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ABSTRACT

Distributed message relaying is an important function of a peer-to-
peer system to discover service providers. Existing search proto-
cols in unstructured peer-to-peer systems either create huge burden
on communications or cause long response time. Moreover, these
systems are also vulnerable to the free riding problem. In this pa-
per we present an incentive mechanism that not only mitigates the
free riding problem, but also achieves good system efficiency in
message relaying for peer discovery. In this mechanism promised
rewards are passed along the message propagation process. A peer
is rewarded if a service provider is found via a relaying path that in-
cludes this peer. We provide some analytic insights to the symmet-
ric Nash equilibrium strategies of this game, and an approximate
approach to calculate this equilibrium. Experiments show that this
incentive mechanism brings a system utility generally higher than
breadth-first search and random walks, based on both the estimated
utility from our approximate equilibrium and the utility generated
from learning in the incentive mechanism.

Categories and Subject Descriptors
1.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—

Multiagent Systems; C.2.4 [Computer-Communication Networks]:

Distributed Systems

General Terms

peer-to-peer systems, message relaying, incentive mechanism

1. INTRODUCTION

Peer-to-peer (P2P) systems have recently gained a lot of attention
in academic and industrial communities. One important challenge
for P2P systems is how to find peers that provide certain informa-
tion or services in an efficient way, so that peers can exploit the
distributed resources owned by other peers in the system. To en-
sure the scalability and robustness of the system, as well as to avoid
legal issues, a centralized database of content of each peer usually
does not exist in a P2P system (an exception is Napster). Instead,
a distributed catalog of content is favored in which each peer only
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maintains a list of resources/services, and may contain information
about the acquaintances and neighbors. In this distributive model
peer discovery is realized via peer-to-peer message relaying.

Traditionally there are two ways to perform distributive peer dis-
covery in unstructured peer-to-peer systems [19, 24]: breadth-first
search (BFS, used by Gnutella) and depth-first search (DFS, used
by Freenet). With BFS the messages are flooded in the system.
Therefore the consumption of bandwidth is enormous, although re-
sults can be found very quickly. With DFS searches can be ter-
minated once a result is found, and therefore use less bandwidth.
But the response time could be very long and is exponential in the
depth limit. Recently random walks (RW) have been considered
as a method for P2P search that significantly reduces the number
of messages compared to BFS [11]. But the performance based on
random walks is highly variable, and greatly depends on the net-
work topology and the number of walkers [22].

Besides the system efficiency, another problem that requires at-
tention is incentives. A P2P network is a highly decentralized sys-
tem and each peer may represent a different self-interested entity.
A peer may manipulate the local information to take advantage of
other peers’ resources [14, 16]. For example, a peer may simply
drop a message that is sent from other peers for relaying, for the
purpose of saving communication bandwidth and energy. There-
fore P2P systems are vulnerable to the free riding problem, i.e., a
node relies on others’ efforts to relay its own messages, but does
not cost itself to relay messages for other nodes. Free riding can
cause severe degradation of the system performance and prevent
requesters from finding high quality providers efficiently [2, 16]. It
is important to design an incentive mechanism that motivates each
peer to behave rationally, and results in good system efficiency.

In this paper we present an incentive mechanism of message re-
laying for peer discovery that overcomes the flooding problem of
BFS search while preserving the quick response property and good
reliability. Although both peer discovery and distributed routing
are related to message relaying, they are different problems [5]. In
distributed routing the destination of a message is known, but in
peer discovery there is no guidance about who the message should
be sent to. The unknown destination implies more uncertainty and
less control in message relaying for peer discovery, and prohibits
applying the pricing mechanisms for distributed routing that re-
quires prior knowledge of routing paths [15].

In our mechanism, the source peer sends the query to some neigh-
bors and promises some payment to each receiver if the resource
provider is found via a transmission route that includes the receiver.
Depending on the offer, each receiver decides the number of neigh-
bors it relays the message to and also the promised payment to
its immediate downstream peers. Each of the new receivers again
makes similar decisions, until the maximum number of hops (time-
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to-live) is reached. One feature of this mechanism is that it does
not price the relaying activities, but instead prices the relaying re-
sult, which influences the relaying activities. To the best of our
knowledge, this paper is the first on incentive mechanisms of query
propagation processes in P2P systems. Most recent work on incen-
tive mechanisms in P2P systems studies resource sharing and does
not consider the message relaying process, such as [10, 12, 20],
while our mechanism tackles not only incentive problems, but also
communication efficiency and reliability in a P2P system.

2. MESSAGE RELAYING MECHANISM

2.1 Motivation

The design of our incentive mechanism is motivated by the fol-
lowing three requirements:

(1) Communication efficiency: A system with high communica-
tion efficiency is featured by high marginal values of message re-
laying. A significant part of inefficiency in message propagation is
caused by the overlapping or saturation issue. By overlapping we
mean that a peer may forward the message to some peers that have
received the same message from other peers, and these actions only
waste the communication resources. Since the number of times
that the message is transmitted in the system increases exponen-
tially with respect to each peer’s transmission effort (the number of
neighbors to forward the message to), the probability of overlap-
ping will soon get close to 1 if each peer makes significant relaying
efforts, in other words, the system becomes saturated very quickly.
To reduce the communication inefficiency caused by overlapping,
a peer should explicitly consider the overlapping probability, and
be able to adjust the transmission effort with the progress of prop-
agation, or the saturation status of the network.

(2) Reliability: Communication efficiency and reliability are two
conflicting goals. The intensity of message relaying is positively
correlated with the reliability of peer discovery. Therefore an effi-
cient message relaying scheme should tradeoff the communication
efficiency and reliability. A peer should decide the optimal relaying
effort by considering both the cost and the expected payoff of find-
ing a service provider. The expected payoff of finding a provider
not only depends on the value of finding the service to the requestor,
but also on the reliability of finding a provider, which increases with
the coverage of the peers that are exposed to the query.

(3) Information locality: Pricing the scarce resource and charg-
ing for the usage of the resource via a micro-payment system is
a common approach to provide incentive compatibility [10, 25].
Such a mechanism is not applicable to a P2P discovery system.
In message relaying, a micro-payment mechanism would require
the requestor to “buy” relaying actions of other peers. This means
that the source peer can identify all the intermediate peers and their
transmission efforts, which is not feasible in a decentralized P2P
system. On the other hand, it is not easy either for the requestor
or the mechanism designer to decide the right price to charge for
each relaying action as the local environment, such as the number
of neighbors, of a peer is not known by the mechanism designer or
by a third party. Revelation of such local information is called non-
private value revelation in [18]. One way to avoid this revelation
problem in mechanism design is to ask a peer to price “items” pro-
vided by immediate downstream nodes based on only its own local
information. In our mechanism the immediate downstream nodes
and their responses, and the input incentive are all local information
of a peer. The item that is priced is the search result.

2.2 Incentive mechanism for message relaying

A P2P search process based on our incentive mechanism can be
decomposed into two phases: message relaying and rewarding.
Message relaying phase: The message relaying phase is initi-
ated by the requestor. The requestor sends the query message to
some neighbors, along with a promised reward to each receiver. A
node who receives this message relays the message further to other
nodes, also with a promised reward. We call a peer that has received
the message a knower. Otherwise if a peer has not been exposed
to the message, it is called an ignorant. The number of knowers
increases while the number of ignorants decreases along with the
propagation. The requestor is initially a knower.

The propagation builds a family tree between nodes that are cov-
ered in the process. If node ¢ receives the message from node j,
then node ¢ is a downstream node of j, and node j is the upstream
node of i. A node ¢ is called a descendant of a node j if 7 is a
downstream node of j or j’s descendant. If a node receives the
message from multiple senders, it can choose to be a descendant
of the sender with the highest reward. The hop number of a node
in the family tree is defined as its distance (the number of genera-
tions) away from the requestor. The requestor is the only node in
hop 0. In the propagation process, the hop number is attached to
the message, and is automatically increased by one each time it is
relayed. The maximum hop number allowed in the process is de-
fined by time-to-live (TTL) [24]. The relaying process ends if the
hop number reaches TTL.

A node will relay a message only once, although the message
may be forwarded to multiple peers. This avoids repeated relaying
and reduces repeated queries, and is used in the Gnutella Protocol
v0.4. We assume that nodes in an earlier hop conduct relaying
earlier than nodes in a later hop. Therefore when a node receives a
message, it assumes that all nodes in earlier hops have completed
their relaying efforts of this message.

Figure 1 shows an example of message relaying with TTL=4,
where each circle represents a node, indexed by the number inside
the circle, and each arrow represents a transmission of the message
between two nodes. The arrows in solid lines contribute to the
identification of the hop number for the receivers. The arrows in
dashed lines represent the situations where the message is sent to a
knower, and that does not change the hop that the receiver belongs
to. The numbers attached to each arrow are the promised rewards
from the upstream to downstream nodes.

Hop 0 (requestor)

(10) (10)
; e (8) Hop 1
Se e @
(51) R Hop 2
N e @
h b Hop 3
®) ®)
é Hop 4
(provider)

Figure 1: Illustration of hops in message relaying

Rewarding phase: A relaying path ends if the message reaches a
provider or the hop number reaches TTL. If a provider is reached, a
rewarding process in the opposite direction of the relaying process
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is triggered. The provider first responds to the sender, who returns
the identity/address of the provider to its own upstream node. Such
information is reported backward along the relaying path all the
way up to the requestor. Each node on the path, except the re-
questor, receives the promised reward from its own upstream node.

In Figure 1, the arrows in bold compose a path that reaches the
provider, Node 9. The rewarding process traces backwards this
path. As aresult, Nodes 9, 7, 4 and 1 receive rewards of 5, 7, 8 and
10 from their upstream Nodes 7, 4, 1 and 0.

In this incentive mechanism, the incentive for a node to relay
a message is the reward promised by its upstream node. A node
can only receive the reward if a provider is discovered on a path
extended by its relaying effort. The probability that a provider is
found among a node’s descendants depends not only on the node’s
own relaying effort (how many neighbors the node relays the mes-
sage to), but also its downstream node’s relaying efforts. There-
fore, after a query message is received along with a promised re-
ward, a node has to decide how many nodes to relay the message
to, and what reward should be provided to its downstream nodes. A
greater relaying effort enlarges the number of downstream nodes,
and a larger promised reward induces a greater relaying effort of the
downstream nodes, both leading to a higher probability of covering
a provider in the descendants and hence receiving the reward from
the upstream node. However, relaying a message to more peers in-
curs more costs as well due to the consumption of bandwidth and
energy. Therefore, a node needs to trade off the cost and return in
the decision of the relaying effort and output incentive.

We assume nodes are homogeneous, i.e., each node, except the
requestor, has the same ex ante probability to be a provider. In this
situation, a node does not discriminate its neighbors; the success
rate (the number of providers discovered) only depends on how
many neighbors a node relays the message to, but not on who the
message is sent to. The assumption may be violated in a social net-
work in which a peer acquires information from its past experience
about the expertise and functionality of acquaintances and neigh-
bors [26]. In that case, a node may incorporate the knowledge of
other peers by relaying the message to selected neighbors. But the
assumption of homogeneity is appropriate in a simple network such
as a sensor network. Lemma 2.1 shows that in a homogeneous net-
work the expected number of providers discovered is proportional
to the number of peers covered in the propagation process.

LEMMA 2.1. In a homogeneous network of N nodes, if the to-
tal number of providers is M, the expected number of providers
covered among randomly selected L nodes is L - M/N.

The incentive mechanism constitutes a game in which a peer’s
utility depends on the decision of itself as well as other peers’ de-
cisions. In Section 3 we analyze and approximately calculate the
equilibrium strategy of this game.

3. EQUILIBRIUM ANALYSIS AND APPROX-

IMATE SYSTEM UTILITY

In this section we analyze the equilibrium strategy of peers in
the incentive mechanism for message relaying. After the notations
are introduced, in Section 3.1 we formally define the the game and
strategy equilibrium, and obtain some analytic insights to a peer’s
strategy. Then in Section 3.2 we proceed to provide an algorithm
to calculate approximately the symmetric equilibrium.

Denote by N + 1 the (estimated) number of peers in the network.
Let the requestor be node 0, the other nodes are indexed by 1, 2, ...,
N.Let I ={0,1,..., N} be the collection of all nodes. Denote by
D; the degree of peer %, i.e., the number of neighbors of peer . In
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the network there are M < N peers (providers) that can provide
the information or service requested by the source node (requestor).
The value of finding a provider to the requestor is vo. Since the
providers are substitutes, the requestor gains vo even if more than
one providers are discovered. Denote by v;, ¢ = 1,2,..., N, the
promised reward received by node % from its upstream node. For
a node the cost of relaying a message to a neighbor is c. The hop
number of node ¢ in the propagation process is h;. Note for the
requestor, ho = 0. Given the incentive v; and hop number h;,
a node ¢ needs to decide the transmission effort k; — the number
of peers to relay the message to, and the output incentive u; — the
incentive to be provided to each downstream node.

3.1 Equilibrium analysis

In order to analyze the equilibrium, we shall define the strategy
and utility of a peer, which constitute the P2P incentive message
relaying game and a strategy equilibrium.
Strategy and Utility: Given the degree D; of a node 7, the collec-

tion of possible transmission efforts of node 7 is: IC; = {0,1,...,D;}.

Let H = {0,1,..., H} be the set of possible hop numbers along
the propagation, where H is the maximum hop number (TTL).

Definition The (pure) strategy s; of a node 7, ¢ € I, is a map
from the hop number h; € #H and input incentive v; > 0 to
the transmission effort k; € KC; and output incentive u; > 0:
(kiyus) = si(hi,vi) : H X RT — K x RT.

Let S; = {s; : H x RT — K; x Rt} be the strategy space of

node 7, and s = (so, $1, ..., Sn) be a strategy profile of all nodes,
where s; € S;. The strategy profile of all nodes except 7 is denoted
by s—i = (80, -+, 8i—1,Si41,- -, SN).

The number of providers covered by descendants of node i, de-
noted by 7;, is a random variable; the distribution of 7; depends on
the strategies of all nodes. Note that if there is only one provider in
the network, M = 1, then 7; is the probability that the provider is
covered by node 7’s descendants. Given the strategy profile s, let
7; (s) = E [Ti]s] be the expected value of 75.

If a node ¢ receives an input incentive v; for each provider found
among its descendants, and the node passes on an output incentive
u; to its immediate downstream nodes, then the node receives (v; —
u;)E [Ti|s] on expectation. On the other hand, if the node relays the
message to k; nodes, the cost of relaying is ¢ - k;. Therefore, given
the strategy profile s of all nodes, the expected utility of node 1,
i=1,2,...,N, U (s) can be characterized by:

u; (8) = (vi — ui)E [Ti|s] — ¢ k. (1)

From Equation 1 we can see that for a node who is not the re-
questor, the utility is a linear function of the number of providers
found through its relaying. This is because a node receives the re-
ward from its upstream node for each provider that is discovered.
However, this is not the case for the requestor, who obtains the
same information from all providers and hence benefits from one
single provider. The requestor obtains a value vo for any 7o > 1,
but pays ug for each provider discovered. Therefore, the expected
utility of the requestor is:

uo (s) = voPr(To > 1|s) — uoE [To|s] — ¢ - k. ?2)

Note that the number of providers covered by the descendants
of node ¢, 7;, not only depends on node 4’s transmission effort k;,
but also on transmission efforts of other nodes’. The dependence
on other nodes’ efforts is for two reasons. First, a node competes
with other nodes in the same hop in searching for providers; the
greater transmission efforts or other nodes, the less chance a node
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covers a service provider among its descendants. Second, the total
number of providers reached, directly or indirectly by a node, is
higher if the node has a larger population of descendants. But the
total number of descendants of a node depends on the transmission
efforts of its descendants, which again are impacted by the input
incentives passed on from their upstream nodes.

Game and Equilibrium: Having described the strategies and utility
functions of nodes, we are now ready to define the P2P incentive
message relaying game, and the strategy equilibrium in the game.

Definition The P2P incentive message relaying game is defined by
the following elements:

Players: the players of the game are the peers in the network,
I={0,1,2,..N}

Strategies: the strategy space of each peer i is S;, with the pure
strategy of a peer 4 defined as (ki, u;) = si(hi,v;) : H x RT —
/Ci X R+, i = 17 weey N, and (k:o7 uo) = 80(0,’1}(')).

Payoffs: The utility function of peer 7, given a strategy profile
s, is u; (s) as defined in Equations 1 and 2. The objective of each
node is to maximize its utility.

A pure strategy Nash equilibrium is a strategy profile such that
for each node, given the strategies of the others, its strategy maxi-
mizes its expected utility.

Definition A pure strategy Nash equilibrium (NE) is a profile s of
all nodes’ strategies such that for all nodes ¢,

u; (sis—i) > s (si|s—) forall s; € Si.

PROPOSITION 3.1. In a pure strategy Nash equilibrium, for a
node i, i=1,2,...,N,

(i) when v; decreases, k; or u; decreases and it is not possible
that both increase;

(ii) the expected number of descendants increases with v;.

Proposition 3.1 says that in the equilibrium strategy, a node that
receives a lower input incentive will decrease the output incentive
or transmission effort. Note that a lower output incentive further re-
duces the output incentive or transmission effort of the downstream
nodes, causing less future transmission efforts. As a result, a node
develops a smaller population of descendants when facing less in-
put incentive. As the input incentive decays by hops along a relay-
ing path, it means that with this incentive mechanism the flooding
problem and pyramid effect are automatically avoided with peers’
individual self-interested actions.

3.2 Approximation of utility in a symmetric
network

Calculating the equilibrium for the incentive message relaying
game is difficult. This is because message relaying is a stochastic
process: the number of downstream nodes developed by a peer is
a random variable with the distribution depending on the network
status (the number of knowers) and the transmission efforts of the
node itself as well as of other peers. Therefore one cannot have a
close form expression of the expected number of descendants as a
function of the hop number and the strategy profile of all peers. In
this section, we develop an algorithm based on symmetric networks
to approximately calculate the population of descendants of a node.
We call a P2P network symmetric if all nodes are homogeneous
with the same degree and equal probability of being a provider.

In a symmetric game, since all nodes are homogeneous, we can
drop the node index; two nodes have equal expected utility if their
strategies are the same. Therefore, in a symmetric game, we can
restrict to symmetric strategy profiles in which all nodes have the

same strategy, with the output incentive and transmission effort
only depending on the hop number and input incentive, but not on
the node index. Denote such a strategy by (k, u) = si(v), where h
represents the hop number, v the input incentive, k the transmission
effort, and u the output incentive.

Our approximation of the descendant population follows the cer-
tainty equivalence estimate [3]. In this approximation, the expected
number of immediate downstream nodes developed by each node
is treated as certainty; this allows estimating the expected number
of descendants of a node, as a function of its transmission effort,
without enumerating all possible paths of system states along the
development of hops.

In order to estimate the number of descendants of a node, we
need to know the expansion of the family tree by each hop. Propo-
sition 3.2 characterizes such expected expansion by the relaying
actions of one hop, given the situation of the system before the re-
laying actions of the hop.

PROPOSITION 3.2. Ifthere are ny knowers in the system up to
(including) hop h, the number of nodes in hop h is mp, and each
node in hop h relays the message to kp, peers, then

(1) the expected number of ignorants dy, reached by each node
in hop h, is:

3 {0 ifkn =00rmp =0
== N—ny, kp \m . )

h Tkl = (1= )] else

(2) the expected number of nodes in hop h + 1 is:

_kn

Mht1 = mpdp = (N —np_1 —mp)[1— (1 - N 1)””‘], 3)
(3) the expected number of nodes up to hop h + 1 is:
Ant1 = nh + Madp. 4)

Based on Proposition 3.2, given the number of knowers n up to
hop h and the number of nodes my, in hop h, we can calculate the
expected number of knowers 7,1 after the relaying actions of hop
h, and the expected number of nodes 71 in the next hop h + 1,
with the known relaying effort . With the certainty equivalence
estimate, we take the expectations mp41 and np41 as certainty:
Mh+1 = Mh41, Nh4+1 = Nh+1. This allows us applying Equations
3 and 4 recursively starting from hop 0, and obtaining an estimate
of the expected numbers of nodes in all hops. Initially, the only
knower is the requestor: ng = mo = 1.

In a symmetric system, the family tree is developed evenly, nodes
in the same hop having the same number of descendants on expec-
tation. Therefore given the expected numbers of nodes in all hops,
the expected number of descendants of a node in hop h can be es-
timated by:

where Z{i hy1 U is the total expected number of descendants of
nodes in hop h.

Based on Lemma 2.1, given Ly, the expected number of providers
covered among the descendants of a node in hop A is then equal to:
Th=1Ln M /N, where M /N is the probability of a node being a
provider.

Given T}, the expected utility Uy, of a node in hop A, h > 1, can
be approximated by:

U z(vh—uh)Fh—c-kh. (5)
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For the requestor, taking Ty as certainty, the expected utility Uy can
be approximated by:

Up =~ vo min (To, 1) —uo - To — ¢ - ko (6)

Given a symmetric strategy profile of all hops, the process of pre-
dicting (approximately) the expected utility of a node in each hop,
based on certainty equivalence, is summarized in Algorithm 3.2.

Algorithm 1 Approximate the utility given a symmetric strategy
profile

Step0: mo =1,n0=1. h=0.
Step 1: Calculate 5,41 and 7y, 41 following Equations 3 and 4.
Step 2: Let Mht1 = Mht1, and Nh+1 = Mhi1.

Leth=h+ 1. If h < H + 1, go to Step 1; otherwise go to
Step 3.

Step 3: Ly ~ %h Zfihﬂ My, T &~ Ly, - M /N, for all hops h.

Step 4: Calculate Uy, for all hops h following Equation 6 (h = 0) or
5(h>1).

4. SIMULATION

In this section we provide some experimental results to bench-
mark the system performance of the distributed search based on
our incentive mechanism, compared to breadth-first-search (BFS)
and random walks, two commonly used schemes for searching [24,
11]. We do not consider depth-first-search (DFS). This is because
without considering the response time, DFS undoubtedly outper-
forms the others in terms of the system utility — in DFS a message
is only further relayed, sequentially between peers, when no result
has been found. But this efficiency of DFS is in the cost of long
response time. The response time of BFS, random walks and our
incentive mechanism is bounded by O(TTL). But the response
time of DFS is in the order of the total number of relaying activi-
ties, since they are conducted sequentially.

4.1 Search Algorithms in Experiments

We consider three classes of search algorithms in the experi-
ments: distributed search with incentive mechanisms, BFS and ran-
dom walks. There are two strategies for distributed search. One
is based on the approximate symmetric Nash equilibrium calcu-
lated following the approach in Section 3.2. Another is the strat-
egy learned in the message relaying processes using reinforcement
learning.

For example, in the learning algorithm, a peer has a strategy table
H XV XK xU =4x10 x4 x 10, where the hops of the message
H can be {0,1,...,4}, the input & and output V incentives are
bounded by 10, and the transmission effort K is bounded by 4.
The initial incentive vg is 10 for each query. Peers are randomly
chosen as service providers. A peer in the system queries other
peers through message relaying.

In reinforcement learning each peer uses a standard a-greedy
algorithm to explore the discretized strategy space, where o = 0.1
[21]. Specifically, the estimated value of state a after ¢ plays is
denote by Q:(a) and r, is the reward from choosing price a at
the ko-th time, where state a is a combination of V, H, U, K. A
peer updates the estimated value of a state, if the state is chosen,
based on the current reward and the previous estimated value. If a

state gives a higher reward in this period, accordingly the estimated
value of the price will be higher. The update of the estimated value
is based on the following rule:

Qro+1(a) = Qr, (@) + Tk +1 — Qr, (a)) (@)

where step size « is a constant, 0 < « < 1. Based on this
rule the recent rewards are weighted more heavily than long past
ones. This is necessary in a non-stationary environment in which
the mean reward of a state changes over time. The recent environ-
ment is more similar to the environment today and therefore gives
more information, than the environment of long past. With a con-
stant step size «, the estimates never completely converge but con-
tinue to vary in response to the most recently received rewards [21].
This is actually desirable in a non-stationary environment faced by
each peer in peer-to-peer systems.

We find the approximate optimal strategies of most peers con-
verge to the followings,

e Given the initial incentive vg = 10 and hops of the message
h = 0, the peer will ask 3 neighbors with output incentive 7.

e Given the input incentive v1 = 7 and hops of the message
h =1, the peer will ask 3 neighbors with output incentive 2.

Breadth-first search (BFS) is a simple searching strategy in peer-
to-peer systems. Here we consider a variant of BFS, in which the
requesting peer randomly chooses a ratio of their neighbors to for-
ward the query. The ratio is also called branching factor and is six
in this paper. In random walks, the requesting peer sends out k
query messages (or walkers) to randomly chosen neighbors (k = 5
10, or 15 in this paper if not specified). Each walker follows its
own path, having nodes forward it to a randomly chosen neighbor
at each step. The random walks are restricted to the same number
of hops used in other mechanisms.

4.2 Experiments Setup

The topology of the system is initialized as a directed random
graph. We use a random graph with N nodes, and approximate
10 out-edges per node (to its neighbors) as a starting point for the
experiment. Other parameters are defined as follows, (1) The total
number of nodes IV is in the range from 50 to 250; (2) The total
number of service providers in the network is M. M = 1 denotes
that there is one service provider in the system; (3) The initial in-
centive vg changes from 10 to 30; (4) The maximal hop number
of message is H = 2; in other words, each query is propagated
for three hops; (5) The branching factor D for BFS and distributed
search is 6.

We are interested in (1) the total utility of the system; (2) the total
coverage, i.e., the number of peers exposed to the message, at the
end of the propagation, which measures the reliability. Note that
we show the average system utilities and coverage for all search
algorithms over 10 iterations. In each iteration, each peer in the
system is allowed to query other peers once. For distributed search
using reinforcement learning, we compute its average system utility
and coverage after 100 iterations.

We first consider only one service provider for a given unit cost
c. Then we examine the results for multiple service providers and
effects of different unit costs and network sizes.

4.3 Single Service Provider

Figure 2 shows that, for linear cost functions 0.15k, the incentive
mechanism generally achieves a higher system utility than BFS and
Random walks. When vy, the value of finding the service, is low,
BFS walkers could bring a negative utility.
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Figure 2: Comparing the system utility in experiments for a
single provider (M = 1, N = 50,c = 0.15)

With the increase of vo, the utility advantage of the incentive
mechanism over BFS decreases. The experimental results show
that distributed search is close to BFS when vy is equal to 30. This
is because BFS generates very high coverage, which is close to the
optimal when the query value is high. In other words, given the low
communication costs, sometimes distributed search cannot find the
service provider, while BFS can find due to its message flooding.
One hypotheses is that if we impose a different cost function, e.g.,
0.5k, distributed search will win. We will examine the effects of
cost functions on system utilities in section 4.5.

Figure 2 also shows the utilities for strategies of propagating
messages beyond 2 hops are negative when the input incentive is
low. This is due to communication costs and saturation of the
network. The strategies of peers show that the transmission ef-
fort using our model is efficient than flooding (breadth-first search),
where a peer in our incentive mechanism only queries a subset of
its neighbors. The system utility is close to the predication of the
system performances of relaying mechanisms for the linear cost
function cases.

The total number of peers that receive the query message during
the propagation process based on each mechanism, or the coverage,
is recorded in Figure 3.
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L
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@
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Figure 3: Comparing the coverage in experiments for a single
provider (M =1, N = 50,c = 0.15)

We can find that BFS always covers more peers than other mech-
anisms, which implies a higher reliability (but its utility may be
lower as shown in Figure 2). With the given policy parameters, the
coverage generated by BFS and random walks is independent of v,

the value of finding the service. The coverage in the incentive and
approximate search mechanisms increases with vo, as a peer adapts
its searching strategies in the message relaying processes. How-
ever, in random walks, walkers may visit the same nodes multiple
times, and results in lower coverage compared with other search
algorithms such as BFS and distributed search.

4.4 Multiple Service Providers

‘We have assumed in the above experiment that there is only one
service provider. Next we study the model with multiple service
providers.

30 T T T

BFS
random walks (5 walkers) -
random walks (10 walkers) -
distributed search
approximate distributed search —---

Utilty

10 15 20 25 30
Value of information

Figure 4: Comparing the system utility in experiments for three
service providers (M = 3, N = 50,c¢ = 0.15)

Figure 4 shows the system utility when totally three service providers

are available in the system. A peer will get the reward if it finds any
of the service providers. We can see that the utility of random walks
is very close to distributed search when the incentive vg is low, but
distributed search becomes better when vg is high. This indicates
that random walks can have a good chance to cover at lease one
service provider when multiple ones are available in the systems.
Also, when the incentive vg is high, BFS gains more utility than
distributed search. The reason is, BFS can guarantee to find at least
one service provider; this high reliability leads to a high utility if
the communication cost is low. We will study the impact of com-
munication costs in Section 4.5.
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Figure 5: Comparing the coverage in experiments for multiple
provider (M = 3, N = 50,c = 0.15)

Figure 5 shows the coverage of different searching mechanisms.
We can find that, just like the case with a single provider, BFS
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always covers more peers than the other mechanisms. When there
are multiple providers in the systems, the coverage in distributed
search is close to the random walks with 10 walkers. However,
random walks still get lower system utility even though they might
have similar coverage as distributed search. This indicates that in
random walks peers may send more messages than necessary to
find a service provider.

4.5 Effect of Communication Cost

From the experiments above we notice that BFS may gain more
utilities than distributed search for a communication cost ¢ = 0.15.
In this section we study the impacts of the unit communication cost
on system utilities by changing ¢, where ¢ = 0.1,0.2,0.3,0.4, 0.5.
For simplicity, we only consider the case of one service provider.

30 T T T T
BFS (single provider) —+—
distributed search (single provider) ------

~
FS (multiple providers) -
20 B distributed search (multiple providers) &

Utility

40 L L L L L L L
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Value of unit cost

Figure 6: Comparing the system utility in experiments for dif-
ferent unit costs (M = 1, N =50,c¢=0.1,...,0.5,v9 = 30)

Figure 6 shows the system utility of BFS and distributed search
for the general linear cost function. We can find that the utility of
BFS drops dramatically when the value of 3 increases. Distributed
search is not that sensitive to the cost functions. The reason is that
in distributed search, a peer can dynamically adjust its transmission
effort to balance its cost and the probability of success.

4.6 Effect of Network Size

In the last experiment we study the effects of network size on
different search schemes. We have a P2P network with about 50 to
250 nodes. We only consider a fixed value of vg, where vg = 30.
In order to be comparable, we assume that every fifty nodes have
three providers and each message is allowed to be propagated for
three hops.

Figure 7 shows the results for BFS, random walks and distributed
search. We can find that distributed search is better than BFS and
random walks when we scale the network size from 50 to 250.
Also, note that BFS gets much lower utility when we scale up the
network. One reason might be that some intermediate peers may
find the (same) provider multiple times. Another reason is that in
a large network the probability of overlapped message relaying is
low, which causes an enormous amount of relaying activities. The
coverage of BES is about 80 in a network of size 250, which is
much larger than the one for a smaller network with 50 nodes.

One interesting question is whether random walks will outper-
form distributed search if we increase the number of walkers. Fig-
ure 7 describes the utilities of random walks algorithms with three
different numbers of walkers, 5, 10 and 15. The figure shows that
even if we increase the number of walkers to fifteen, random walks
still perform worse than distributed search. The results indicate that

BFS —+—
24 | random walks (5 walkers) -
random walks (10 walkers) %

random walks (15 walkers) &t
distributed search —- -~

20 W-mmr e B B B »

Utilty

50 100 150 200 250
Size

Figure 7: Comparing the system utility in experiments for mul-
tiple providers (M = 3 « N/50, N = 50,100,...,250,v9 =
30,c = 0.15)

the search algorithm based on incentive mechanism can achieve
better system performance than other existing search algorithms in
peer-to-peer systems.

5. RELATED WORK

Peer-to-peer (P2P) systems have received increasing attention
for benefits such as improving scalability, eliminating the need for
costly infrastructure, and enabling resource aggregation [19]. With
all these benefits, P2P systems also create challenges in discovering
information efficiently in the network.

Some research work for search techniques in unstructured P2P
systems aims at reducing the number of nodes that receive and
process each query with little sacrifice of the quality of results.
These approaches include: adaptively deepening the search based
on the responses [24], selectively querying neighbors based on their
quality or reputation [24], building local indices that allow nodes
to process query on behalf of nodes in a local range [24, 1], main-
taining “hints” as to the possible information location by learning
from the history [7], and random walks [11]. Although these tech-
niques improve the efficiency of searching P2P networks, they are
based on the assumption that nodes are cooperative and can be pro-
grammed to follow these protocols.

P2P systems are often composed of nodes governed by self-
interested parties, each acting to better its own outcome. The ra-
tional behavior of nodes creates the free riding situations in peer-
to-peer settings. Several papers have helped to advance the un-
derstanding of disincentives of cooperation in P2P systems. For
example, [8] quantifies disincentives in file sharing P2P networks;
[6] proposes a cost-based model to assess the resources that each
overlay node has to contribute for being part of the overlay; [17]
discusses the notions of rationality and self-interest in P2P systems.
In [18] they advocate mechanism design for P2P systems in which
peers are expected to be rational and self-interested and may devi-
ate from a suggested protocol.

Generally, the P2P incentive mechanism is implemented via a
micropayment system. In the micropayment system, a peer is re-
warded with virtual currency or credit for each action by the system
or the peer who benefits from the action. In a P2P system, the ac-
tion can be forwarding a message, uploading a file, answering a
query, etc. Based on game theoretic analysis, [10] and [9] evaluate
the effectiveness of different micropayment mechanisms to moti-
vate file sharing in P2P systems. [4] and [27] apply micropayment
mechanisms to stimulate packet forwarding actions in a P2P net-
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work. Most existing micropayment schemes require a trusted cen-
tralized broker (server), which is responsible to distribute and cash
credits. More recently, several researchers propose some micro-
payment mechanisms that may reduce the load of the broker [13,
25]. In these above mentioned mechanisms, the reward that a peer
receives for each action is independent of the resources, the work
load, or the value of the service. In other words, the payment is
based on a static and uniform price. In our mechanism, the payment
a peer promises or receives depends on the value of information and
its position (hop number) in the propagation process. Therefore, it
can be regarded as a “dynamic pricing” mechanism that allows the
price to change with the micro-situation of the “market”.

6. DISCUSSION AND CONCLUSION

In this paper we present an incentive mechanism for message
relaying in peer-to-peer discovery. In this problem the common
micro-payment protocol based on the relaying actions is not fea-
sible for an anonymous message relaying process. By pricing the
search result but not the relaying action, our mechanism provides
appropriate incentives for distributed message relaying that induce
efficient tradeoffs between communication efficiency and reliabil-
ity, while satisfying information locality.

In the paper, we focus on the cost and benefit of message relaying
for information discovery, without considering the network hetero-
geneity. In the future work we plan to study the mechanism for
heterogeneous networks such as small-world networks and scale-
free networks [23]. We believe the approximate strategy equilib-
rium developed under the assumption of symmetric homogeneous
networks will help us understand the influences of some important
system parameters such as degree distribution and network connec-
tivity on the performance of different distributed search algorithms.
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