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Abstract. A framework for cooperative goal-satisfactionin large-scaleMulti-
AgentSystems(MAS) is presentedin this paper. This is performedby demon-
strating the applicability of a low complexity physics-orientedapproachto a
large-scaletransportationproblem.Theframework is basedonmodelingcooper-
ative MAS by a physics-orientedmodel.Accordingto themodel,agent-systems
inherit physicalproperties,andthereforetheevolution of thecomputationalsys-
temsis similar to the evolution of physicalsystems.We provide a detailedal-
gorithmto be usedby a singleagentandimplementthis algorithmin our sim-
ulations.Via thesewe demonstrateeffective taskallocationandexecutionin an
open,dynamicMAS thatconsistsof thousandsof agentsandtasks.

1 Intr oduction

Goal-satisfactionin MAS mayrequirecooperationamongthe agents,but cooperative
goal-satisfactionmaybebeneficialevenif theagentscanperformgoalsby themselves.
Traditionaltask-allocationmethods[14] requirecoordinationvia communication[3].
In very largeagent-communitiesthereusuallycannotbedirect,on-lineconnectionbe-
tweenall of theagents,assucha connectionis too costly. Therefore,whenthenumber
of agentsincreases,the complexity of mostof the cooperationmethodsbecomesun-
bearable.To resolve thescale-upcomputationalexplosionof cooperationmechanisms
in largeMAS wepresenta differentapproach.

We applya modelbasedonmethodsfrom classicalmechanics[12] to modellarge-
scaleagent-systems.The physics-orientedmethodsareusedto constructa beneficial
cooperativegoal-satisfactionalgorithmtobeusedby thesingleagentwithin thesystem.
In spiteof themyriaddifferencesbetweenparticlesandcomputationalagents,weshow
via simulationsthat, at leastfor the exampleproblemthat we have tested,using the
physics-orientedapproachenableseffective cooperationandgoal-satisfactionin very
�
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large agent-systems.In currentresearchwe are investigatingthe applicability of our
modelto other, non-physicaldomains.

Many problemsarisein largescaleMAS research.In this paperweconcentrateon
investigatingonefacet– taskallocationandexecutionwithin large-scalecooperative
MAS

�
. More specifically, we considercasesin which cooperative autonomousagents

allocatethemselvesto tasks.Wedescribeamodelthatallowsfor thedynamicagent-task
allocationandis appropriatefor large-scaleMAS andtestit. Thelatteris performedby
simulatingadynamicagentsystemthatfollowsoursuggestedmechanismsandconsists
of thousandsof agentsandtasks.To our bestknowledge,up to date,this is thelargest
simulationof a task allocationand execution in a dynamic,openMAS. The model
we presentprovidesa solution to problemswhich were not addressedpreviously in
MAS, andmaybethebasisfor futuresolutionsfor a largerclassof problemdomains.
We show hereapplicabilityto onedomainandin researchin progresswe have shown
applicabilityto another, lessphysicalproblemdomain.Yet,moreresearchis necessary
to determineapplicabilityto additionaldomains.

1.1 Assumptions,notationsand concepts

We assumethattheagentswith whichwe dealhave theability to perceive thevirtual
�

displacementin thegoal-space,andcanperceivethepropertiesof otheradjacentagents
andgoals.Thismaybedoneby sensorsintegratedinto theagents.We alsoassumethat
eachagentknows aboutthetypesof resourcesthatotheragentsmayhave, but maybe
uncertainasto theparticularresource-holdingsof any otherindividual.Thesetwo as-
sumptionsarenecessarysincetheagentsareexpectedto propagatefrom stateto state
within thegoal-spaceaccordingto thepropertiesof thesurroundingagents,goalsand
obstacles.In orderto enablesuchpropagation,someknowledgeregardingneighborsis
necessary. We assumethat eachagenthasa performancecapabilitythat canbe mea-
suredusingstandardmeasurementunits.Thestandardmeasurementwill beusedasa
quantitativewayof measuringtheagents’successin fulfilling goals.In addition,weas-
sumethatthereis a scalingmethodwhich is usedto representthedisplacementsof the
agentsin thegoal-spaceandto evaluatethemutualdistancesbetweengoalsandagents
within thisspace.This assumptionis necessarysincevirtual distances(or physicaldis-
tances)areasignificantfactorin themodelwepresent.Weassumethatgoal-satisfaction
canbeachievedprogressively. That is, a goalmaybepartially satisfiedat oneinstant,
andits remainingnon-satisfiedpartmaybecompleteat anotherpoint in time.

To presentourmodel,wereview conceptsandnotationsfromphysics.Thedisplace-
mentvectorof a particle

�
is denotedby ��� . �	� denotesthevelocity, and 
�� denotesthe

acceleration.Thekinetic energy of a particle
�
is representedby �
� , andthepotentialis

representedby � . Thepotentialis aspatialfunctionandthereforeis sometimescalleda
�

CooperativeMAS arefrequentlyreferredto asaDistributedProblemSolvers(DPS)[2] agent
systems.In DPSagentsystemsasin cooperativeMAS, agentsattemptto increasethecommon
outcomeof thesystem.�
Sincethe goal-spaceis not necessarilyphysical,we do not assumephysicaldistancesand
thereforecall themvirtual. In work in progresswe show how suchvirtual distancescanbe
modeledandcomputed.



field of potentialor apotential-well.Forcescanbederivedfrom thepotential.Eachpar-
ticle

�
’s massis denotedby � � , its displacementis denotedby thedisplacementvector

��� , its momentumby ��� andtheforcethatactson it is denotedby ��� .

1.2 Adapting physicsto MAS

MAS Physics
identifyingtheenvironments locatingparticlemodels
wherephysics-orientedmodels andtheirproperties
areappropriate;matching
particlepropertiesto agents/goals
selectingthematter-states identifyingstatesof matterand
thatcanbeusedto model theparticlebehavior within
automated-agents’systems.
developingalgorithmsfor usingmathematicalformulationto
agents’goal-satisfaction; predictanddescribetheproperties
adjustingto thephysicssystem andevolutionof theselected
for validity of thealgorithm particlemodel
analysisof thecomplexity theoreticalandsimulation-based
andpropertiesof the analysisof physicalparticle
algorithm systemsbehavior

Table1. DistributedAI andPhysicsfor cooperativeMAS

In theMAS thatwe consider, thereis a largesetof agentsanda largesetof goals
they needto satisfy. Eachagenthascapabilitiesandshouldmove toward satisfying
goals.We usea physicsmodel that consistsof particleswhich representthe agents
andthe goals,and to develop a distributedcooperative goal satisfactionmechanism.
Wefirst stepmatchbetweenparticlesandtheirproperties,agentsandtheircapabilities,
andgoalsand their properties(seetable1). Next, we identify the stateof matterfor
modelinga communityof agentsandgoals.Themathematicalformulationthatis used
by physicistseitherto describeor to predictthe propertiesandevolution of particles
in thesestatesof matter, serve asthe basisfor the developmentof algorithmsfor the
agents.However, severalmodificationsof thephysicsmodelarenecessaryto provide
anefficient algorithmfor automatedagents.

In our model,agentsandgoalsaremodeledby dynamicparticlesandstaticpar-
ticles, respectively. The matchbetweenparticlepropertiesand agent/goalproperties
is describedin table2. We modelgoal-satisfactionby a collision of dynamicparticles
with staticparticles.However, thepropertiesof particle-collisionsaredifferentfrom the
propertiesof goal-satisfactionandseveral adjustmentsareneededin orderto provide
theagentswith efficient algorithms.Thesemodificationsaredescribedin detail in this
paper.



AutomatedAgents PhysicsModel
communityof agentssatisfyinggoals non-ionicliquid system
agent dynamicparticle
goal staticparticle
agent’scapabilities particle’s mass
agent’s(virtual) locationin agents-goalsspacelocationof particle
goalsatisfaction static-dynamiccollision
algorithmfor goalsallocation formalmethodfor calculating

theevolutionof displacement

Table2.Thematchbetweenthephysicsmodelcomponentsandthelarge-scaleautomatedagents
environments

2 Modeling agents– a physics-orientedapproach

Classicalmechanicsprovidesa formal methodfor calculatingtheevolution of thedis-
placementandthe momentumof classicalparticles.For a particle

�
, the equationsof

motionare:
� �	� � ���� �	� � � 
 � and � �	� � ���� �	� � � � � (1)

Themotionof aparticledependsonthefieldof potentialin whichit movesandtheforce
��� ��� � � �"!�# �%$&��' . Themodelwepresententailstreatingagents,goalsandobstacles
asparticles.That is, eachagentwill have its equationsof motion andan initial state.
Notethatanagent’sequationsof motiondonotnecessarilyentailrealphysicalmotion.
Thepotentialfield in whichanagentactsrepresentsthegoalsandtheotheragentsin the
environment.Subjectto the potentialfield, agentssolve the equationsof motion and,
accordingto theresults,progresstowardsthesolutionof goalsandeithercooperateor
avoid conflictswith otheragents.Thecooperationandconflict-avoidanceareemergent
propertiesof ourphysics-orientedmodel.

An appropriatephysicalsystemmustconsistof a potentialthat,whenadaptedto
theagent-model,will leadtheagentsto successfulandbeneficialgoal-satisfaction.The
fluid modelis mostappropriatefor our systems.As opposedto thesolid state,a fluid
systemcanevolve from its initial stateinto new, differentstates.Preferableis a model
that doesnot requirelong rangeinteractions(e.g.,thenon-ionicliquid model).In the
modelsuggestedin [12] the typical potentialof a particle

�
in a non-ionicliquid was

suggested(theLennard-Jonespotential).In themodeldevelopedfor thespecifictrans-
portationapplicationdealtwith in this paperwe experimentedwith several different
potentialfunctionsandfinally concentratedon thefollowing:

�($&��' �*)+�-, $/.103254 � )5687 4
9 �
�*) 6;: 4
9=<�*) ' (2)

where4 �*) correspondsto thedistanceof particle
�
from particle> . Thispotentialdimin-

ishesaftera shortdistance,thusimplying that the interactionbetweentheparticlesin
thesystemis limited to shortdistances.



3 The physics-agent-system(PAS) model

Thecooperative MAS systemwith which we dealis modeledby a setof particlesand
a potentialfield. Theagentsin thesystemaremodeledby dynamicparticlesandtheir
potential-wells.Thegoalsandtheobstaclesaremodeledby staticparticleswhich are
representedby fixed potential-wells.The superpositionof the potential-wellsof the
particles,eitheragentsor goalsandobstacles,constructsa potentialfield. Theparticles
move accordingto thefield of potentialandtheirown properties.

In the PAS model,the agent’s capabilityof satisfyinggoalsis representedby the
massof theparticlethatmodelsit, andthereforeby thepotential-energy � � �@? ��A�B ,
which is a productof themass,aswell. Particleswith a greaterpotential-energy model
agentsthat can satisfy larger or more difficult goalsand sub-goals.This meansthat
a greatermassof a dynamicparticlethatmodelsanagent(otherpropertiesremaining
constant,andthuscausingagreaterpotential-energy),entailsalargercapabilityof goal-
satisfactionby theagent.Themassof a fixedparticlerepresentsthesizeof thegoalor
theobstacle.This meansthat in orderto satisfya greatergoal,which is modeledby a
particlewith a greatermass,moreeffortsarenecessaryon thepartof theagents.

Thedisplacementvectorof aparticle ��� modelsthedisplacementof theagentin the
goal-space.Accordingto thevirtual displacementof anagent,its distancesfrom other
agents,goalsandobstaclescanbecalculated.Thepotentialis calculatedaccordingto
thesedistances.Themomentumvector � � of particle

�
representsits physicalvelocity

andis usedfor thecalculationof thekineticenergy. In thePAS model,thevelocityof a
dynamicparticlerepresentstherateof movementtowardsthesatisfactionof a goalor a
partof agoal.

3.1 Motion towards goal-satisfaction

In thephysicalworld,themotionof particlesis causedby themutualattractionbetween
them.In theagents’system,theagentscalculatetheattractionandmove accordingto
theresultsof thesecalculations.Thereactionof a particleto thefield of potentialwill
yield a changein its coordinatesandenergies.In our model,eachagentwill calculate
theeffect of the potentialfield on itself by solvinga setof differentialequations.Ac-
cordingto theresultsof thesecalculations,it will movetoanew statein thegoal-domain
(section3.3).

Thesteepdecayof thepotentialfunctionbeyondashortdistancefrom thecenterof
thepotential-wellresultsin derivedweakforcesandnegligible interaction.Physicists
have shown thatwhenthe long-distanceinteractionsareneglected,theresultsof sim-
ulationsstill agreewith theoreticalstatistical-mechanicsandthermodynamics[15, 11].
Therefore,it is commonto cut off the rangeof interactionby cutting off the poten-
tial functionafter it diminishesto from C to CED
F of its maximalvalue.Theradiusof
interaction(andof thecut-off) is denotedby 4HG .

Agentswill usenumericalintegrationto solve the equationsof motion that they
mustsolve, with respectto time. The integrationmustbe iteratedfrequentlyandper-
formedwith small time-stepsIKJ . We determinethesizeof the time differential IKJ re-
lying on theexperiencegatheredin physicssimulations[11]: wedemandthata typical
particlein themodelwill passa distanceof 4�L in MNC�D time-stepsIKJ . This requirement



implies that the averagevelocity ? of a particle (at its initial displacement)directly
affects IKJ by therelation IKJ � 4EL A ? .

3.2 Collision and goal-satisfaction

Thedynamicsof thephysicalsystemwhich modelsthecomputationalsystemleadsto
collisionsbetweenparticles.Two typesof collisionsarepossible:a collision between
two dynamicparticles,which we denoteby DDC, anda collision betweendynamic
andstaticparticles,denotedby SDC.In ourmodel,theDDC representstheinteraction
betweentwo agents.In orderto prevent situationswhereagentsoverlap,the particles
that model the agentshave a mutual repulsion.The decisionon which agentsshall
performa specificgoalwill emerge from therepulsion.Dynamicparticlesthatmodel
agentsshallhave a potentialthatconsistsof a dominantrepulsivecomponent.

TheSDCrepresentsagent-goalinteraction.In suchinteractionswe would like the
staticparticlethatmodelsthegoalto attractthedynamicparticlethatmodelstheagent.
Adopting physicalconcepts,we usethe notion of typical radiusto specify the point
from which the particlestartsthe collision. A typical radius O of a particleis usually
takento bethedistancefrom its centerto thepoint whereintheforceis zero.An SDC
occurswhenadynamicparticleis in thevicinity of astaticparticle.Vicinity heremeans
thatthedistancebetweenthemis a few typical radii ( 4�L ).

The goal-satisfactionis performedduring the collision. An agentthat reachesa
goal may eithercompletelyor partially satisfyit. In both cases,the modelrequiresa
reductionin themagnitudeof thegoal.This impliesthatthemassof themodelingpar-
ticle shallbereduced,but mass-reductionis nota physicalpropertyof sucha collision.
Therefore,somemodificationsof the modelshallbe done,aslong asthey do not af-
fect thegeneralevolution of thesystem.This will bepossibleif themodelconsistsof
a schemefor a temporalpartitionof the evolution of the system.This meansthat the
evolution of the systemwill bepartitionedinto several time segments(differentfrom
IKJ , muchlonger),andin eachtemporalsegmentthe physicalevolution of the system
will not dependon theothersegments.

3.3 A protocol for the singleagent

In orderto causeevolutionof thesystemtowardsgoal-satisfaction,eachagentusesthe
informationthat it cangatherby observation (e.g.,via sensors)aboutits neighboring
agentsandgoalsand regardingits previous state.Accordingto this information, the
agentwill constructthe local field of potentialandsolve theequationsof motion.The
resultsof the equationsof motion will enablethe agentto decidewhat its next step
towardsgoal-satisfactionwill be.Theexactdetailedalgorithmfor thesingleagent

�
is

asfollows:
Loopandperformthegoal-reachingandgoal-satisfactionprocessesuntil theresources
necessaryfor satisfyinggoalshave beendepletedor no goalswithin the interaction
range4 G have beenobservedfor severaltime-segments.
Goal-reachingprocess

1. AdvancethetimecounterJ by IKJ .



2. Locateall of the agentsandgoalswithin the range4 G , the predefinedinteraction
distance.Denotethedistanceto any neighboringentity > by 4 �*) .

3. Calculatethemutualpotential(usingequation2) with respectto eachof theagents
andgoalswithin therange.

4. Sumoverall of thepairwisepotentials�1$P4Q� )
' andcalculatethegradientof thesum
to derive theforce R�� .

5. Using R�� andthepreviousstate� � $SJ � IKJT'HUV� � $SJ � IKJT' , solvetheequationsof motion
asdescribedin section2, in equation1.

6. Theresultsof theequationsof motionwill bea new pair ���W$XJT'HUV�Y�W$XJT' . Move to the
new statethatcorrespondsto thedisplacement���W$SJT' .

7. At eachtime-step,aftermoving to anew state,calculatethenew kineticenergy and
potentialaccordingto thenew coordinates���W$SJT'HUV�Z�W$SJT' .

8. If your distancefrom thecenterof a particlethatmodelsa goal is greaterthan 4 L ,
returnto step C . Otherwise,startthegoal-satisfactionprocess.

The goal-satisfactionprocess
After reachinga goal,theagentmustsatisfyall or at leastpartsof it:

– Move into thepotential-wellthatmodelsthegoalaccordingto thephysicalproper-
tiesof theentitiesinvolvedin theprocessandperformthegoal.

– If �@[ , themassof theparticlethatmodelstheagent,is smallerthan �]\ , themass
of theparticlethatmodelsthegoal,subtract�@[ from �(\ . Else, �]\ � D . In a case
of depletingresources,�^[ is reducedin a similarway. Returnto step C .
Theiterative methodwhich we proposeleadsto a gradualreductionin theamount

andsizeof thegoalsto besatisfied,andwill leadfinally, to completionof thegoals.

4 Simulation

To examineour modelandshow its applicabilityto realproblemswe have performed
a setof simulations.Via thesewe demonstrateeffective taskallocationandexecution
in anopen,dynamicMAS thatconsistsof thousandsof agentsandtasks.Theproblem
domainfor which thesimulationswhereperformedis asfollows.We simulatefreight
deliverieswithin a metropolitan.Suchproblemsin real environmentsarecommonly
solvedby having oneor afew dispatchcentersto whichdeliveryrequestsareaddressed
and theseeachcentrally plansandaccordinglyallocatesdelivery tasksto delivering
agents.This methodmay face bottlenecksand inefficiency when a large numberof
agentsand tasksis present.We demonstratehow the PAS modelcan overcomethis
limitation.

We considertheroad-networkof a largemetropolitan.A snapshotof a partof this
networkis depictedin figure1. In this figuresquaresrepresentmessengersandcircles
representtasks.Thecity mapis representedby a lattice-likegraph.Theboundariesof
thecity are

B D�U�D�D�D`_ba
D�U�D�D�D meters.The lattice includesverticeslocated200meters
apartfrom eachother. An edgemayexist betweeneachtwo neighboringvertices.Each
vertex representsa junctionandeachedgerepresentsaroadbetweentwo junctions.We
designatethe map”Full Lattice” wheneachvertex hasedgesenamatingto all of its
neighboringvertices.A morerealisticmapwould have someof theedgesmissing.To



obtainsucha mapwe usesomeprobability to determinethe existenceof eachedge.
As a resultdisconnectedsub-graphs(designatedclusters)mayoccur. In suchcasesthe
largestclusterwill beselectedto representthecity. Wedesignatethemap”X% Lattice”
whenlattice andclustergenerationareperformedtaking the probability of including
anedgein thelatticeto X%. Notethatthestructureof citiesandroadwaysregulations
mayprevent movementalongtheshortestpathbetweentwo locations,asassumedby
thegeneralalgorithm.Thus,in thesimulation,thedistancebetweentwo locationsc/d and
c � wascalculatedastheshortestway thatonecoulddrive from c d to c � . Furthermore,
if thedirectionfor movement<fe? calculatedby the agentin the goal-reachingprocess
algorithmdoesnot agreewith a roaddirection e4�g�hiI , thenthe roadwith the smallest
angelwith e? is selectedfor movement.This selectionis not differentfrom a physical
behavior in environmentswith obstacles,andthereforejustified.

Thesimulationconsistsof iterationsin which new freightsdynamicallyappearat
randomlocationson the map.The freightshave an initial sizewhich is setto 1 kg in
the homogeneouscaseandto a randomvalue(out of a given range)in the heteroge-
neouscases.In addition,eachfreight hasa randomdestination.Messengers(agents)
follow ouralgorithmto performtasksof reachingfreightsanddeliveringthemto their
destination.

Fig. 1. A fragmentof city map

We have performedseveral different typesof simulations.Thesevariedover the
amountof tasksandagentsinvolved,thehomogeneityof agentsandtasks,thereliability
of communicationandtheintensityof thelatticemap.

Our simulationswereinitially performedsuchthat agentsandtasksarehomoge-
neousin the sensethat they have similar capabilitiesandcapacities.We startedwith
j

Thenotation kl refersto thedirectionof avector m .



Fig. 2.

thesesincethey aresimplerto handleandpredict.However it wasnecessaryto exam-
ine casesin which agentsandtasksarenot homogeneous,which aremorerealistic.In
thehomogeneouscase,massesof particleweresetto C��
n , whereasin theheterogeneous
casemasseswheresetrandomlyoutof agivendistribution.Wehavealsoexaminedsev-
erallatticemaps,startingfrom a full latticeandmoving to 90%and80%latticemaps.
Sincewe have seenno significantdifferencein theperformancebetweenthedifferent
maps,weconcentratedonthe90%latticemap.To learntheeffectof unreliablecommu-
nicationontheperformancewehaveexperimentedacasein whichmessagesarepassed
with arrival probabilitywhich is smallerthan1. Additional parametersof the simula-
tionsareasfollows.Duringthesimulationnonew messengersappear. Parametervalues
are ,@� C�. �po D�D
D , 7b�q� CEr
str , :f� r�s]C�C (theseareusedin equation2), u L is 100
meters,u+G is 2,000meters.Notethatthesevalueswherenotarbitrarilychosen.Rather,
wehave experimentedwith a varietyof valuesto fine-tunethesystemuntil we arrived
at thesecoefficients.We soughttimely taskperformance,andthesecoefficientsyielded
thebestresults.

In thehomogeneouscase,we consideredfive settingsof agentandtaskquantities.
In the4 simulationsettingsin which thenumberof agentswas300,400,600and800
the initial numberof taskswas1200.In the caseof 1200agentthe initial numberof
taskswas1500.In all 5 settingsadditionaltaskswherearriving at a rateof 600 tasks
perhour. Thedifferentquantitiesof agentsin thefirst four settingsallowedusto study
theeffect of thenumberof messengers(hencethemessengers/freightsratioaswell) on
thesystem’sperformance.Thefifth settingwasaimedmainlyatstudyingtheeffectsof
up-scaling.

Themainresultsof thesimulationsaresummarizedin thegraphsbelow.

– In figure2 theratiobetweenthenumberof messengersin thesystemandthenum-
berof agentsthataresimultaneouslyinvolved in movementtowardstasksis pre-
sented.The termMessengerquantity is thenumberof messengerswhich arecur-



rently moving towardsfreights.Theothermessengersareperformingtasks.From
the graphonecanobserve that as the numberof messengersinvolved increases,
so doeslinearly increasesthe numberof thosethat simultaneouslymove towards
tasks.This resultfor itself doesnot seemof merit, however it resultsin reduction
in thetimerequiredfor taskexecution(ascanbeseenin figure4).

Fig. 3.

– The term Freight quantity in figure 3 is the numberof freightscurrentlywaiting
for a messengerto deliver them.We observe that this numberdropssharplyasthe
quantityof messengersgoesup.Thecritical pointwheretransitionoccursis around
500messengers.Giventhat1200tasksarepresent,thismeansthatfor significantly
loweringthenumberof freightswhicharesimultaneouslywaitingto bedeliveredit
is enoughto havearatioof around0.4betweenmessengers’andtasks’quantitiesin
thesystem.Increasingtheratioover 0.5doesnotbringabouta significantincrease
in theperformance(with respectto thenumbersof freightswaitingtobedelivered).

– ThetermFulfilling messengerreaching time in figure4 refersto thetimev it takes
a messenger, who successfullydeliversa freight to its destination,to reachthis
freight.Onecanobserve thatasthequantityof messengersincreases(andsodoes
their density),the time which is requiredfor a messengerto reacha freight in-
creasesaswell. This is a disadvantageousproperty, however it doesnot meanthat
increasingthedensityis all bad.As we have seenbefore- it significantlyreduces
thenumberof freightswhichsimultaneouslywait for beingdelivered.In addition,
asshown in figure5, theaveragewaiting timeof thefreightsdecreasesaswell.

– In figure5 thefreight averagewaiting time is presented.ThetermFulfilled freight
waiting time refersto the time thata freight thatwassuccessfullydeliveredto its
destinationhasbeenwaiting beforebeing handledby a messenger. A sharpre-

w
Hereandin thefollowing graphstime is measuredin seconds.



Fig. 4.

Fig. 5.

duction in the waiting time is observed. We observe phasetransitionaround500
messengers,similar to the phasetransitionin the caseof Freight quantity(figure
3). This furthersupportsthe observationthat it is not worth while to increasethe
agent/taskratio to abovesomeratiowhichis, in oursimulationsettings,around0.4
to 0.5.

– Figure6 presentstheaverageFreightfulfillmenttimewhichis thetimebetweenthe
freight initiationandits arrivalat its destination.Lesssteepthanin previousgraphs,
yet clear, is theimprovementin theperformancereachedaround500messengers.
It is importantto noticethat for 600messengersandmorethetaskexecutiontime
is lessthen1500seconds.For a city of thesizewith which we deal(

B D(_xa�D km)



Fig. 6.

Fig. 7.

with a speedlimit of 50km/hr, this is a desirablefulfillment time.
– Figure7 presentsoneof theresultsof asetof simulationsof heterogeneousensem-

blesof agentsandtasks,wheretheprobabilityof messagereceptionvariedbetween
r
D�F and CED
D�F . That is, in this simulationsanagentmaynot receive someof the
informationregardingneighboringtasksandagentsalthoughthis wastransmitted.
The initial massesof taskswassetrandomlybetweenC��
n and CED�D
�
n , while the
massesof theagentswassetrandomlybetweeny
D��
n and C�y�D��zn . If thecapacityof
anagentwassmallerthanthesizeof thetask,it deliversonly partof thetaskat a
time.Thenumberof agentsin this setof simulationswas600andtheinitial num-



ber of taskswas1200.The otherparameterswereasin the previous simulations
reportedabove.
Ourresultsindicatethattheheterogeneityof theagentsdoesnotsignificantlychange
thebehavior of thesystem.Fromfigure7 wecanconcludethatthe“FreightFulfill-
mentTime” increaseslinearly whentheprobabilityof messagesarrival decreases.
However, evenwith r�D
F arrival of messages,thefulfillment time is betterthanin
thecaseof 400messengerswith CED
D�F arrival of messages(seefigure5). Similar
resultswereobtainedwith respectto theotherparameters.

Fromtheresultspresentedabove aswell asmyriadadditionalexperiments(which
weren’t presentedherefor spacereasons)weconcludethefollowing:

– The PAS modelcanbe appliedfor usein large scaleagentsystemsto solve real
problems.

– An increasein the numberof agentsin the systemdoesnot increasethe amount
of computationsperagent.Thus,largersystemsdo not requiremorecomputation
time.

– An increasein the numberof agentsin the system,holding the numberof tasks
constant,is beneficialonly to someextent.Beyondsomeagents/tasksratio,nosig-
nificant improvementin performanceis observed. We believe this phenomenon
resultsfrom redundancy in denselypopulatedagentsystems.

– The resultsobserved aresimilar for differentdensitiesof the lattice mapusedas
well asfor low probabilitiesof unreliablecommunicationchannels.They become
betterwhen the the distribution of tasksis not even, as typically happensin the
centerof largemetropolitans.

5 Relatedwork

The issueof allocating agentsto goalshas widely beendiscussedamongDAI re-
searchers.The ContractNet Protocol[14] usesnegotiation basedon taskannounce-
ments,bidsandcontractsfor taskallocation.While theCNPis basedon theexchange
of information,the modelwe presentminimizesthe transmittedinformationandthus
enableslarge-scalesystemsto be efficient. A studyof planningin large-scaleagent-
systemshasbeenpresentedin [17, 16]. In that research,the general-equilibriumap-
proachfrom economicsserves as the theoreticalbasisfor the planningmechanism.
We alsodiscusslarge-scalesystemsandapply an analyticalmodel for designingthe
distributedplanningmechanism,however we usea physics-orientedapproachfor co-
operativeMAS, not for competitiveagents.

A large body of DAI researchstudiescoordinationamongagentsfor distributed
problemsolving (for example,[2], PGP[5], GPGP[1], [6], [18]). In [4], Durfeeand
Lesserstudy the Partial Global Planning(PGP)approachto coordinationby imple-
mentingit in the DistributedVehicle Monitoring Testbed(DVMT). The DVMT is a
networkof vehiclemonitoringnodes.Eachnodehasaplannerthatplansincrementally.
Nodesdo not communicatetheir detailedactions,but do communicateaccordingto a
meta-level organization.A PGPlannermodifieslocalplansasrequireddueto incoming
messages.In its incrementalplanningandrestrictedcommunicationthePGPmodelis



similar to our model.The DVMT taskdomainwhich wasusedasa testbedfor both
PGPandGPGPincludesmonitoringtraffic anddirectingit. This is performedby the
agentsgeneratingtentative mapsfor vehiclemovementsin their areas.Our transporta-
tion framework is different:we requirethata transportationtaskbeattachedto agents
thatplanfor it andperformit. Therefore,our simulatedtransportationsystemis signif-
icantly differentfrom DVMT.

Thetileworldmodel[10] wasusedasa testbedfor planningandtaskallocationand
executionin multi-agentsystems.Theutilizationof physicsmethodsallowsfor amodel
that is significantlyricher thanthe tileworld model.The tileworld modeldistinguishes
(at least)two differentprocedures– deliberationandpathplanning– whichareusually
performedsequentially, whereasin thephysics-basedmodelaninherentpropertyis in-
terleaving planningandexecution.And,while thetileworldprovesto worksuccessfully
for systemsof dozensof tasksandagents,(15agents,80tasksin [6]), its computational
complexity { will probablydisablescalingup to thousandsof tasksandagents.Such
systemsizeis allowedby thephysicsbasedmodel,asoursimulationsprove.

Ephrati,PollackandUr [6] suggestthemulti-agentfiltering strategy asa meansfor
coordinationamongagents.They have conductedseveral experimentsthat show, that
for thetile-world, this strategy improvestheperformanceof theagents.Thiscoordina-
tion is achievedwithout explicit negotiation.In ourwork we donot suggesta strategy,
ratherwe suggesta methodfor modelingthegoal-agentenvironment.Baseduponthis
modelwe suggesta detailedalgorithmfor thesingleagentfor actingefficiently in the
environment.

GlanceandHuberman[7] presenta detailedphysicalformalismof the dynamics
of the collective actionof a systemof individuals.In our work the main issueis the
physicalbehavior of thesingleagent.ShohamandTennenholtz[13] presentedresults
of simulationsthatwereperformedin orderto perceivetheemergenceof conventionsin
multi-agentsystems.In our research,we discussemergentcooperationanddetermine
thesociallawsto besuch– –physicallaws–– thatthey will causetheemergentcooper-
ationof thesystemwhenthiscooperationis necessary. Mataric[9] proposesdefininga
setof basicinteractionsthatwill allow thesimplificationof groupbehavior analysis.In
ourwork, weconcentrateon thenatureof thebasicinteractionsandadoptthephysical
interactionsamongparticlesto modeltheinteractionsamongagentsandgoals.

6 Conclusion

Theproblemof thebehavior of agentsin very largeagent-societiesimposesdifficulties
that arehardto solve even whenthe proposedsolutionsareof low-orderpolynomial
complexity. The approachwhich we presentsuggestsa solution to someaspectsof
this problem.We provide a methodfor taskallocationwhich is applicableto several
classesof large-scalecooperativeMAS. Thephysics-basedapproachwepresentresults
in complexity which is, on the side of the single agent,very low and may even be| $VCE' . Suchresultsarepossiblesinceweuseamodelwhosebehavior is alreadyknown.
}

As Kinny andGeorgeff [8] explicitly say:“to reducethecomplexity...weemployedasimplified
Tileworld with notiles.”



Therefore,wearenotrequiredto performthenumerousexplicit calculationsthatwould
have otherwisebeennecessary.

Themodelusedandthealgorithmthatenablesthesingleagentto actaccordingto
themodelresultin agentsallocatingthemselvesto goalsin orderfor theseto besatis-
fied.Theagent-goalmatchingis anemergentresultof thephysics-orientedbehavior of
theagents.In caseswheretoo many agentsfit the requirementsof the samegoal,our
modelwill disenablesomeof themfrom reachingthegoal,via mutualrejection.As we
have shown, ouralgorithmconvergesto a solutionwithin reasonabletime andleadsto
agent-goalallocationandexecution.Our methoddoesnot leadto the optimal alloca-
tion,but reachinganoptimalallocationrequirescompleteon-lineinformationaboutall
of the agentsandgoalscomprisingthe systemand,for a large classof problems,an
exponentialcomputation-time.

Our modelcanrely on theoreticalandexperimentalresultsthatarealreadyknown
from physics.Neverthelesswehave performedsimulationswhichsupportthetheoreti-
calobservations.Accordingto resultsfrom physics,wecanpredicttheevolutionof the
modeledagent-system,sinceit shouldevolve in the samemannerasa corresponding
physicalsystem.Thelocal interactions,whichenableoneto derive theglobalbehavior
of thesystem,assurea low computationalcomplexity of themodel.In very large-scale
agent-systems,this approachprovidesa model that allows for emergent cooperative
goal-satisfactionactivity, asshown in ourexperiments.
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