents, goals and obstacles. These distances are then used
to calculate the potential. The momentum vector of particle 7, p;, represents
its physical velocity and is used for the calculation of the kinetic energy. In
the PAS model, the velocity of a dynamic particle (which models an agent)
represents the rate of movement towards the satisfaction of a goal or part of
a goal.

Example 2.2 [In the ezample in section 3, a system wherein agents have to
block holes in a planar surface is presented. The purpose of the system is to
block as much hole-area as possible. Some holes cannot be blocked by a single
agent. According to PAS, each hole in this system is modeled by a particle,
which is represented by a potential-well, and the size of the hole is represented
by its mass. A greater mass entails a greater hole, and due to the physical
nature of the potential-well, particles surrounding a well with a greater mass
will experience stronger attraction to the well. This property of the wells is
appropriate for our purposes, because it causes a natural attraction to the holes
which is proportional to the size of the holes. The agents in this system are also

11 Such proximity scales can be found in various information retrieval systems, e.g.,
in [46].
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modeled by particles, represented by potential-wells. However, as opposed to
the holes which are fized in their displacements, the agents’ potential-wells are
free to move. The agents have masses of various magnitudes which represent
differences in their abilities to block holes.

2.3  Virtual motion towards goal-satisfaction

In the physical world, the motion of particles is caused by the mutual attrac-
tion (and rejection) between them. In the agents’ system, the agents calculate
the attraction and move according to the results of these calculations. Since,
in the physical world, motion is continuous, the agents’ calculations, which
result from our PAS model, must resemble this continuity. This can be done
by performing the calculations repeatedly with a high frequency.

According to the model, the agents shall calculate the potential, subject to the
surrounding goals and agents. This potential is affected by the virtual distance
from these neighboring entities. Due to the large size of the systems under con-
sideration, each modeling particle has only a limited effective interaction with
the surrounding particles. Consequently, the modeled agents have limited in-
formation about the goal-domain. A particle can only have local reactions to
the potential field and, in practice, only its near neighbors will affect its poten-
tial. The range of interaction among modeling particles has a significant effect
on the complexity of the calculations that the modeled agents perform '*. We
denote the radius of interaction among the particles by r;. This radius may
sometimes be determined by sensors integrated into the agents, or shall be
determined by the designers of the agents. Assuming a random distribution
of the particles within the range of the whole system (however not necessarily
uniform), the computational complexity that the modeled agents experience
grows linearly with respect to the size of the area included within the range
of interaction. That is, it increases linearly with respect to r#, which is dis-
advantageous. The increment in the complexity, when r; is increased results
from the corresponding increment in the number of agents and goals within
the interaction range. The advantage of the increment of r; is that within the
range of r;, there will be more interacting entities, which may increase the
goal-satisfaction and its efficiency. However, due to the sharp reduction in the
magnitude of the potential function beyond a short distance from the center
of the potential-well, the magnitude of the derived forces is small and the
interaction is negligible and diminishes. Simulations that were performed by
physicists have shown that when these long-distance interactions are neglected,
the results of the simulations still agree with theoretical statistical-mechanics
and thermodynamics [42,57]. Therefore, it is common to cut off the range of

12 The complexity is analyzed in detail in section 4.
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interaction by cutting off the potential function after it diminishes to 1% to
10% of its maximal value. Our model follows this cut-off strategy. To illustrate
this cutoff within the physical system, we bring forth the following example:

Example 2.3 Suppose that the potential function of a particle s formulated
by V = 4e(1/r® — 1/r'?) (a Lennard-Jones potential). The mazimal absolute
value of this function can be calculated by setting its derivative to zero. The
result of this is the distance wherein the potential function is maximal, that is,
Faw = 216 = 1.112. Substituting 1,4, tnto the potential function, we derive
the mazimal absolute value of the potential, which s V = e. Stmple calculations
show that the reduction of V to 10% of the mazimal value will cause a cut-off
distance reyorr = 1.842 and reduction to 1% will cause reuops = 2.714. Both
cut-off distances are not significantly far from the particle under investigation.
Such cut-off distances are adopted for our MAS.

The reaction of a particle to the field of potential will yield a change in its
coordinates and energies. The change in the state of the particle is a result
of the influence of the potential (since F = —mﬁV, i.e., the acting force, is
derived from the potential). In our model, each agent will calculate the effect
of the potential field upon itself by solving a set of differential equations.
According to the results of these calculations, it will move to a new state in
the goal-domain, as we describe in detail in the formal protocol in section 2.7.
Real motion is not necessary here. In a case of an abstract space, moving to
a new state means updating the state parameters. For instant, if a state is
represented by a vector of boolean values (as we illustrate in section 5.3), such
a state change means a change in some of the boolean values.

The equations that an agent must solve during its virtual motion towards goals
are the equations of motion of a particle subject to a potential field. Solving
these equations may be complicated, but an approximation by numerical in-
tegration (e.g., leap-frog [4]) and Verlet tables (as in [22]) can simplify these
calculations while providing results that are, for practical purposes, of the same
quality as the accurate results. This numerical integration, which is done with
respect to time, must be iterated frequently (as explained previously in this
section) and performed with small time-steps d¢t which will be used as the
differential for the numerical integration.

2.4 Setting the size of dt

The size of the time differential dt depends on the properties of the system
with which we deal. This dependency is due to the effect that d¢ has on the
number of iterations that must be performed until an agent reaches a goal.
A small dt results in a more accurate numerical integration, but the change

12



in the displacement of the modeling particle (and hence of the agent that it
models) at each iteration will be very small. This implies that a reduction
in the size of dt increases the number of iterations necessary for an agent to
reach a goal. This increases the overall time of the goal-satisfaction procedure.
A large dt reduces the accuracy of the numerical integration, but reduces the
number of iterations necessary for reaching a goal as well. However, large dt
has some deficiencies: as dt grows larger, the progress towards a goal at each
time-step becomes greater. This leads to situations where a single time-step
dt may lead to a large single displacement-translation. Such a translation may
move an agent far from the goal towards which it was moving. Moreover, such
a behavior contradicts the continuous physical properties that are necessary
for the success of our model.

From the deficiencies of either large dt or small dt we conclude that d¢ should
lie somewhere in between. The time-step dt shall be chosen subject to the
properties of a specific system. We will use rg as our unit of measure. Relying
on the experience gathered in physics simulations [42], a typical particle in the
model will pass a distance of rg in about ten time-steps dt. This requirement
implies that the average velocity v of a particle (at its initial displacement)
directly affects dt by the relation dt = ro/v. Therefore, the initial average
distance between agents and goals will enable the preliminary setting of d¢, as
we prove later by simulation results.

In the physics model, dt serves mainly as the differential for the numerical
integration and represents real movement-time of the particles. In the PAS
model, dt serves as a time unit where, in each time step d¢, agents calculate
their parameters and progress according to these calculations. dt in the goal-
agent system is different from dt of the corresponding particle system, but
both are related to one another by a 1-1 onto function, which is determined
by the properties of the corresponding models. To determine dt in the goal-
agent system, the computation time and the goal-satisfaction time should be
considered. dt, which is originally calculated according to the physical prop-
erties of the system, will be dt > max(computation-time, movement-time) in
cases where agents can satisfy goals and perform calculations in parallel, and
dt > computation-time + movement-time in cases where agents perform goals
and calculations separately.

2.5 Collision and goal-satisfaction

The dynamics of the physical system which models the computational system
leads to collisions between particles. In a system that consists of both static
and dynamic particles, two types of collisions are possible. One type is a
collision between two dynamic particles, which we denote by DDC. The other

13



type of collision is between dynamic and static particles, and we denote it by

SDC.

2.5.1  Dynamic-Dynamic Collision (DDC)

In our model, the DDC represents the interaction between two agents®. We
would like the agent-agent interaction to prevent situations in which agents
collide, either in the physical sense of the word (when relevant) or in its ab-
stract sense !*. This can be achieved by a mutual repulsion among the particles
that model the agents. As a result of the repulsion, agents do not have to ne-
gotiate over goals, since the decision on which agents shall perform a specific
goal will emerge from the repulsion '®. This repulsion model is especially nec-
essary in the case of two modeled agents that have a large goal-satisfaction
capability. The reason for this necessity is that, in cases where two such agents
or more reach a goal, we would prefer the goal-satisfaction to be performed
by only one of them. In such cases, one agent can usually perform the goal by
itself, and goal-satisfaction by more than one agent will be a waste of efforts.
However, a DDC between particles that model agents with a small '® goal-
satisfaction capability shall cause a negligibly small repulsion. This is because
we would like such agents to cooperate on the goal-satisfaction.

To satisfy the repulsion requirements, dynamic particles that model agents
shall have a potential that consists of a dominant repulsive component. The
potential, including its repulsive component, must be proportional to the mass
of the particle, since the mass of the particle models the goal-satisfaction
capability of the agent. Thus, a greater mass of the modeling particle models
a greater goal-satisfaction capability of the modeled agent and, as required, it
also leads to a stronger repulsion. In order to satisfy the requirement of strong
repulsion, the Lennard-Jones potential of a dynamic particle that models an
agent shall be modified from the classical LJ potential . Such a modification

13 This does not prohibit using a similar model where agent-task interactions are
modeled by dynamic-dynamic collisions as well. We do not pursue this direction
here.

14 Agents may collide when they attempt to consume the same resources or to
perform the same goal, thus interfering with one another and possibly reducing ef-
fectiveness or even prohibiting task execution. For instance, if the agents are robots,
then a collision may damage the robots, and therefore should be prevented. In more
abstract cases overlapping locations of agents in the model may be allowed.

15 Note that this takes into account cases where agents do not perform goals equally
well, as also shown in section 7.

16 When we speak of small and large goal-satisfaction capabilities, we do so with
respect to the size of the goals towards which the agents are moving.

17Note that in molecular dynamics (MD) research, even more significant modifi-
cations are applied (e.g., completely omitting parts of the potential function), yet
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will be included in our model and will be done by multiplying the repulsive
component of the potential function by a pre-defined factor PDF. As a result
of this multiplication, the magnitude of the repulsive component will increase
as required. For practical use, we should set the magnitude of the PDF so
that it will change the repulsive component by an order of magnitude with
respect to the attractive component of the potential. The modification of the
LJ potential affects the interaction between dynamic and static particles. In
order to maintain the magnitude of attraction in this case, the attractive
component of the L.J potential of a static particle must be multiplied by the
same PDF.

2.5.2  Static-Dynamic Collision (SDC)

The SDC represents interaction between an agent and a goal. In such inter-
actions we would like the static particle that models the goal to attract the
dynamic particle that models the agent, in order to lead to goal-satisfaction.
The physical motion of dynamic particles towards static particles is continu-
ous, and the attraction into the potential-well of a static particle is a gradual
yet continuous process. Therefore, there is no specific point from which the
particle starts the collision. However, our model requires such a point to let
the agents decide upon the appropriate actions when reaching a goal, in order
to satisfy it. Hence, we must decide artificially upon such a point. Adopting
physical concepts, we may use the notion of typical radius for this purpose. A
typical radius of a particle is usually (especially in MD) taken to be the dis-
tance from its center to the point wherein the force derived from the potential
is equal to zero. That is, F'=—mVV = 0. We denote this typical radius by o,
and a simple calculation — via the derivation of the potential function — yields
o = 4ev/2. An SDC occurs when a dynamic particle is in the vicinity of a static
particle. Vicinity here means that the distance between them is a few typical
radii. Therefore, we arbitrarily decide upon a distance of 30 as the point from
which the collision starts'® and denote it by 7. In two and three dimensions,
this point becomes a circle and a sphere of radius rg, respectively. In abstract
and multi-dimensional spaces, the interpretation of rg is of logical distance.
For instance, in the case of information which is classified by keywords, hav-
ing reached r¢ means that a database agent is, keyword-wise, very close to the
information necessary for answering a query, where multi-dimensionality may
refer to multiple topics which are relevant to this query.

Example 2.4 [In the hole-blocking system, the holes are physical entities with
a definite size and with accurate boundaries. The model of such a hole must

such modifications do not prohibit a good approximation to the well-known physical
behavior. As in MD, the simulations that we have performed support the validity
of our model.

18 This is a common choice in MD as well.
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consist of a specific point from which the modeled hole begins. We use rq (as
described above) to model the hole boundary. In the hole system, the interaction
between a hole and an agent starts when the agent physically arrives at the
hole. In our model, this will be modeled by the arrival of a dynamic particle
that models the agent to a distance v from the center of the static particle
that models the hole.

When a dynamic particle reaches a static particle, i.e., it reaches the distance
of rp from its center, a collision occurs. Such a collision can have several results,
the two extremes of which are the cases of completely-elastic and completely-
inelastic collisions. The first type of collision entails the conservation of all
of the kinetic energy of the moving particle, and in our model will represent
cases where the resources of the agent are non-expendable. The second type
entails the loss of all of the kinetic energy of the dynamic particle, and corre-
spondingly, will model the cases of expendable resources. Between these two
extremes, a variety of combinations may be found and can be adjusted to
various cases in the agents’ system. We shall discuss only the two extremes,
since their combination is a simple (but time consuming) process.

2.5.3 The behavior of agents during an SDC

An important issue in our model is the behavior of the particles during the
collision and the corresponding behavior of the agents. An agent that reaches
a goal may either completely or partially satisfy it. In both cases, the model
requires a reduction in the magnitude of the goal. Since the size of the goal is
modeled by the mass of its modeling particle, the mass of this particle shall
be reduced. It may also require a reduction in the mass of the particle that
models the agent in the case of depleting resources'®. However, the reduction
of mass is not a physical property of such a collision. Therefore, introducing
such a reduction into the PAS model may deteriorate its implicit advantages.
That is, the expected physical evolution of the system may lose its validity.
In order to avoid this loss, some modification of the model shall be done. We
will allow some non-physical parts into the model, as long as they do not
affect the general evolution of the system. This is possible if the model will
consist of a scheme for a temporal partition of the evolution of the system.
This means that the evolution of the system will be partitioned into several
time segments, and in each temporal segment the physical evolution of the
system will not depend on the other segments?®. After the partitioning into

19Quch reductions are required to conserve correct relations between agents and
goals in the system. For instance, an agent that have used most of its resources
should not be attracted to a goal as strongly as a fully replenished agent.

20Note that the time segment here is different from d¢ that is used for calculating
the change in the coordinates of a particle. A typical time segment will be much
longer than dt.
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time segments, each time segment can be treated as a separate system. The
connection between the time-segmented systems will be established via their
initial and final states. The initial states of the particles in a new system
are the modified final states of the previous system. A detailed method for
performing the mass-reduction is presented in section 3.

2.5.4 Time consumption and hindrances

The nature of the collision in the physics model has several implications for
the modeled system. Since the modeled goal-satisfaction process requires time,
the modeling collision must also be time-consuming. Fortunately, physical col-
lisions are not instantaneous. Therefore, our model should only adjust the
physical collision time to the goal-satisfaction time. However, we would like
this adjustment to be an implicit property of the physical behavior. This is
possible if the potential-well which models the goal will cause some kind of
hindrance to the particle that models the agent, when the particle has entered
the region of collision rg. Such a hindrance will emerge if the potential well
consists of a central repulsive part. The central repulsive part of the potential-
well will cause a gradual relaxation of the particle that will have reached the
well, until the particle stops. Time is required for the relaxation process, and
this time will model the goal-satisfaction time.

Another issue concerning the SDC is the relation between the mass of the
particles and both the goal-size and the agent’s ability to satisfy goals. As
previously stated, a greater mass models a greater goal in the case of a fixed
potential-well and a greater goal-satisfaction capability in the case of a dy-
namic particle. The kinetic energy of a dynamic particle grows as it gets closer
to the potential-well by which it is attracted. Consequently, its velocity grows,
and its final magnitude depends on the size of the attracting potential-well and
its initial distance from this well. As a result of this dependency, two dynamic
particles with the same masses may reach a distance equal to rg from the
center of the same potential-well with different velocities due to their different
initial distances from the well. Therefore, these two particles will have different
collision time-periods. If the collision time models the goal-satisfaction time,
this physical property should be disadvantageous for our model. This is be-
cause 1t means that among two modeled agents with the same goal-satisfaction
abilities, the one that was initially “farther away” will perform the goal faster.
For clarity of representation, we assume that agents with the same abilities
perform a goal in the same amount of time. We thus assume goal-satisfaction
time to be longer than collision time. Nevertheless this assumption can be
relaxed via a small (though not obvious) modification to the algorithm. This
modification is performed by causing another type of hindrance; whenever a
dynamic particle reaches a static particle, it must complete the collision within
a time-period that is equal to the time that it would have taken for a dynamic
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particle that started moving towards the static particle from a distance of rg
(we assume that none of the dynamic particles is initially inside the range
r < rg) and has the same mass as the colliding particles have. The legitimacy
of such a modification to the nature of the physical system can be explained
similar to that in the case of mass reduction. Note that this option is not part
of the algorithm we present in section 2.7 (however may be added to it). We
avoid this addition to keep the algoritm simple.

2.6 The potential-wells

As presented above, we model agents and goals using particles. However, it is
common among physicists to represent particles by the graphic shape of their
potential function. As can be seen in figure 3, these potential functions have
some minimum point, and therefore are called potential-wells. The reason for
using the potential-well notion in addition to the particle notion is because
of the graphic illustration. This illustration may give a better idea about
the attraction and rejection that the potential functions of particles impose.
The potential-wells consist of domains of attraction and rejection between
particles. The attraction and the rejection are formally represented by the
force, which is derived from the potential function. A positive force represents
attraction and a negative force represents rejection. The lowest point on the
graph is the point where the force nullifies. The force grows negative when
moving towards the center of the potential-well (i.e., the central part causes
rejection) and positive when moving away from the center. However, as the
potential curve becomes asymptotic to a horizontal line, the magnitude of
the attractive force diminishes and finally vanishes. In order to illustrate the
rejection and attraction within a potential well, the reader may think of a
marble that is put in a physical potential-well. It is clear what parts of the
well will move the marble towards the center and what parts will reject from
the center. It is also clear where, along the curve, the forces will be strong and
where they will be weak.

In the agents’ system, attraction in the case of DDC models cases in which
cooperation among the agents is beneficial, and rejection in these cases models
occasions where cooperation is non-beneficial. It is beneficial for two (or more)
agents to jointly perform a task when each does not have all of the required
capabilities. In such cases the attraction should (and according to our model
would) be the more dominant component of the potential function. Cooper-
ation would not be beneficial in other cases, hence rejection is applied. Note
that this distinction between beneficial and non-beneficial cooperation does
not require different types of potential functions, however different scaling of
the terms of these functions may be required. In cases of SDC, attraction mod-
els the goal-reaching and goal-satisfaction processes, and rejection models the

18



time consumption during the goal satisfaction, as described in section 2.5.4.

Looking once again at figure 3, we can observe that typical potential-wells
(the figure represents such potential-wells) have a limited range of strong at-
traction and rejection. The other parts of the potential may be attractive
but the attraction is rather small. This attraction models regions wherein
goal-satisfaction is non-beneficial or brings about very small benefits. The at-
tractive part of the potential is a long-range potential. As can be observed, the
magnitude of this potential diminishes after a relatively short distance from
the origin. Practically, as simulations that were performed by physicists have
proven [32,57], the long-range interaction can be cut off after a reasonable dis-
tance (as we discussed in section 2.5.2). Such a cutoff will have only a minor
effect on the dynamics of the system of particles.

We describe the likelihood of cooperation by potential functions of types
that would fit the properties of the agents. If the benefits of cooperation are
functions of more than one variable, then the potential-wells will be multi-
dimensional in the space of the variables (usually these variables are the re-
sources of the agents). For simplicity of representation and calculation, we
use one-dimensional continuous functions to represent potential-wells. This
will limit us to the case of agents that use only one resource?'. However,
there are methods for the expansion of the one-dimensional case to the multi-
dimensional case in physics, and these methods can be adopted when our
approach is used to analyze systems of computational agents. These methods
are appropriate only when the resources are independent. This is because the
physics-based methods for the analysis of multi-dimensional functions require
such independence. Having n resources R" = {Ry,..., R,}, we require that
Vi€ 1...n, R; is not a linear combination of S C R\ R;, S # 0.

2.7 A protocol for the single agent

Having described the physical properties of the modeling particles, we may
proceed to the protocol according to which the modeled agents shall act. As
we have previously proposed, each agent and each goal are modeled by a
potential-well. Goals are modeled by wells which have a fixed displacement
and agents are modeled by dynamic wells. In order to cause evolution of the
system towards goal-satisfaction, each agent uses the information that it can
gather by observation (e.g., via sensors) about its neighboring agents and goals
and regarding its previous state. According to this information, the agent will
construct the local field of potential and solve the equations of motion. The
results of the equations of motion will enable the agent to decide what its
next step towards goal-satisfaction will be. The exact detailed algorithm for

21 We discuss the issue of multiple resources and capabilities in sections 6.1, 5.3.
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the single agent ¢ is as follows:
Loop and perform the goal-reaching and goal-satisfaction processes until one
of the following conditions is satisfied:

— The resources necessary for the completion of the goal-satisfaction have been
depleted, or,

— No more goals within the interaction range r; have been observed for several
time-segments %2

The goal-reaching process

(i) Advance the time counter ¢t by dt.

(ii) Locate all of the agents and goals within the range r;, the predefined
interaction distance. Denote the distance to any neighbouring entity j by
5.

(iii) Calculate the mutual Lennard-Jones potential (as described in equation
5) with respect to each of the agents and goals within the range.

(iv) Sum over all of the pairwise potentials V7,;(r;;) and calculate the gradient
of the sum to derive the force F; as described in section 7, in equation 4.

(v) Using F; and the previous state r;(t — dt), p;(t — dt), solve the equations
of motion as described in section 7, in equations 2 and 3.

(vi) The results of the equations of motion will be a new pair 7;(¢), p;(?).
Move ?* to the new state that corresponds to the displacement 7;(¢).

(vii) At each time-step, after moving to a new state, calculate the new ki-
netic energy K (see section 2.2) and the new potential (see equation 5)
according to the new coordinates r;(t), p;(¢).

(viii) If, due to the shift to the new displacement, your distance from the center
of a particle that models a goal is greater than rg, return to step 1.
Otherwise, you have entered the region of strong interaction, i.e., you
have reached the goal. Therefore, start the goal-satisfaction process.

The goal-satisfaction process

After reaching a goal, the agent must satisfy all or at least parts of it. In order
to do so according to our model, the following algorithm should be used by
the agent 4.

22 This requirement allows for a high probability of all goals being satisfied, however
does not guarantee 100% performance. Nevertheless, greater numbers of agents and
tasks in the system bring this probability very close to 1.

23 We allow agents to move and perform calculations in parallel, if they are capable
of doing so.

24 Note that part of the following algorithm is aimed at adjusting the agent’s be-
havior to the physical model and does not directly contribute to goal-satisfaction.
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(i) Move into the potential-well that models the goal according to the phys-
ical properties of the entities involved in the process, as described in the
goal-reaching process.

(ii) Perform the goal.

(iii) If mg, the mass of the particle that models the agent, is smaller than m,,
the mass of the particle that models the goal, subtract m, from m,. Else,
m, = 0. In a case of depleting resources, m, is reduced in a similar way.
(iv) Return to the goal-reaching process, step 1.

Note that the calculations in the algorithm above shall be performed using the
physical properties that result from the physics model. Therefore, properties
of the agents and goals shall be transformed to physical properties, then used
for physics calculations, and then re-transformed into agent-goal properties.
An example of such a transformation is presented in section 5. The iterative
method which we propose leads to a gradual reduction in the number and size
of the goals to be satisfied, and will lead finally, to completion of the goals.
However, the time that such a process consumes may be excessive. We discuss
this problem in the next section. In addition, the convergence of the system
to a final state wherein either all of the goals have been satisfied, or it is not
beneficial to satisfy the unsatisfied goals is proven below.

3 Scaling and convergence

Due to the evolution of the system, goals will be satisfied gradually. As sug-
gested in section 2.5.3 and described in section 2.7, after each static-dynamic
collision, the mass of the static particle that models the goal diminishes. This
implies that the potential-wells which represent the goals will become less at-
tractive, and therefore the rate of goal-satisfaction will decrease. The overall
result of such a phenomenon is a gradual decay of the goal-satisfaction pro-
cess. This means that in a system of the type which we propose, as the goals
get closer to full satisfaction, the time for satisfying the rest of the goals de-
creases logarithmically ?°. That is, the time for completion of all of the goals
is diminishing, but the rate of decreasing gradually becomes slower.

In order to solve this problem, we employ a scaling method. The purpose of
this method is to amplify the attraction in the system in order to accelerate
the goal-satisfaction process, especially when it slows down due to its physical
properties. Since the mass of the particles and the potential-wells directly
affect the magnitude of the attraction among them, we shall scale the masses
of the entities in the system. However, any change in the physical properties

25 Such a logarithmic decay is well known in the relaxation of multi-particle physical
systems.
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in the system, including masses, may change the physical behavior. Therefore,
the well-known results of similar physical systems do not necessarily hold, and
we may be unable to use them to predict the evolution of goal-satisfaction.

However, we shall use the mass-scaling method in instances wherein it pre-
serves the consistency with the physical results. Actually, the distribution and
the size of the system disable information about the temporal change in the
quantity of goals and sub-goals that have yet to be satisfied. Therefore, there
must either be an on-line synchronization method, or mass reduction will
have to be performed according to the initial information that each agent has
about the system and some pre-defined rules. For reasons of simplicity and low
computational complexity, we shall prefer using some pre-defined rules. The
decision regarding these rules is subject to the properties of the system, but
can be calculated prior to its implementation. To clarify when mass-scaling
instances occur, we shall first present the scaling method:

— During the goal-satisfaction process, after each pre-defined number of iter-
ations (we denote this number by I), perform the following:

— Multiply the mass of all of the goals by C', a pre-defined factor. The result
of this multiplication will cause the treatment of each mass of a particle
that models a goal as m;C”, where m; is the mass of goal ¢ without scaling
and 7 is the number of times that the mass-scaling has been performed 2¢.

Now that the scaling method has been presented, we shall show its validity.
Each [ steps of the goal-satisfaction process that are performed without inter-
ruptions are similar to a physical process. The problem arises from the change
that may occur after each I steps due to the mass-scaling; such an event is not
analogous to physical behavior. However, we can view the evolving system S
as a set of systems { g1, -+ > Spp_ 11411+ S = Uizt Sjti_y 1, of 1 evolutionary
steps each. The state of S at time ¢;, immediately before the ith mass-scaling,
is the final state of S}, | ), and immediately after the mass-scaling it is the
initial state of Sy, ;,,,)- Since we are interested now only in the sub-systems
(which are similar to physical systems) the gap between them (which is not
similar to physical phenomena) can be ignored.

3.1 Local minima

Many dynamic physical systems converge to local minima. That is, instead of
reaching the point of minimum energy, they reach a stable point in which the
energy is not minimal. In our case such a phenomenon might cause partial

26 The mass m; may also be modified due to partial goal-satisfaction, but the two
modifications are independent. In that case, however, the mass of the particle that
models the agent may be modified as well.
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satisfaction of the goals in the system, even when the agents can, potentially,
satisfy all of the goals. The question to be asked is whether such a problem
exists in our model. Referring to the results from physics, it is common for
a single particle to be captured in a local-minimum point due to a specific
configuration of the forces affecting it at this specific point. However, in large
particle systems, it is most unlikely to have all of the particles captured in
local minima. The probability of the latter increases as the system becomes
less energetic. The systems with which we deal are highly energetic, and only
while satisfying goals do they gradually lose energy. Therefore, they will reach
a low-energy state only when most of the resources have become depleted.
This will happen only when most (or all) of the goals are already satisfied.

From the discussion above we conclude that single agents (only a small number
of them) may reach local minima. However, the agent system as a whole
will normally avoid local minima, and may be exposed to this risk only after
satisfying most of its goals. Therefore, the problem of local minima is of lesser
importance in our case. This perception was supported by the results of the
simulations we have conducted.

3.2 Goal performance time

An important property of our model is its ability to provide task-allocation
and execution for a vast majority of the tasks in the system within a bounded
time period 7. This property stems from two facts: first, the average velocity
(v) of particles in the model is a known constant; second, as we later prove in
section 4.3, the length of trajectories ({) that particles in the model traverse
is, for most of the cases, bound. Since traversal time (¢) relates to the length
of trajectory and to velocity by t = %, it follows that ¢ is bound as well. This
means that one can expect that the time for executing all of the tasks (or at
least the vast majority of them) is bound.

4 Complexity

The complexity of the model that we provide results from two main factors.
One factor is the time necessary for reaching a single goal by a single agent
during a single time-segment. The other is the number of time-segments neces-
sary for the completion of the goal-satisfaction procedure, including the time
that the agents spend on actual goal-satisfaction. The ratio between the num-

2TThis is subject to having sufficient resources and appropriate capabilities
available.
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ber of goals and the number of agents within the system has a major effect
on the complexity. These factors are analyzed below 28 . We begin our analysis
in section 4.1 where we discuss the time consumption during a single time-
segment and only for the virtual motion (and not for the goal-satisfaction) of
the agents. Then, in section 4.2 we analyze the time consumption of the whole
process and prove its convergence to a solution. However, in this section we
do not yet incorporate the goal-satisfaction effect on the performance of the
process. This analysis is presented in section 4.3.

4.1 Time consumption during a single time-segment

The time that each agent consumes at each time-segment for calculating its
progression in the goal-domain is equal to the number of time-steps dt that
comprise the time-segment, multiplied by the time necessary for the calcu-
lations within the time-step. In order to express the time-consumption we
must first present some concepts and notations and formulate the relation-
ships among them. The number of agents and goals within the range of mu-
tual interaction depends on the density of the distribution of agents and goals
within the domain of the system. That is, it depends upon the average dis-
tances between agents and goals, and not on their total quantities. We denote
the number of agents by N(), the number of goals by G(t), the total area
of the goal-domain by S(¢), the density by n(t) and the average virtual dis-
tance between agents and goals by d(t). We express the above as functions of
the time ¢ since they may vary over time. However, in the following analysis
we omit ¢ for ease of representation. Using these notations we can state the
following

N+G o nd S~ (NG (6)

n =

From these basic relations we can conclude that

1
d~— 7
- 7
Now that we have formally presented the relation between the average dis-

tances and the density of the agents and goals in the system, we can formu-

28 Note that the analysis is constructed from several incremental steps. The reader
who is not interested in all of the details of the analysis may skip directly to section
4.3.

29 We use here the notion of area for reasons of convenience, but we do not restrict
ourselves to the two-dimensional case. Rather, we must note that a high dimension-
ality of the system may reduce the computational complexity. If the dimensionality is
denoted by m, then the relations above can be converted to S ~ d™ and d ~ n=1/™,
and this modification may affect the complexity.
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late an expression for the time consumption of a single agent depending on
the density of the system. The average numbers of agents and goals within
the range of interaction are given by:

N
Ni= ——nar? and Gj = ———nnmr? 8
1 N_I_ G I 1 N_I_ G I ( )
correspondingly, and the single-agent time-consumption C} per time-segment

187
Co = (N1 + Gty + 2t + tr)lt (9)

where ty is the time necessary for calculating the mutual potential and deriv-
ing the potential function, ¢;,; is the time necessary for integrating the force
and the velocity to yield the velocity and the displacement respectively, tp
is the time for calculating the translation from the previous displacement to
the new displacement, and Itr is the number of dt iterations > . The derivation
and integration that are necessary for calculating the change in the state of an
agent may be complex, but as explained in section 2.5.4, this complexity can
be reduced. In addition, this complexity does not depend on the size of the
system S or on the number of agents N within it. As a result, the complexity
of these calculations becomes a small constant.

An interesting property of our model arises from the relationships above: the
number of dt time-steps, that is, Itr, increases slowly with respect to the num-
ber of agents or even stays constant, as shown below. In cases where the size S
of the goal-domain is fixed, as G and N are increased, the average numbers of
agents and goals within the range of interaction Gy and Ny correspondingly in-
crease linearly. However, the number of iterations per agent, i.e., Itr, decreases
with respect to the growth in N; and ;. This reduction in Itr results from the
reduction in d, the average distance between agents and goals, and depends
on some physical properties, too: in large-scale physical systems, the velocity-
distribution is a very narrow normal distribution. This means that most of
the velocities are close to the average value. We assume that the velocities do
not change due to a change in the number of agents in the fixed-size system
(which is a reasonable assumption). Under such an assumption, and accord-
ing to equation 7, when N and G are increased, d decreases proportionally to
v N 4+ . A reduction in the distance entails a linear reduction in the number
of time-steps necessary for completing the passage of the distance, as can be
observed in physics. From this, we conclude that the increment in the numbers
of agents and goals leads to a reduction in the number of time-steps necessary

for reaching a goal which is inversely-proportional to /N + (. Merging this

30 Note that we alternate between iterations and time-steps, but they have the same
meaning.

25



conclusion with equation 9 yields:
Ct ~ (N[—{-G[)IU'N N+G (10)

This increment in C; holds when the size of the system is fixed. However, such
a situation does not necessarily hold. It may be that both the number of the
agents and the size of the system have simultaneously been increased. In such
cases we shall examine the density of distribution of agents among the system
area. This density n is defined in equation 6 as % In cases that n stays
constant, d does not change (see equation 7). Therefore, increasing N leaves
Ny unchanged and increasing GG leaves (G unchanged. The fact that d does
not change implies that Itr remain constant, too. Thus we derive

Cy ~ (Ny + Gp)ltr ~ const (11)

This is a very important property of the model that we propose, since many
systems may preserve their density when they grow larger, and the result seen
above promises computational complexity which does not depend on the size
of the system.

4.2 The general time-consumption for virtual motion

An important issue for the analysis and the assessment of any algorithm is
both its computational complexity and its convergence to a solution. Since
the complexity of a single time-segment of the algorithm has been calculated
above, we have to complete this assessment by proving that the algorithm
converges to a solution and to calculate the complexity of reaching the solution.
In this section we do not yet take the goal-satisfaction time-consumption into
account. This shall be done in section 4.3.

If we assume the worst case, where at each time-segment only one goal is
reached by an agent and only part of this goal is satisfied by the agent, then
the number of time-segments for satisfying all of the goals will be O(G). This
is because even if each agent completes only a small fragment f of a goal, (and
we assume that the size of f does not depend either on the number of agents
or on the number of goals), the number of time-segments for the completion of
a single goal will be % and the number of time segments for completion of all of

the goals will be ¢. However, the average case is usually better. Since all of the
agents are working simultaneously on goal-reaching, Itr — the number of time-
steps dt for reaching goals by the agents, decreases. In a case that Ny < G,
this reduction is bounded by & ~, (note that ]C\;, = %) + is the optimal number
of time-segments for satisfying all of the goals when N < G. The reason for
the reduction in Itr is that when an agent has reached a goal, the other agents

(except for an average of that were moving towards the same goal) have also
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progressed toward goals. Therefore in the next time-segment they will have
to move only the remaining distance. We must emphasize that in the case of
Gt > Ny, this reduction holds only for O(N;) distances, and not necessarily
for all of the distances.

The magnitude of the average distance-reduction during a time-segment is not
always known. We have two major assumptions about the average distance-
reduction during a time-segment. The first assumption is of a constant re-
duction from the original distance, which does not depend on the number of
time-segments that have already taken place. The second assumption is of a
reduction that depends on the number of the time-segments that have taken
place. The conclusion from the first assumption is that d, the average distance,
is reduced to a fraction of its original value. This does not improve the order of
complexity of the worst case, although the factor of the complexity is smaller.
The second assumption requires that at each time-segment the distance de-
creases, on average, to % of its size in the previous time-segment (where x > 1
and constant). The conclusion from this assumption is that the distance that
was d at time-segment ¢ will decrease to z7*d at time-segment ¢ + k, where
k is an arbitrary integer. Since the time of progression toward goals is linear
with respect to d, the average time will diminish in the same manner as d,
the average distance, does. Subject to the second assumption, the total of the
distances during the whole goal-satisfaction process is the sum over all of the
time-segments, and is proportional to

Ga 1
—) — 12
N =z (12)
or, in the case of the first assumption
¢ 1
Gy — (13)
£ o

The sum in the equations above has a constant upper bound which is equal

ﬁ and does not depend either on GG or on N. Resulting from this sum

are both the convergence of the algorithm to a solution and the expected

to

complexity of the general procedure of goal-reaching. In cases where equation
10 holds, this complexity is O(Gv/ N + ) in the worst case and O(%\/N + &)
in the average case. In cases where equation 11 holds, the complexity is O(G)
in the worst case and O(%) in the average case. The last result yields from
the constant time necessary for each time-segment according to equation 11
and the constant-bounded number of time-segments. In a case that N > G,
the complexity is reduced either to O(v/ N + ) when equation 10 holds or to
O(1) when equation 11 holds.

The last result is disconcerting. In order to resolve this, we must bring forth
the rationale for the case of constant-time complexity. When dealing with very
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large-scale systems of agents, the whole system may be observed as an ensem-
ble of sub-systems, all of them relatively independent, and acting indepen-
dently in parallel. Thus, the time consumed by a single system for completion
of its activities is equal to the time necessary for the whole ensemble. For any
system that can be arbitrarily partitioned into many smaller sub-systems such
that they are large enough to fit our algorithm requirements, this rationale

holds.

One can claim that the partition into sub-systems does not provide an ap-
propriate description of the whole system, because there may be interactions
between entities from different sub-systems. We agree that such interactions
are possible. However, we can resolve this as follows. If we allow partial overlap
of adjacent sub-systems, then the overlapping ranges will represent regions of
interaction between entities from adjacent sub-systems. These common inter-
action regions must be large enough to allow for interaction and small enough
to cause only minor effects with respect to the whole system. Since the range
of interaction is r; and the size of the whole system is much greater, we find
no difficulty in performing a partition into sub-systems that will satisfy the
size requirements of the overlap region. Thus we reject the claim.

4.3 Goal-satisfaction and computation time

We would like to examine the performance of our algorithm with respect to the
optimal agent-goal allocation®' . This allocation depends on the properties of
the goal-agent system. Therefore, we shall partition the problem into several
sub-problems. We shall deal with cases where N < (G. We discuss hereby the
effect of the time necessary for goal-satisfaction on the performance of the
algorithm. This discussion expands the analysis in sections 4.2 and 4.1, that
considers only the computation time, and completes it. We shall partition
the problem subject to the following parameters: size of goals; size of agents;
time consumed for goal-reaching (denoted by t,); time consumed for goal-
satisfaction (denoted by t,).

4.3.1 FEqui-size goals

The first and the simplest will be the case where all of the goals are of the
same size and all of the agents are such that each agent satisfies a goal with
the same efforts and time consumption. In such cases, the optimal allocation
will cause each agent to perform % goals, as shown in section 4.2. We examine
the following sub-cases:

31 This examination is mainly based on the trajectories particles in the model travel,
however it has further implications.
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(i) t, < t,
In such a case the goal-satisfaction time is negligibly small. Therefore,
the discussion and the results of section 4.2 (in which ¢, was ignored)
hold.
(i) t, ~ t,:
The fact that the time necessary for goal-satisfaction is not negligible any
more may have a vast effect on the complexity of the algorithm. However,
in the current case, where agents complete goals by themselves, it has a
minor effect, and the complexity remains O(%)
(iii) t, >t
In this case, since the main factor becomes ¢,, but the number of goals
ty G

that each agent performs is still O(%), the time consumption will be 2%

per agent.

The proof for the results above is straight forward. The PAS algorithm al-
locates agents to goals mainly according to their capabilities®?. That is, it
is more probable that agents with more capabilities will be matched to goals
that require more capabilities in order to be resolved. In a case that the agents
possess of more capabilities than necessary for satisfying the goals (as in the
case with which we currently deal), the rejection concept of the PAS model
will prevent the allocation of more than one agent to one goal, and therefore
all of the agents will be allocated to different goals. Agents that will complete
performing a goal will be re-allocated to other goals. Thus, no hindrances may
occur and the average allocation ratio will be O(%) goals per agent, as for the
optimal allocation.

4.3.2  Goals of various sizes

The second case should have been the case where the goals are still of the
same size, but not all of the agents can complete the satisfaction of a goal
by themselves. However, several encounters must occur before all of the goals
are satisfied. Therefore, after each encounter some of the goals diminish. As a
result, the goals in the system do not remain of the same size. Hence, the case
with which we deal will be the case in which both the agents and the goals
have a variety of sizes. This may cause agent-goal allocation that will lead to
a partial goal satisfaction, and the yielded reduction in the size of the goals
will affect the proceeding allocations. We denote the size of goal g; by S, and
the size of agent A; by S,;. The average goal size is denoted by S, and the
average agent size is denoted by S,. In section 32 the average number of goals
per agent was expressed by % This average is insufficient for the analysis of
goals and agents with various sizes. Here, the average amount of goals-units to

32 The allocation depends on the distances of the agents from the goals, too, but
for agents with similar distances, the capabilities will affect the allocation.
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be approached (and satisfied) by an agent, with respect to agent-units amount,
shall be considered. This average (denoted by 1) depends on the sizes and not
on the number of goals and agents and, for an agent A;, is given by
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We consider three cases, all in which S, < S,:

(i) t, < t,:

As before, such a case entails a negligibly small goal-satisfaction time.
This implies that the order of the complexity is not modified and is
O(%) in average. However, the sizes of goals and agents affect the factor
of the complexity. The time consumed for goal-satisfaction is negligible,
but the number of goals performed by an agent i is not the only factor
that influences the complexity. An important factor is the total virtual-
distance that an agent passes in order to reach the goals that it fulfills.
That is, it would be better for the performance of the system that agents
will be allocated to tasks in a way that will minimize their virtual trajec-
tories. The system will complete the performance of its goals when the
last agent will complete its last goal. Therefore, an optimal goal-agent
allocation should seek the minimization of the maximal trajectory. We
must check if in the case where S, < S, our algorithm reaches results
close to optimal, and provide a method for measuring this proximity.

The PAS model “prefers” the allocation of closer entities over the al-
location of distant entities. It also prefers the allocation of greater en-
tities over the allocation of smaller entities. However, the size has only
a linear effect on the interaction, where the distance has a high-order
polynomial effect. As a result, our algorithm will give priority to the al-
location of closer entities. This will be done with respect to the other
entities within the range of interaction. We can view this allocation as
a Traveling-Salesman Problem (TSP)®?. Via this observation, we can
assess the complexity of our algorithm with the specific settings.

The TSP problem is of finding a tour through nodes in a graph where
each edge has a cost, and the tour should visit all of the nodes with a
minimal total cost. It is similar to our problem in its property of finding
trajectories between nodes with minimal costs. In our problem the agents
seek a trajectory with a minimal length (which is similar to cost). There
are several differences between TSP and our case as we detail below.
These differences result in TSP algorithms being inappropriate for our
needs. Yet, the complexity inquired by such algorithms for selecting a
trajectory with a minimal cost is useful for comparing with the complexity
of our model.

33 A comprehensive description and discussion of the TSP can be found in [36]
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TSP differs over the number of agents dealt with (a single agent,
whereas we deal with multiple agents). Multiple agents, in PAS, must
avoid conflicts among themselves. Therefore, there are occasions where
agents prefer longer paths in order to avoid conflicts. There may also be a
decision-problem upon which agent should perform each task, especially
when two agents (or more) with the same capabilities are approaching
the same task.

We use a TSP approximation algorithms as a means for the assessment
of the quality of the trajectories that result from our algorithm. For this
purpose we find TSP an appropriate reference. The TSP, which is an
NP-complete problem, has several polynomial approximation algorithms
[44]. Some of them are proved to reach a solution with a cost which is not
greater than twice the optimal cost (i.e., the ratio-bound is 2). This ratio-
bound is achieved in cases where the cost function ¢ satisfies the triangle
inequality. That is, all of the nodes z, y, z satisfy ¢(x, z) < c(z,y)+c(y, 2).
In cases where the costs are the distances between the nodes, the Eu-
clidean geometry implies that the triangle inequality holds. The PAS
model consists of such distances between particles®®, and therefore a
particle’s progression can be viewed as a salesman trajectory. The assess-
ment of the results of our algorithm we, using comparison to the results
of an approximated TSP solution, is provided below.

Our algorithm implies that a dynamic particle will most probably (but
not always®®) reach the closest static particle. This can be viewed as a
greedy algorithm in which the shortest distance (cost) is chosen with a
probability 1 — d, where § <« 1. This probability depends on the ratio
between the number of agents N and the number of goals GG or on the ratio
between the corresponding areas. The reason for § < 1 arises from the
physical model. A dynamic particle will usually experience the strongest
force from the closest static particle and therefore will move directly
towards this particle. This should happen unless N > G. However, even
in the latter case, where many dynamic particles tend to reach the same
static particle, if 37, 5., < 32; S, all of the dynamic particles shall have
no preclusions when moving toward the same static particle. Therefore,
the probability of reaching the closest static particle is close to 1, and
0 < 1. In cases that 3=; Sq, > 37,5, ¢ is not guaranteed to be small, but
p will be small.

34 When we deal with an abstract space, we define abstract distances. If appro-
priately defined, these may conform with the triangle inequality. For instance, in
a case of “distance” between keywords, having three databases Dp, Dy, D3 and
distances measured by the number of different keywords, one can prove that
d(D;,D;) + d(D;,Dy) > d(D;,Dy), @ # j # k € 1,2,3 regardless of the order
of 1,7, k.

35 This is because it may be rejected by another dynamic particle that is moving
towards the same static particle.
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A greedy TSP approximation algorithm in which the shortest distance
(cost) is chosen with a probability 1 was proved * to have a ratio-bound
of 2. The 1 — ¢ probability we introduce will cause only a small change in
the results, and therefore the resulting trajectories of our algorithm will
not be far from the ratio-bound of 2. This depends on the number and
the sizes of the modeling static particles with which each modeling dy-
namic particle collides during the iterative goal-satisfaction process. The
modified ratio-bound will therefore be 2/(1 — §)*, where u is the number
of goal-units that an agent has approached during the goal-satisfaction
process>” . The average p, that is denoted by & will be
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where S, is the average agent size. However, the worst case that is related
to a specific agent A;, denote by u}’, may be
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where S,, is the size of agent A;. However, the worst case has a very low
probability, because it happens only when all of the goals are performed
by one agent, and all of the others perform nothing. According to the
analysis above, if § and p are small, the resulting trajectories of our
algorithm are not too far from the optimal TSP trajectories. Note that
this property is not affected by the size of the system.

To summarize the case where ¢, < {,, the order of the time consump-
tion for goal-reaching and goal-satisfaction is the number of goals per
agent multiplied by the ratio-bound, i.e., 2u/(1 —d)*. Note that this may
be a large number in cases where  and p are large, but as explained
above, in some cases a big § implies a small .
ty ~t,:

Here, the influence of the goal-satisfaction time comes into account. In
the previous case we have presented an analysis of the quality of the
trajectories that result from the PAS model. This analysis holds for the
current case too. As a result of the time consumption for goal-satisfaction,
the complexity from the previous case will be multiplied by a constant,
but will remain of the order of 24/(1 —§)*. The influence of the quality of

36 The algorithm is based on a greedy minimal spanning tree algorithm. The details
and the proof are found in algorithms textbooks such as [7]. This greedy choice
is similar to the physical behavior of a particle, which “selects” the direction in

which the maximal force is applied. Of course, the reason of this behavior is totally
different.
37 Note that the number of goals per agent here is different from this number in the

equi-size goals case, which is O().
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the trajectories can be omitted only in the case of ¢, > 1,, as described
below.
(iii) t, > t,:

In this case, since the time consumption for goal-satisfaction is much
greater than the goal-reaching time, we shall ignore the latter. The goal-
satisfaction time of an agent is the sum of the time-periods consumed
for the satisfaction of goals by this agent. This sum depends on the goal
allocation, which depends on the size of the agent and the sizes of the
goals. Therefore, it will be:
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5 Examples

To illustrate the method in which our algorithm may be implemented, we
present three examples. In the first (section 5.1) we recall the hole-filling prob-
lem and provide a detailed adjustment of the PAS model to this problem. In
the second example (section 5.2) we present a transportation system and show
that the PAS model can be used for the implementation of cooperative goal-
satisfaction in such systems. The third example (section 5.3) illustrates the
applicability of our model to real-world MAS with abstract tasks.

5.1 Hole-filling robots

There is a planar surface with holes in it spread in an arbitrary order. The
holes have various sizes. On this surface, robots that are designed to fill holes
are able to move towards holes and fill them. The robots have various (limited)
quantities of filling. The robots are all members of a system which is aimed
at filling as much hole-volume as possible. The holes and the filling have the
same volume units (e.g., cubic centimeters). The robots have to reach the holes
and then fill them. For reaching the holes, the robots are able to move and
they have a velocity. For our algorithm illustration, it will be more convenient
to assume that the velocities of all of the robots are of the same order of
magnitude. This assumption is necessary because otherwise, the assumption
that the robots can perceive what happens in their neighbourhood might be
violated. This is because fast robots will move at a velocity that will cause
them to “appear” too close to other agents before they have been detected.

Hole-filling and moving are both time consuming. The moving time can be
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Fig. 4. Holes/robots and particles scaling units
Holes/Robots Particles

hole/stuff volume (cubic mm to m) | mass (~ 1072"kg)

diameter of the hole (mm to m) ro (~ 10719 m)

sensors’ effective range (m) r; (~ 1072 m)

movement velocity (~ m/sec) movement velocity (~ m/sec)
average path time is ~ 10! sec average path time ~ 107% sec
dt, = 107" sec dt, = 10719 sec

hole-filling time: collision time:

Lyin = V’}gle depends on the distance but

limited *® by 100d¢,

L = 100dt, Leollision = 100dt,

expressed by

distance

tpove = ————— (18)

velocity

There is a filling rate which does not depend either on the size of the hole or
on the amount of filling that the robot holds. This filling rate depends only
on the filling capabilities of the robot. It will be simpler to assume that all of
the robots have the same capabilities, and they differ only by the quantities
of filling they possess. If we denote the filling rate by R, then the time for
filling a hole of volume Vj,,;c by a robot (that has at least an amount of Vj,,.
of filling) is given by

(19)

5.1.1 Fitting the model to the problem

We present the fitting properties in figure 4. Note that in the table most of
the properties on the left column are the given parameters of the MAS, and
only dt, is determined by the designers when fitting the PAS model to the
MAS. The designers may also limit the effective range of the sensors or let
their agents use only part of the information gathered by these sensors.

38 This limitation is required in the PAS model as described in section 2.4.
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As can be observed from the table, the average robot velocity and particle ve-
locity are of the same order. Due to the large difference of distance-magnitudes,
the time-periods are different, too. The mass of particles is much smaller than
the volume of holes and filling stuff and has different units. However, this
difference should not affect the match of the physics model to the robot im-
plementation. This is because the Lennard-Jones potential, which is employed
in our model, is calculated with respect to a single mass-unit, and a particle
is assumed to have one mass unit. Therefore, one volume unit in the robot
case shall be represented by one mass unit in the physics model. Modification
in this requirement will not cause any significant change in the behavior of
the system, because any other linear scaling of hole-volume to particle-mass
will only cause multiplication of all of the derived results by a constant. The
meaning of such a multiplication is no more than zooming.

In the case of holes, which have both radii and volumes, we must take into
consideration the relation between them. If a hole’s dimension is d and its vol-
ume is Vj,., then the diameter of the hole will be: dia =/ V.. This implies
that the mass of the particle and its diameter 2ry must satisfy 2ry ~ ¥/mass.
Such a relation does not necessarily exist, and therefore when matching the
hole/robot system to the PAS model, the mass of the particles shall be chosen
to satisfy this relation. As can be observed from the table (and required by
the model), the radius of interaction should be about ten times greater than
the radius of the particle. In the robots’ system, it may be that the sensors
can perceive information from distances that are more than ten times greater
than the hole radius. This is not problematic because the robots can either
ignore distant entities (which is simple but wasteful), or use this surplus in-
formation to make more calculations and elucidate the solution. The latter,
of course, requires better computational capabilities, and shall be considered
with respect to these. In a case that the designers decide to use the greater
sensing capability, the ratio r;/rq shall be changed correspondingly.

In order to implement the robot/hole system using the PAS model, designers
shall use the matching that we have presented above. That is, during the activ-
ity, each robot will perceive the properties of the other holes and robots within
the range of its sensors, and will process this information. This processing will
include the transformation from the robot/hole units to the particles unit, if
necessary, and then the calculations that are required according to PAS. The
results of the calculations according to PAS will be reversely transformed to
the robot/hole units, and the robots will advance according to these results.
The perception-transformation-calculation-retransformation-action procedure
will be repeated by each robot every dt,, as required by our model. Since
the transformed d¢, is 0.1 second, it will be a sufficient time for any reason-
able sensor and processor to perform both the perception and the required
calculations.
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5.2 Applying the PAS model to transportation

Another example of MAS in which the PAS model can successfully be imple-
mented is a freight transportation system. Such systems have been discussed
in the context of DAI, e.g., in [19,20,47,61]. In a case where each carrier is
controlled by a computational agent, a coordination mechanism is necessary.
If the system is large and communication is limited, agents that try to increase
the common benefits of the system can act according to the algorithm that
we provide, thus improving the system’s overall performance. This improve-
ment stems from the avoidance of the intensive computation of the scheduling
problem and the circumvention of bottlenecks that may appear in a central-
ized mechanism. In order to enable such an implementation, we should adjust
the PAS algorithm to the transportation system. This adjustment is described
below.

Fig. 5. Carriers/freights and particles

carriers and freights | particles
carrier dynamic particle
freight static particle

carrier/freight volume | particle mass

carrier location dynamic particle location

freight location static particle location

The system of freight transportation consists of many carriers. Each carrier has
a freight-carrying capability that is given in units of volume and has a given
location. The tasks that the carriers must fulfill are freight-transportation
tasks. We deal here with freights that should be moved from various locations
to other locations. Therefore, each task can be characterized by its original
location, final location and volume. The adjustment of the model to the freight
system is presented in figure 5. As can be seen from the table, each task will be
modeled by a static particle and each agent by a dynamic particle, as required
by the PAS model. The volumes will be modeled by particle masses, and the
locations by particle locations.

A necessary feature in any agent system and, in particular in the case of
transportation, is a communication system. This system must allow for the
broadcasting of information concerning task execution and locations of agents
and tasks . Failing to handle such information, the ability of the system

40Such communication systems exist in transportation companies, and drivers re-
port their location and task execution occasionally. However, although many drivers

36



to supply transportation services may deteriorate (see section 6.2). However,
complete and accurate on-line information may not be assumed. Agents are ex-
pected to transmit information concerning their location and goal-satisfaction,
but this transmission is usually received only by a subset of the other agents.
Even within the target subset of agents there may be some which receive an
inaccurate message or do not receive a message at all (we have examined the
effect of such message transmition via simulations as described in section 7).

The structure of cities and roadways regulations may prevent movement along
the shortest path between two locations, as assumed by the general algorithm.
Thus, in the simulation of the transportation example (section 7), the distance
between two locations [; and [; is calculated as the shortest way that one could
drive from [; to l5. In addition, if the direction for movement *! % calculated by
the agent in the goal-reaching process algorithm does not agree with a road
direction rgc?d, then the road with the smallest angel with v is selected for
movement. This selection is not different from a physical behavior in environ-
ments with obstacles, and therefore justified. Another limitation imposed by
regulation is a speed limit. We take this to be 50km/hr. A limit on velocities
is not part of the physics model, however velocity distribution may allow for
values above the limit to be of low probability, thus eliminating them should
have a minor effect on the overall behavior of the system, as our simulations
show.

Yet, a more detailed adjustment is necessary to enable the implementation
of PAS for the transportation case. Therefore, we summarize the above and
expand upon it below. We distinguish between two levels of adjustment — the
conceptual level and the practical level. The conceptual level consists of the
following:

(i) The reception of information concerning a freight-transportation task is
modeled by the entrance of a particle into the effective radius of interac-
tion r;. Note that in the transportation case the information is usually
gathered via receptors which are not always affected by the distance from
the carrier to the freight. This may imply an excess of information. To
handle this excess, the information can be filtered to refer only to the
most relevant tasks.

(ii) The advancement towards a freight is modeled by the movement of a
dynamic particle towards a static particle.

(iii) The execution of a freight-transportation task is modeled by the collision
between a static particle, which models the task, and a dynamic particle,
which models the agent.

receive the transmitted information, usually only the central coordinator uses the
information for planning and allocating tasks.
41 The notation @ refers to the direction of a vector .
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In addition to the conceptual level, we present the practical level. As seen
previously, this is performed via matching the properties (see figure 6). Most
of the properties in the left column of the table are the typical parameters of
the specific transportation system with which we deal. Only d¢., which is the
time-period 4> of the transportation system, is determined by the designers
when fitting the PAS model to the MAS. The radius of interaction r; in the
transportation domain is ~ 10>m. As can be observed from the table, the
average carrier velocity is ten times greater than the particle velocity. This,
in addition to the large difference of distance-magnitudes, results in different
time-periods as well. That is, dt. is significantly different from dt,, which is
the time-period of the particle system.

Fig. 6. Carriers/freights and particles scaling units
Carriers/freights Particles

carrier/freight volume (cubic m) | mass (~ 107%"kg)

delivery distance (~ 10*m) ro (~ 107%m)

information range (~ 10°m) r; (~1072m)

movement velocity (~ 10m/sec) | movement velocity (~ lm/sec)

average reaching time ~ 10%sec | average path time ~ 10 ®sec

average delivery time ~ 10°sec | collision time ~ 10™®sec

dt. = 10 sec dt, = 1071%ec

Note that the magnitude of dt. is 10 seconds (which is required to conform
with the 107! ratio between times in the physical model and the computerised
system). This implies that each agent must perform the calculations required
according to the PAS model every 10 seconds, and accordingly, move to a new
location*®. Agents must report their location occasionally, to enable other
agents to use the information about the location for their calculations. How-
ever, it is not required that the agents report their location every 10 seconds.
Such a requirement may be impossible if the reports are performed by human
agents. It would, however, be possible if an electronic tracking component is
installed in every agent. Such a device can broadcast its location and an identi-
fication code, thus providing the necessary information with a high frequency
and a low cost. Nevertheless, even without the high-frequency reports we have
suggested, the system can maintain its stable behavior and continue satisfying
goals. The quality of the calculations will deteriorate in such cases, however

42 The time period is the typical time-step for the iterative calculation as presented
in detail in section 2.4.

431n the simulations we set it to 1 instead of 10 to speed up the computational
process.
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reasonable results and goal performance can still be achieved, as explained in
section 6.2, where imprecise information is discussed.

The difference between mass of particles and volume of carriers and freights is
of the same type as in the hole-filling example. Other adjustments are similar
to the adjustments proposed for the hole-filling domain, and may be similarly
justified. To avoid redundant repetitions, we refer the reader to section 5.1.

The above adjustment allows computational agents to use the PAS algorithm
to coordinate their actions in order to perform the freight-transportation tasks
and increase the benefits of the system. This will be done with very low compu-
tation and communication efforts, as the simulations (section 7) demonstrate.

5.3  Application to abstract tasks

Although based on physics, the PAS model may be applied to MAS that
execute non-physical tasks. To demostrate this capability, we provide below
guidelines to the application of PAS in a real-world multi-agent architecture
named RETSINA [55.56]. In brief, a RETSINA MAS consists of three types
of agents — information agents, task agents and interface agents. Agents have
capabilities to perform tasks and capacities (of these capabilities) which limit
the size of the task or the amount of resources being used for its execution.
In RETSINA, agents do not know about other agents in advance and may
find them via matchmaker- or broker-agents, which are both a specific type of
information agents. To date, agents in RETSINA are implemented such that
each has a single capability **. As such, since for some tasks several capabilities
are necessary, the agents form teams on demand to execute these tasks. Note
that an agent A in a RETSINA MAS has a limited view of the rest of the
agent society. This view includes mainly agents and tasks which are relevant
to A’s capabilities and tasks. This confined view is similar to, and modeled
by, the limitation on interaction range in the PAS model.

Agents within RETSINA satisfy goals by interleaving planning and execu-
tion. During this process they gradually de-compose a high-level goal to tasks
and subtasks. The lower-level tasks consist of executable code with several
pre-conditions. Whenever a lower-level task becomes executable (i.e., all of its
pre-conditions are satisfied), it is scheduled for execution and executed when
appropriate. The planning mechanism implements an extension of the Heirar-
chical Task Network (HTN) model [18]. HTNs are heirarchical networks as
depicted below. They consist of task-nodes which are connected by two types
of edges. Reduction link edges describe the de-composition of a high-level goal

44 This does not prohibit more complex agents in the future.
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to tasks and subtasks (a tree structure). Provision/outcome link edges rep-
resent value propagation between task-nodes. Provision/outcome propagation
allows one task 7, as it completes execution, to propagate an outcome to
another task 75, where this outcome is a provision for the execution of T5. For
instance, suppose T is a task of buying a stock. 7' may de-compose to finding
the price (71) and performing the transaction (7). The latter (7%) requires
that T} be executed, and therefore 7} should propagate a success outcome to
T5 when completed successfully. This outcome is a provision for 75. HT'Ns al-
low task-nodes to have multiple provisions and outcomes. A task is executable
if it cannot be further reduced and all of its provisions are set (as a result of
either outcomes of other tasks or a setting from an outside source). We will
use the HTN properties of the RETSINA agents to demonstrate how the PAS
model can be used to coordinate task allocation and execution.

Hierarchical Task Network (HTN)

— Provision

() Outcome

(R Provision/outcome link F---- = @ -

Reduction link .
[ — @ @ =
e
F — P m—— — @
F o) — @ /D:
N— @ F — @
F B —

The main idea of this modeling is that agents gradually allocate themselves
to tasks, sometimes through partial execution of other tasks*. Each low-
level task (that cannot be further reduced) needs a specific capability for its
performance, however usually several pre-conditions must become true (this
happens by setting provisions) before a task becomes executable. An agent
A would be “attracted” to a task 7" when it has the required capability and
capacity for executing T'. A would gradually advance toward 7' by performing
the actions which are necessary for satisfying the pre-conditions of T'. As the
number of the latter which are yet false decrease, the agent becomes “closer”
to the task. Note that this does not prohibit cases where two (or more) agents
simultaneously work on setting true pre-conditions of the same task. Only
when these two agents have both the same capability (and excess capacity) will
“mutual rejection” among them prohibit simultaneous work on the same task.
No direct interaction will emerge among agents who have different capabilities.

To adapt to PAS, we must explain how rejection and attraction, as described

45 Partial execution is possible when a task is comprised from several sub-tasks, and
some of the sub-tasks are executed.
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above, are practiced in the RETSINA framework. This would be possible if
we can measure and numerically express distances between agents and tasks.
For this we define an abstract space — the provision space — which is a space
that consists of all of the provisions allowed in RETSINA. Since provisions are
represented by boolean values, the displacement of a task 7" would be repre-
sented by a vector of provisions Pr, where all of the provisions which are the
specific pre-conditions of this task are set to 1 (true) and all of the others are
0 (false). Suppose an agent A has the right capabilities and sufficient capac-
ities and attempts to gradually allocate itself to 7" and perform it. A would
have a provisions’ vector P4 where all of the provisions of the approached task
T which have already been set are 1, and all other provisions*® are 0. Note
that the provisions of a task may have been set by other agents during partial
execution of the task. The distance between A and T is simply the distance

between the provision vectors P4 and Pr, which is dp, p, = 1/>:( Py — Pi)2.

We define an additional distance measure Dp, p, = \/Zi|P%:1(le — Pi)? (nor-

malized to T'), where i| P} = 1 refers to the i’s for which P%. is set true. The nor-
malized distance is required for finding an agent-task distance which ignores
all other tasks. During the process of setting the provisions true, the distance
between P4 and Pr decreases, thus A gets closer to 7'. When Dp, p, = 0, agent
A has completed its allocation to 7' (in PAS this is expressed by rg). At that
point the agent will execute the task (by running its code). Note that dp, p,
may be non-zero at this time, indicating that A advanced towards other tasks
as well. This also allows the agents to allocate the “closest” one among them,
B, to a task T'. Other agents are not as close to 7" as B is since they were ap-
proching other tasks symultaneously. This provides an advantageous behavior,
since the latter agents, instead of engaging in task execution (of 7'), will con-
tinue advancing towards the other tasks they were already approaching. Thus
a selection mechanism, which up to date was not implemented in RETSINA, is
introduced. In addition to the definition of distance it is necessary to provide
an interpretation of mass in the RETSINA framework. We require that the
mass represent the capability of task execution, and its magnitude would be
the capacity of this capability. Cases of more than one capability per task (or
per agent) are not supported by the PAS model in its current form. Neverthe-
less an extension of this model to handle such cases is suggested in section 6.1.
Moreover, multiple different capabilities may possibly be modeled by several
physical charges (e.g., mass and electrical charge). Such an approach is only
partially supported by classical mechanics. Extentions may be possible using
quantum mechanics, however this is beyond the scope of this paper.

The mechanism presented below discusses the allocation of agents to low-level
tasks, however may be used for agent alocation to higher-level tasks as well.

461n cases where the agent is working on more that one task some of the other
provisions may also be true.
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Fig. 7. Agents and tasks in RETSINA vs. particles

agents and tasks representation particles

agent location dynamic boolean vector dynamic location
task loaction static boolean vector static location
task/agent capability task/agent capacity particle mass
range of interaction set of relevant tasks/agents | r;

action execution threshold | relevant provisions set true | rg

task performance rate provisions set true per time | particle velocity

The executable part of the latter is their de-composition to subtasks. Provi-
sions and outcomes of higher-level tasks are not different from those of low-
level tasks. The PAS model requires computation of potential functions and
equations of motion. These are used to plan for task allocation and execution.
When applied to RETSINA, these computations will be based on the mass
and distance as expressed above. The results of these computations are new
displacement vectors in the provision space. Upon these an agent should de-
cide what provision to handle (and set true) next, thus advance itself to these
new displacements. This will result in agents gradually allocating themselves
to tasks by means of provision enablement. A multi-directional advancement is
achieved by utilizing and manipulating a provision vector where several tasks
(and possibly all of the relevant ones) are represented. Note that the physical
movement which is part of the PAS model allows agents not only to get closer
to tasks, but move away from them as well. The interpretation of such move-
ments when applied to the provision space is the resetting of provisions (i.e.,
setting them false). Provisions may become false as a result of, e.g., limited
memory of an agent. This may require that it maintain only the most relevant
provisions accessible, storing the others externally (in a simillar manner of
operating systems handling multiple processes).

For applying the PAS to RETSINA, it is necessary that agents know about
relevant tasks and agents and their provision boolean vectors. In RETSINA a
task is not a stand-alone entity. Each task 7' is always in the possession (and
responsibility) of some specific agent A. This agent is not necessarily the agent
that can actually perfrom 7. In order that other relevant agents know about
T and its state, A should add to its advertisement (at a matchmaker agent)
the task and its provision vector. Agents who are interested in T' may, by this
contact information, monitor for updates in T"’s state. Moreover, members of
teams*” are (which dynamically form in RETSINA to execute a task coop-

47 The PAS model does not prohibit teams, however does not provide explicit mech-
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eratively) should update one another within the team with respect to tasks’
and agents’ provision-state changes. These mechanisms, which are supported
by the RETSINA framework, will provide a “range of interaction” for agents
and tasks as required for the PAS implementation.

The PAS modeling of RETSINA is presented in the table above. Note that the
modeling presented above only provides guidlines for PAS implementation in
RETSINA. Further adjustment and fine-tuning will be necessary to perform
this implementation. We intend to persue this direction in future research.

6 Extensions of the model

The PAS model, which concentrates on limited range of MAS cases, may be
extended to a wider range of situations, relying on its physics properties. We
shall demonstrate such extensions of a system with a single type of capability
to a multi-capability system, and of a system wherein information is precise
(but not complete) to a system with imprecise information.

6.1 Multiple types of tasks and capabilities

The model presented may seem restricted to cases where tasks and capabilities
are of a single type. This is not necessarily so, as we discuss below. The
capability of an agent to perform tasks and required for a task to be performed
by agents is modeled, in the original PAS, by the mass of a particle. This
is very restrictive as each particle has only one mass, and therefore it can
model only one capability. However, we can extend the model by referring to
clusters wherein each cluster is comprised from several particles of different
types. Within a cluster, each particle shall model a distinct capability. Such
clusters will model the agents and the tasks. Having done this extension, we
may analyze the system as a superposition of several systems, each of which
consists of one type of particles and thus models one type of capability. The
compound system can be analyzed as a multi-dimensional space, for which
thermodynamics and statistical mechanics provide several methods of analysis.
Hence, the model can be applied for the multi-capability case.

As in the single capability case, the virtual motion of agents will result from the
forces that are derived from the potential functions of the modeling particles.
However, in the extended case the forces will be calculated in each space
separately, and the derived virtual motion will be calculated with respect to
the superposition of these forces. Thus, clusters in which all of the particles

anisms for team formation.
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(or at least most of them) lead to collision will model agents which all of
their capabilities (or most of them — in a case that partial goal satisfaction is
allowed) fit the required capabilities for the satisfaction of a specific task, and
their (multi-dimensional) collision will model the goal satisfaction.

6.2 Imprecise information

Since we assume that the information gathered about the adjacent entities is
a result of the agents’ perception, we must take into consideration the noisy
nature of information gathered via sensors *® . This means that not only is the
information incomplete, as we assume in the model (section 10), it is impre-
cise as well. Therefore, we shall examine the validity of the model behaviour
that is subject to such an imprecision. To study this issue, we approach the
field of thermodynamics and statistical mechanics [43]. The thermodynamical
behaviour of large-scale particle systems, and the corresponding behaviour of
smaller simulated systems [49], in the case of bounded (closed) systems*?,
is stable. Introducing random low level perturbations into such systems does
not significantly affect their overall behaviour (as discussed in, e.g., [27, pages
122-148]). This is because the thermodynamic parameters of the systems do
not vary significantly °®. Accordingly, we conclude that our MAS will be sta-
ble, since they are expected to be restricted by time, size, resources, etc. Such
stability was evident in the simulations we have performed.

As the noise to signal ratio increases®', even strictly bounded systems may

lose their stability. This loss of stability may occur almost instantaneously,
resembling a thermodynamical phase transition. However, this may happen
only when the ratio is significantly large (greater than 14). Relying on the
physics properties, we can conclude that our MAS will maintain its stability
when exposed to small perturbations, such as that which noisy information
may impose.

48 As previously stated, we extend the meaning of sensor to any information recep-
tion device.

49 Systems with a bounded thermodynamical property are, for instance, systems
where the number of particles, the volume, the energy etc. are bounded.

>0 This stability does not always hold for unbounded or loosely bounded systems,
where the result of a small perturbation may be chaotic.

51 The ratio between noise and signal is a common method to measure the quality
of systems where information signals are present. The ratio of 10% or one decibel
(db) is considered a threshold value.
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7 Simulation

To examine our model and show its applicability to real problems, and in par-
ticular to the transportation case presented in section 5.2, we have performed
a set of simulations. Via these we demonstrate effective task allocation and
execution in an open, dynamic MAS that consists of thousands of agents and
tasks. The problem domain for which the simulations where performed is as
follows. We simulate freight deliveries within a metropolitan. Such problems in
non-computational environments are commonly solved by having one or a few
dispatch centers to which delivery requests are addressed and these each plans
and accordingly allocates delivery tasks to delivering agents®?. This method
may face bottlenecks and inefficiency when a large, dynamically changing set
of agents and tasks is present. We demonstrate how the PAS model can over-
come this limitation.

- &

g

Fig. 8. A fragment of city map

We consider the road-network of a large metropolitan. A snapshot of a part of
this network is depicted in figure 8. In this figure squares represent tasks and
circles represent messengers (taken from a simulation of 600 messengers and
1200 freights, randomly distributed). The city map is represented by a lattice-
like graph. The boundaries of the city are 20, 000 x 30,000 meters. The lattice
includes vertices located 200 meters apart from each other. An edge may exist
between each two neighboring vertices. Each vertex represents a junction and
each edge represents a road between two junctions. We designate the map
“Full Lattice” when each vertex has edges emanating to all of its neighboring
vertices. A more realistic map would have some of the edges missing. To obtain
such a map we use some probability to determine the existence of each edge.
As a result disconnected sub-graphs (designated clusters) may occur. In such
cases the largest cluster will be selected to represent the city. We designate the

2 Note that a similar approach was used also in MAS [47].
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map “X% Lattice” when lattice and cluster generation are performed taking
the probability of including an edge in the lattice to X%.

In the PAS model, the typical potential of a particle ¢ is the Lennard-Jones
potential. When adapting the model to the specific transportation application
we experimented with several different potential functions, all of which are
sums of derivatives of powers of r;;. We checked the effect of modified po-
tential functions on the performance, and after several experiments we finally
concentrated on the following:

V(r)ij = y(alnr; + ﬁri_j? + Xrl-_f) (20)

We sought a potential function which is similar in shape and physical prop-
erties to the Lennard-Jones potential, and the one above is. It consists of
repulsive and attractive components and diminishes after a short distance,
however not as short as Lennard-Jones (and by far shorter than a Culom-
bic potential), thus implying that the interaction between the particles in the
simulated system is similar to the one in the original PAS.

We have performed several different types of simulations. These varied over
the numbers of tasks and agents involved, the homogeneity of agents and
tasks, the reliability of communication, the intensity of the lattice map and
the distribution of agents and tasks over the city map. The simulations consist
of iterations in which new freights dynamically appear at random locations on
the map. Messengers (agents) follow our algorithm to perform tasks of reach-
ing freights and delivering them to their destination. Initially, simulations were
performed such that agents and tasks are homogeneous in the sense that they
have similar capabilities and capacities. We started with these since they are
simpler to handle and predict. However it was necessary to examine cases in
which agents and tasks are not homogeneous, which are more realistic. In the
homogeneous case, masses of particles were set to 1kg, whereas in the hetero-
geneous case masses where set randomly out of a given distribution. We have
also examined several lattice maps, starting from a full lattice and moving
to 90% and 80% lattice maps. Since we have seen no significant difference
in the performance between the different maps, we concentrated on the 90%
lattice map. We did not test highly disconnected maps, since they represent
as class of problems where the solution search space is significantly trimmed,
and traditional optimization mechanisms can be exploited instead of the PAS.
To learn the effect of unreliable communication on the performance we have
experimented with a case in which messages are passed with arrival probabil-
ity which is smaller than 1. Additional parameters of the simulations are as
follows. During the simulation no new messengers appear. Parameter values
are y = 1, a = 4000, 3 = —15 x 10°, x =5 x 10'1 (in equation 20), Ry is 100
meters, Ry is 2,000 meters.

Throughout the simulations we have examined various numbers of agents.
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We allowed agents to appear and disappear dynamically, keeping the average
number (in each case separately) constant. In the homogeneous case, we con-
sidered five settings of agent and task quantities. From among these, in the
first 4 simulation settings the number of agents was 300, 400, 600 and 800, and
the initial number of tasks was 1200. In the fifth case, the number of agents was
1200 and the initial number of tasks was 1500. In all 5 homogeneous settings
additional tasks where arriving at a rate of 600 tasks per hour. The different
quantities of agents in the first four settings allowed us to study the effect of
the number of messengers (hence the messengers/freights ratio as well) on the
system’s performance. The first 4 settings were also experimented with in the
heterogeneous case. The fifth setting was aimed mainly at studying the effects
of up-scaling, and was not experimented with in the heterogeneous case. The
simulations runs were of lengths of more the 70 or more. When calculating
averages over a simulation run, we omitted the results of the first 10 hours.
Since the system always reaches a stable stable within less than 10 hours, this
omission prevents the averages from being affected by the initial conditions.
The main results of the simulations are summarized in the following graphs.

o

800 /

Free Messengers Quantity

0 100 200 am 100 500 €00 m 00 900

Messengers

Fig. 9. The number of messengers moving towards freights (y axis) as a function
of the number of messengers in the system (x axis). Other agents perform tasks
concurrently.

In figure 9 the ratio between the number of messengers in the system and the
number of agents that are simultaneously involved in movement towards tasks
is presented. The term Free messenger quantity is the number of messengers
which are currently moving towards freights or searching for them. The other
messengers are performing tasks. From the graph one can observe that as
the number of messengers involved increases, so does linearly increases the
number of those that simultaneously move towards tasks. This result for itself
does not seem of merit, however it results in reduction in the time required
for task execution (as can be seen in figure 12).

The term Freight quantity in figure 10 is the number of freights currently
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Fig. 10. The number of freights waiting for delivery (y axis) decreases sharply as

the number of agents in the system (x axis) increases.

waiting for a messenger to deliver them. We observe that this number drops
sharply as the quantity of messengers goes up. The critical point where transi-
tion occurs is around 500 messengers. Given that 1200 tasks are present, this
means that for significantly lowering the number of freights which are simul-
taneously waiting to be delivered it is enough to have a ratio of around 0.4
(500/1200) between messengers’ and tasks’ quantities in the system. Increas-
ing the ratio over 0.5 (600/1200) does not bring about a significant increase
in the performance (with respect to the numbers of freights waiting to be

delivered).
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Fig. 11. The time for an agent to reach a task (y axis) increases as the number and

density of agents in the system (x axis) increases.

Figure 11 presents the time®® it takes a messenger, who successfully delivers
a freight to its destination, to reach this freight. One can observe that as the

>3 Here and in the following graphs time is measured in seconds.
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Fig. 12. The average time freights wait for delivery (y axis) decreases sharply as a
function of the number of agents in the system (x axis).

quantity of messengers increases (and so does their density), the average time
required for a messenger to reach a freight increases as well. This results from
more messengers per freight. Given the physics-base behavior of the system,
there will be more mutual rejections, so on average a messenger will need more
time to reach a freight. This is a disadvantageous property, although it does
not mean that increasing the density is all bad. As we have seen before—
it significantly reduces the number of freights which simultaneously wait for
being delivered. In addition, as shown in figure 12, the average waiting time
of the freights decreases as well.

In figure 12 the freight average waiting time, that is, the time that a freight
that was successfully delivered to its destination has been waiting before being
handled by a messenger is presented. A sharp reduction in the waiting time
is observed. We observe phase transition around 500 messengers, similar to
the phase transition in the case of Freight quantity (figure 10). This further
supports the observation that it is not worth while to increase the agent/task
ratio to above some ratio which is, in our simulation settings, around 0.4 to

0.5.

Figure 13 presents the average freight fulfillment time, which is the time be-
tween the freight initiation and its arrival at its destination. This time sub-
sumes the waiting time and adds to it the execution time. Less steep than
in previous graphs, yet clear, is the improvement in the performance reached
around 500 messengers. It is important to notice that for 600 messengers and
more (and 1200 initial tasks) the overall task execution time is less then 1500
seconds. For a city of the size with which we deal (20 x 30 km) with a speed
limit of 50km /hr, this is a desirable fulfillment time.

Figure 14 presents the results of simulations where the probability of message
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Fig. 13. The average time for task allocation and execution (y axis) decreases as the
number of agents in the system (x axis) increases.
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Fig. 14. The average time for task allocation and execution (y axis) decreases as the
accuracy of message reception (x axis) increases.

reception varies between 50% and 100%. The simulations were performed for
both homogeneous and heterogeneous ensembles of agents and tasks. In these
simulations there is a non-negative probability of an agent not receiving in-
formation regarding neighboring tasks and agents, although this information
was transmitted. The number of agents in both of these sets of simulations
was 600 and the initial number of tasks was 1200. The other parameters were
as in the previous simulations reported above, except for masses in the het-
erogeneous case. In that case, the initial masses of tasks were set randomly,
out of a uniform distribution, between 1k¢g and 100kg, while the masses of the
agents were set randomly (uniformly distributed) between 80kg and 180kg. If
the capacity of an agent was smaller than the size of the task, it delivered only
part of the task at a time. The freight fulfillment time in the heterogeneous
case is the time it takes a whole freight to arrive at its destination.
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From figure 14 we can conclude that the freight fulfillment time increases
linearly when the probability of messages arrival decreases. However, even
when only 50% of messages arriving, the fulfillment time is better than in the
case of 400 messengers with 100% message arrival, as seen in Figure 13 (but, of
course, worse than in the case 600 messengers there). Our results indicate that
unreliable communication has a limited effect on the time required for task
performance. Similar observations apply to other measurements performed
with heterogeneity and unreliable communication.
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Fig. 15. The average time for task performance (y axis) in the case of agents and
tasks normally distributed around the center of the city. The execution time de-
creased significantly compared to an even distribution (except for the first hour of
the simulation).

Freight Fulfillment Time

3000

2500

2000

1500

1000

500

0

A R A B - A 2 R
Hours

Fig. 16. The average time for task performance (y axis) in the case of agents and
tasks randomly distributed, with settings similar to the normal distribution case
(for comparison).

The previous graphs present results of simulations where tasks and agents are
randomly distributed over the city map. In figure 15, where task performance
time in seconds (y axis) is measured as a function of the simulation time in
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hours (z axis), we present the results of a case where the distribution is un-
even. Agents and tasks are located according to a two-dimensional normal
distribution. The center of the distribution function is the center of the city
map (that is, + = 10000,,, and y = 15000,,,), and the standard deviation is
4000,,-. Such distribution means that 2/3 of the tasks and agents are concen-
trated on 1/4 of the area of the city ®*. The result, as can be observed from
the graph, is a very significant improvement in the average task fulfillment
time. On the one hand, this should be expected, since the average distance
between messengers and freights has decreased too. On the other hand, one
may expect localized concentrations of agents and tasks to result in more con-
flicts, which in turn may reduce performance. For several local densities we
examined, this is not the case. Hence, the PAS is applicable to non-uniform
distributions as well. The results in figure 15 should be compared to those in
figure 16. There, results of simulation with the same settings are presented,
except for the distribution, which is random instead of normal. In both figures
15 and 16 variable masses were implemented.
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Fig. 17. The temperature (values not calibrated to metric scale) of the system (y
axis) as a function of simulation time (x axis) shows to be moderate and stable.
This graph demonstrates it for the case of agents and tasks randomly distributed
with variable masses. Similar results were reached in all other cases.

In the simulations, we have added a temperature monitoring and control mech-
anism. Temperature is a parameter that is measured statistically over time,
based on velocities of particles. A very low temperature usually results in
the system converging to local minima, whereas very high temperatures may
result in “hyper-active” agents, which may in turn cause inefficient task allo-
cation and performance. The mechanism we provided periodically computes
the temperature and if necessary slightly corrects it. This correction is per-
formed by computing the change required in the average velocity (for reaching

54 Such distributions are common in cities, where most of the activity may be con-
centrated around their center.
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the desired temperature) and adding it to or subtracting it from the velocities
of all agents. We found out that when the parameters were adequately set,
corrections were hardly necessary, temperatures in all experiments were mod-
erate and stable, as in figure 17. From these results, and from having all tasks
performed, we can conclude that local minima, if reached at all, are scarce.

From the results presented above as well as myriad additional experiments we
conclude the following:

— The PAS model can be applied for use in large scale agent systems to solve
real problems.

— An increase in the number of agents in the system does not increase the
amount of computations per agent. Thus, larger systems do not require
more computation time.

— An increase in the number of agents in the system, holding the number of
tasks constant, is beneficial only to some extent. Beyond some agents/tasks
ratio, no significant improvement in performance is observed. We believe this
phenomenon results from redundancy in densely populated agent systems.

— The results observed are similar for different densities of the lattice map
used as well as for low probabilities of unreliable communication channels.

— The PAS is applicable for varying, non-uniform distributions of masses and
locations of particles (and, respectively, agents and tasks).

8 Related work

A large body of DAI research studies coordination among agents for dis-
tributed problem solving (for example [13], PGP [16], GPGP [9,17,63]). In [12],
Durfee and Lesser study their Partial Global Planning (PGP) approach to co-
ordination by implementing it in the Distributed Vehicle Monitoring Testbed
(DVMT). The DVMT is a network of vehicle monitoring nodes. Each node
has a planner that plans incrementally. Nodes do not communicate their de-
tailed actions, but do communicate according to a meta-level organization. A
PGPlanner modifies local plans as required due to incoming messages. In its
incremental planning and restricted communication the PGP model is similar
to our model. The DVMT task domain (which was used as a testbed for PGP
and GPGP) includes traffic monitoring. This is performed by the agents gener-
ating tentative maps for vehicle movements in their areas. Qur transportation
framework is different: we require that a transportation task be attached to
agents that plan for it and perform it. Therefore, our simulated transportation
system is significantly different from DVMT.

The majority of the simulations performed by Lesser and his colleagues were
in environments that include only few agents (in many cases 4 agents were

23



considered, and the maximal number of agents which they tested was, to our
knowledge, 25 agents). This was reasonable for the problems which they have
considered, where there is a “natural” geographical distribution of the agents,
and the problems of integration of sub problems arise between closely related
agents. In dynamic environments where different agents may have more free-
dom to move (either physically or abstractly), the problem of scaling up is more
significant. Nevertheless, Lesser et al also considered problems of scale up and
developed methods to reduce the communication needed to reach globally con-
sistent solutions. For example, the GPGP model [8] extended the PGP ideas
by allowing more agent heterogeneity, the exchange of more truly partially
global information at multiple levels of abstraction and the use of separate
scheduling algorithms. However, GPGP provides a meta-level for coordinated
planning and is not a coordination algorithm in itself.

Transportation problems were discussed in DAI research previously e.g., in
[19,47]. Another example is the DVMT as mentioned above. In [47] self-
interested agents are dealt with, whereas we discuss the case of cooperative
agents. Another significant difference is the size of the problem domain. Sand-
holm [47] provides a solution for only few agents, albeit dozens of carriers that
work on their behalf and hundreds of deliveries. Thus, the multi-agent problem
they solve is of small magnitude whereas the scheduling problems associated
with it are rather large. The transportation framework with which they deal is
comprised of few dispatch centers which are the agents and dozens of carriers
that move freights from these centers, possibly sharing tasks. Task allocation
is performed by the dispatch centers and not by the carriers.

Fischer et al [19] assume few dispatch centers as well. However, in their so-
lution each dispatch center has trucks which are each an autonomous agent.
Agents are cooperative within their company (the dispatch center) however
competitive with regards to other agents. Yet somewhat centralized, all de-
liveries can only start from dispatch centers, and all of the information with
regards to deliveries if forwarded to truck agents from these centers. In our
physics-based model no task forwarding is present (or necessary). Note that
Fischer et al assume a dynamic system, however admit to have carried out
experiments only with respect to a static one. Another difference of their sys-
tem from ours is the small size of the system. They have simulated up to 3
dispatch center, each having up to 20 truck agents.

Distributed problem solving for large scale problems (where the size is ex-
pressed by the number of variables involved) was presented in [62], where
Yokoo presents the weak-commitment algorithm for distributed constraint sat-
isfaction. The presented approach is significantly different from ours though
it permits scaling-up. The algorithm is not applied to dynamic task alloca-
tion and execution among agents as our algorithm does, however this seems
to be a possible extension of it. However, although it proves to work effi-
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ciently for large scale problems (e.g., 1100 boolean variables), the algorithm
has some undesirable properties, such as abandoning partial solutions which
prove inconsistent and, (probably resulting from the latter), an exponential
complexity of the worst case. Even in the average case the amount of compu-
tations increases with the size of the problem solved. In the model we propose
the average complexity for large systems is constant. In addition, instead of
erasing them and starting from scratch, partial solutions evolve via frequent
corrections, thus they do not reach a state of being completely inconsistent
with constraints. This may, however, limit the solution we provide from being
implemented in some domains. Note that the weak-commitment algorithm
concentrates on constraint satisfaction, while our approach discusses task al-
location. Nonetheless, the physics-based approach we present may provide
solutions to some constraint satisfaction problems, albeit not necessarily to
these solved by Yokoo.

The tileworld model [41] was used as a testbed for planning and task alloca-
tion and execution in multi-agent systems. The utilization of physics methods
allows for a model that is significantly richer than the tileworld model. While
the tileworld is a chess-board-like grid with a limited, 4-directional moves,
the physics-based model we provide allows, in its very basic physical interpre-
tation, for three dimensional systems with unlimited directional moves. We
believe that with some level of abstraction a physics-based model is further
more expressive. The tileworld model distinguishes (at least) two different
procedures — deliberation and path planning — which are usually performed
sequentially, whereas in the physics-based model an inherent property is in-
terleaving planning and execution. And, while the tileworld proves to work
successfully for systems of dozens of tasks and agents, (15 agents, 80 tasks
in [17]), its computational complexity®> will probably disable scaling up to
thousands of tasks and agents. Such system size is allowed by the physics
based model, as simulations prove.

Ephrati, Pollack and Ur [17] suggest the multi-agent filtering strategy as a
means for coordination among agents. They have conducted several experi-
ments that show, that for the tile-world, this strategy improves the perfor-
mance of the agents. This coordination is achieved without explicit negotia-
tion. In our work we do not suggest a strategy, rather we suggest a method for
modeling the goal-agent environment. Based upon this model we suggest a de-
tailed algorithm for the single agent for acting efficiently in the environment.
We provide an explicit analysis of the quality (with respect to communication
and computation consumption) of our algorithm and conditions in which it is
most appropriate. In addition, to support the theoretical analysis, we present
simulations results. As in Ephrati et al, our model does not require negotia-

5 As Kinny and Georgefl [31] explicitly say: “to reduce the complexity...we em-
ployed a simplified Tileworld with no tiles.”
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tion. In addition, the amount of required communication in our model may be
significantly smaller than in the filtering methods by Ephrati et al, since in our
model agents communicate with a small subset of the whole agent community,
whereas there agents presumably communicate with all other agents®®. This
may be of lesser significance when few agents satisfy only few dozens of goals
(as in [17]), however is most important for systems of hundreds or thousands
of agents and goals, for which we address our solution.

Emergent behavior of computational agents has been discussed in several stud-
ies that have been performed in recent years. Glance and Huberman [23] dis-
cussed this issue and borrowed methods from statistical thermodynamics in
order to study the evolution of social cooperation. In the context of social
dilemmas, they used this methodology to study the aggregate behavior of in-
dividuals facing social choices. As in our work, they applied results from theo-
retical physics to study the behavior of a system of individuals. However, unlike
us, they used theoretical physics specifically for studying the group properties
and not for studying the properties of the single, individual agent. They also
did not develop an algorithm for the behavior of such an agent within the
group in which it was a member. The main concern of their research was the
collective behavior, while we concentrate on the personal behavior, but still
discuss the collective behavior which results from this behavior. In another
paper [24], Glance and Huberman present a detailed physical formalism of the
dynamics of the collective action of a system of individuals. In our work the
main issue is the physical behavior of the single agent. We do not use physics
in order to analyze existing systems. Rather, we develop an algorithm that
is based upon the physical properties, and we rely on the known physical >
behavior of particles to predict the behavior of the agents that will use the
algorithm we have developed.

Shoham and Tennenholtz [53] presented results of simulations that were per-
formed in order to perceive the emergence of conventions in multi-agent sys-
tems. They are concerned with the design of multi-agent systems that converge
towards common social laws. In our research, though we discuss emergent co-
operation, we do not discuss the emergence of the laws according to which the
cooperation occurs. Rather, we determine the social laws to be such (physical
laws) that they will cause the emergent cooperation of the system when this
cooperation is necessary.

The pursuit problem [1] has be widely used as an example problem for multi-
agent coordination and cooperation. The problem is of several predator agents

56 This issue is not explicitly addressed in the paper, but one can conclude it from
the information available to an agent about the others.

5T A variety of computer science problems, in general and Al, in particular have been
described and solved by physics-oriented models (e.g., [64]). However, we avoid the
description of these studies because we do not find them similar enough to our case.
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attempting to cooperatively hunt a moving prey. Its uniqueness is in the ne-
cessity of coordination among the predators as well as the dynamic change
in the goal location. As Ishida and Korf state [26], off-line algorithms that
compute the entire solution will fail to provide an appropriate answer due to
the dynamism of the problem. They devise a real-time algorithm, the moving-
target search algorithm (MTS), to overcome these limitations. They describe
the problem by a connected graph where each setting of the agents on the
graph is a unique state. The complexity of the algorithm MTS is O(N?),
where N is the number of states. When considering multiple agents on a large
graph, this complexity prohibits feasible solutions. Another algorithm, based
on Q-learning, was suggested in [40]. There, more agents were involved in the
solution however their number was only 4 (hunters) 4+ 1 (prey) agents. The
number of trails to reach a solution was reduced by the learning mechanism
however is still relatively high. The algorithms used for solving the multi-
agent pursuit problem are to complex for problems that consist of thousands
of agents and a large scale problem space. Qur research is aimed at such large
scale systems, and may be found inadequate for too small systems. It must be
noted that in our work we do not explicitly discuss cases in which the goals
change their locations dynamically °®.

Another approach to describing group behavior is presented by Mataric. In her
paper [38], she proposes the definition of a set of basic interactions that will
allow the simplification of analysis of group behavior. However, Mataric’s ap-
proach differs from ours. While she discusses the description and the synthesis
of group behavior, she does not provide an explicit set of basic interactions. In
our work, we concentrate on the nature of the basic interactions and adopt the
physical interactions among particles to model the interactions among agents
and goals.

Due to the rapid improvement in the micro-mechanics and microprocessor
technologies, a real environment of many simple microscopic autonomous
robots is becoming possible. As a result of this progress, as described in the
paper of Gage [21], a simple emergent cooperation method among the agents is
necessary. In his work, Gage defined a number of specific classes of desired mo-
bility behaviors for use in military scenarios. He also provided a list of topics
that should be considered by designers of such systems, and presented results
of simulations which he performed to illustrate the behavior of such systems.
Gage’s research differs from ours in several aspects: while he concentrates on
specific classes of motion, we do not restrict our model to either specific classes
or exclusively to motion. Gage proves the validity of his methods by perform-
ing simulations, whereas we rely on theoretical and experimental physics for

°8Such dynamics, however, are encapsulated in the physical model, and only
marginal modifications will be required to adjust our model the case of moving
goals.
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proving validity.

The path-planning and robot-navigation (PPRN) research °® have used po-
tential fields as a means for planning the path, e.g., in [11,29,30,59]. This
approach appears to be closely related to our research, as we, too, use po-
tential functions. However, there are several significant differences between
the path-planning and robot-navigation problem and our task-allocation and

agent-coordination problem, and the techniques that are used for solving these
problems. The differences are as follows:

(i)

(i)

(iii)

(iv)

In PPRN research, the main objective is planning an optimal path for the
robots to navigate from an initial location to its destination. Our main
objective however is to solve a task allocation problem with aspects of
agent-coordination in a multi-agent environment.

While we discuss the multi-agent case, with potentially thousands of

agents, the type of planning research that is involved with potential func-

tions usually discusses the single robot case. In cases where the more-
than-one robot case is discussed, the number of robots is considered very
small as opposed to the MAS we discuss.

In cases where the PPRN research addresses the multi-robot planning

problem, e.g., in [3,21,38,58], the potential field concept is not employed.

In such cases the behavior of groups and formations of robots are dis-

cussed, given a set of specific strategies according to which the robots

act. Among these strategies you may find some in which robots follow a

leader or some predefined geometric patterns. In our multi-agent model

however the agents’ strategy is based on the physical potential-well con-
cept.

Although both the PPRN and our research use potential fields for prob-

lem representation and resolution, the type of potential functions and the

way of using them is different, as follows:

— The potential functions employed for path-planning are artificial. The
only expected result from such potential functions is robot-motion ac-
cording to the potential field gradient. In our research, we employ
physics potential functions. This results in a physics-like behavior of
the agents that act with respect to these functions. In particular, the
use of the potential functions of particles in a non-ionic fluid results in
a model that provides the single agent with an algorithm for reaching
and performing goals within a large community of agents. In addition,
the use of such potential functions enables the prediction of the bulk
properties (i.e., the behavior) of the MAS as a whole.

— In the PPRN research, an attractive potential field (usually quadratic)
is employed to lead the robot to the goal, and various shapes of repulsive
potential fields are used to cause obstacle-avoidance. In our work, all

9 A comprehensive overview of these can be found in [35]
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of the entities —agents as well as goals— (and obstacles, if present) are
modeled by the same type of potential function; i.e., by a physical
potential-well.

— The potential-wells in our model may change dynamically due to the
fulfillment of goals and the expenditure of resources. This leads to a dy-
namically alternating potential field which results in a dynamic update
of the agents’ behavior. Dynamics of the potential field in PPRN re-
search, when present, refer only to the change in the locations of robots
and obstacles, and not to a change in the specific function that models

a specific entity.
(v) Another important difference of our research, as compared to the path-

planning research, is that we do not restrict the model to physical tra-
jectories — the model can be used for abstract motion °.

(vi) There are cases in which PPRN employ physics-like concepts and anal-
ysis methods (e.g., in [11]). Nonetheless, this selection is not based on a
model of an existing, large-scale, physical system from which properties
can be inferred, as opposed to our our model selection. However, this
artificial choice was later proved, with several restrictions, to posses of
good properties such as polynomial complexity and near-optimal trajec-

tories ®* [10].

In summary, the PPRN research with artificial potential functions discusses
cases where a single robot or a small number of robots must navigate and
locate their goals. Our approach is very different: we discuss cases of large-
scale MAS. with many agents involved; cases where a specific agent does not
have a specific goal towards which it must navigate; cases of cooperative goal
satisfaction. These are not the aim of the PPRN research and therefore are
not discussed in it.

The issue of allocating agents to goals has widely been discussed among DAI
researchers. A well-known model is the Contract Net Protocol [54]. The CNP
uses negotiation based on task announcements, bids and contracts for task
allocation. The net consists of dynamically alternating worker and manager
nodes, and they exchange information about goals to be performed and sub-
goals that were already processed. The CNP was not designed based on an
existing model, as is our model, therefore the performance of the system is
checked only by simulations. In our model, the performance of the system is
predicted from its physical properties and the efficiency is formally calculated
and compared to the optimal results. The model we present allows (but does
not require) minimization of the transmitted information ®* and thus enables

60 The concept of abstract motion shall be explained in the next section.

61 Note that the latter is appropriate for a single robot trajectories. Our model is
meant for multiple agents task allocation.

62 Note that this minimization refers to the number of recipients of the information
and not necessarily to the amount of information transmitted.
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large-scale systems to be efficient.

A study of planning in large-scale MAS has been presented by Wellman [61].
In this research, the general-equilibrium approach from economics serves as
the theoretical basis for the planning mechanism. Mechanisms in which com-
petition is applied are used to construct a market-oriented programming en-
vironment, which is employed as a means for the construction and analysis
of distributed planning systems. In his work, Wellman performed simulations
to derive system equilibrium®®, and showed that given the appropriate re-
strictions, the model reaches near-optimal results (small deviations from the
optimal results are described in [61]). As done by Wellman, we also discuss
large-scale systems. We, too, apply an analytical model for designing the dis-
tributed planning mechanism. However, the use of the physics-oriented ap-
proach allows us to predict the resulting behavior of the system and that of
its constituent agents based on the known behavior of physical systems. More-
over, while Wellman performed simulations that included 3 to 20 agents [60],
(which we view as a comparatively small MAS), we performed simulations
with the number of agents exceeding 1000. Another major difference is the
type of systems for which the models are appropriate. While Wellman’s model
is most appropriate for self-interested agents, our model was designed for DPS
systems, where the agents try to increase the overall outcome of the system.

9 Conclusion

The design and analysis of large-scale agent systems imposes difficulties that
are hard to solve even when the proposed solutions are of low-order polynomial
complexity. In this paper some aspects of this problem are addressed. Namely,
we provide a method for task allocation and execution in several classes of
large-scale cooperative MAS. We present a physics-oriented approach that
results in a very low complexity on the part of the single agent and may
even be of order O(1). Such results are possible since we use a model whose
behavior is already known. Therefore, we are not required to perform the
numerous explicit calculations that would have otherwise been necessary.

The model we have presented and the algorithm that enables the single agent
to act according to the model consist of methods with which the agents allo-
cate themselves to goals in order to satisfy the goals. The agent-goal matching
is an emergent result of the physics-oriented behavior of the agents. According
to our model, each agent is most strongly attracted to the goal that it will sat-
isfy with the best fit (within a limited range). In addition, in cases where too
many agents fit the requirements of the same goal, our model will disenable

63 The definition is provided there.
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some of them from reaching the goal, via the property of mutual rejection. As
we have shown, the algorithm that we provide leads to agent-goal allocation,
it converges to a solution, the computational complexity is low and commu-
nication, if necessary, is of a small amount. Our method does not lead to
the optimal goal-agent allocation, but reaching an optimal allocation requires
complete on-line information about all of the agents and goals comprising the
system and, for a large class of problems, an exponential computation-time.

The physics-oriented approach which we present has several advantages. While
common DAT algorithms must be checked for their validity either by a formal
proof or by simulations, our model can rely on theoretical and experimental
results that are already known from physics. According to these results, we can
predict the evolution of the modeled MAS, since it will evolve in the same man-
ner as a corresponding physical system. The local interactions, which enable
one to derive the global behavior of the system, assure a low computational
complexity of the model. In very large-scale MAS, this approach provides a
model that promises emergent cooperative goal-satisfaction activity. As we
have shown, these properties proved to hold in a simulated system. In addi-
tion, the properties of the system as a whole can be analyzed using concepts
from statistical mechanics®. The employment of such concepts enables the
derivation of the bulk properties of a system via the properties of its compo-
nents. We leave this analysis for future work.
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