
Multi-Agent Integration of Information Gathering and
Decision Support
Katia Sycara1 and Dajun Zeng2

Abstract.
We are investigating techniques for developing distributed and

adaptive collections of information agents that coordinate to retrieve,
filter and fuse information relevant to the user, task and situation. In
our system of agents, information gathering is seamlessly integrated
with decision support. In this paper we present the distributed system
architecture, agent collaboration interactions, and a reusable set of
software components for structuring agents. The system has three
types of agents:Interface agentsinteract with the user receiving
user specifications and delivering results. They acquire, model, and
utilize user preferences to guide system coordination in support of
the user’s tasks.Task agentshelp users perform tasks by formulating
problem solving plans and carrying out these plans through querying
and exchanging information with other software agents.Information
agentsprovide intelligent access to a heterogeneous collection of
information sources. We have implemented this system framework
and are developing collaborating agents in diverse complex real world
tasks, such as organizational decision making, and financial portfolio
management.

1 Introduction

The use of the Internet has accelerated at an unprecedented pace.
However, effective use of the Internet by humans or decision support
machine systems has been hampered by some dominant character-
istics of the Infosphere. First, information available from the net is
unorganized, multi-modal, and distributed on server sites all over the
world. Second, the number and variety of data sources and services
is dramatically increasing every day. Furthermore, the availability,
type and reliability of information services are constantly changing.
Third, the same piece of information can be accessible from a variety
of different information sources. Fourth, information is ambiguous
and possibly erroneous due to the dynamic nature of the information
sources and potential information updating and maintenance prob-
lems. Therefore, information is becoming increasingly more difficult
for a person or machine system to collect, filter, evaluate, and use
in problem solving. As a result, the problem of locating information
sources, accessing, filtering, and integrating information in support
of decision making, as well as coordinating information retrieval and
problem solving efforts of information sources and decision-making
systems has become a very critical task.

The notion of Intelligent Software Agents (e.g., [12, 15, 6, 14])
has been proposed to address this challenge. Although a precise defi-
nition of an intelligent agent is still forthcoming, the current working

1 The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
U.S.A.

2 The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213,
U.S.A.

notion is that Intelligent Software Agents are programs that act on
behalf of their human users in order to perform laborious information
gathering tasks, such as locating and accessing information from var-
ious on-line information sources, filter away irrelevant or unwanted
information, and adapt over time to their human users’ information
needs and the shape of the Infosphere. Most current agent-oriented
approaches have focussed on what we callinterface agents—a sin-
gle agent with simple knowledge and problem solving capabilities
whose main task is information filtering to alleviate the user’s cogni-
tive overload (e.g., [8, 9]). Another type of agent is theSoftBot([3]),
a single agent with general knowledge that performs a wide range of
user-delegated information-finding tasks. We believe that such cen-
tralized approaches have several limitations. A single general agent
would need an enormous amount of knowledge to be able to deal ef-
fectively with user information requests that cover a variety of tasks.
In addition, a centralized system constitutes a processing bottleneck
and a “single point of failure”. Furthermore, unless the agent has
beyond the state of the art learning capabilities, it would need con-
siderable reprogramming to deal with the appearance of new agents
and information sources in the environment. Finally, because of the
complexity of the information finding and filtering task, and the large
amount of information, the required processing would overwhelm a
single agent.

Another proposed solution is to use multi-agent computer systems
to access, filter, evaluate, and integrate this information [14, 10]. Such
multi-agent systems can compartmentalize specialized task knowl-
edge, organize themselves to avoid processing bottlenecks, and can
be built expressly to deal with dynamic changes in the agent and
information-source landscape. In addition, Multiple Intelligent Co-
ordinating Agents are ideally suited to the predominant characteris-
tics of the Infosphere, such as the heterogeneity of the information
sources, and the presence of multiple users with related information
needs. We therefore believe that a distributed approach is superior,
and possibly the only one that would work for information gathering
and coherent information fusion.

The context of multi-agent systems widens the notion of intelli-
gent agent in at least two general ways. First, an agent’s “user” that
imparts goals to it and delegates tasks can be not only a human but
also another agent. Second, an agent must have been designed with
explicit mechanisms for communicating and interacting with other
agents. Our notion is that such multi agent systems may comprise
interface agentstied closely to an individual human’s goals,task
agentsinvolved in the processes associated with arbitrary problem-
solving tasks, andinformation agentsthat are closely tied to a source
or sources of data.

In this paper, we report on our work on developing distributed col-
lections of intelligent software agents that cooperate asynchronously

c
 1996 K. Sycara and D. Zeng
ECAI 96.12th European Conference on Artificial Intelligence
Edited by W. Wahlster
Published in 1996 by John Wiley & Sons, Ltd.

to perform goal-directed information retrieval and information inte-
gration in support of performing a variety of decision making tasks.
In particular, we will address research issues involved in designing
multiple Intelligent Agents that coordinate with each other to support
information gathering, filtering, and integration.

We will focus on three crucial characteristics of our architecture
that differentiate our work from others: (1)multi-agentsystem, (2)
the agentsactivelyseek out information, and (3) the information gath-
ering isseamlessly integratedwith problem solving. We will present
the overall architectural framework, our agent design commitments,
and agent architecture to enable the above characteristics.

2 Different Types of Information and Decision
Making Agents

Our distributed agent-based architecture has three types of agents
(see Figure 1):interfaceagents,taskagents, andinformationagents.
The architecture of all these agents follows the general BDI type
philosophy [12], however, each of them embodies particular archi-
tectural design commitments to make them effective in dealing with
the particular category of issues of its type. As our point of departure,
we use the Task Control Architecture (TCA) framework [13] which
we extend and specialize for real-time user interaction, information
gathering, and decision support tasks in the Infosphere. Before we
present the general agent architecture and coordination in Section 3,
we discuss first the characteristics of the different types of agents.

Interface agents interact with the user receiving user specifications
and delivering results. They acquire, model, and utilize user prefer-
ences to guide system coordination in support of the user’s tasks. For
example, an agent that filters electronic mail according to its user’s
preferences is an interface agent. Task agents support decision making
by formulating problem solving plans and carrying out these plans
through querying and exchanging information with other software
agents. Task agents have knowledge of the task domain, and which
other task assistants or information assistants are relevant to perform-
ing various parts of the task. For example, an agent that makes stock
buy or sell recommendations is a task agent. Information agents pro-
vide intelligent access to a heterogeneous collection of information
sources depicted at the bottom of Figure 1. They find information
in response to queries and also actively monitor the Infosphere for
specified conditions. Information assistants have models of the as-
sociated information resources, and strategies for source selection,
information access, conflict resolution and information fusion. For
example, an agent that monitors stock prices of the New York Stock
Exchange is an information agent.

The crucial factors influencing the determination of the type of an
agent are: (1) its functional and informational scope, (2) predomi-
nant types of agent interactions, and (3) constituent reusable agent
architecture components.

2.1 Agent Organization, Coordination and
Interactions

Agents are directly activated based on the top-down elaboration of
the current situation. These agent activations dynamically form an
organizational structure “on-demand” that fits in with the task, the
user’s information needs, and resulting decomposed information re-
quests from related software agents. This task-based organization
may change over time (if, for example, some task characteristics
were to change for a given task), but will also remain relatively
static for extended periods. Notice that the agent organization will

USER 1 USER 2 USER h

query answer

Conflict
Resolution

Information Integration
Information
Request

Reply

DataBase 1 DataBase 2 DataBase k

Collaborative

Query Processing

Interface Agent 2

TaskAgent 1 TaskAgent 2 TaskAgent j

Interface Agent k

InfoAgent 1 InfoAgent 2 InfoAgent n

Task Proposed Solution

Task

Interface Agent 1

Goals and Task
Specifications

Results

Figure 1. Distributed System Architecture

not change as a result of appearance or disappearance of information
sources but the agent interactions could be affected by appearance
(or disappearance) of agents that are capable of fulfilling task sub-
goals in new ways. Information that is important for decision-making
(and thus might cause an eventual change in organizational structur-
ing) is monitored at the lowest levels of the organization and passed
upward when necessary. In this type of organization, task-specific
agents continually interleave planning, scheduling, coordination, and
the execution of domain-level problem-solving actions.

Obviously, one of the major issues involved in multi-agent sys-
tems is the problem of interoperability and communication between
the agents. In our framework, we use KQML [4] for inter-agent com-
munication. In order to incorporate and utilize pre-existing software
agents or information services that have been developed by others,
we adopt the following strategy: If the agent is under our control, it
will be built using KQML as a communication language. If not, we
build a gateway agent that connects the legacy system to our agent.

3 Agent Architecture: Usable Control Constructs

In order to operate in rich, dynamic, multi-agent environments, soft-
ware agents must be able to effectively utilize and coordinate their
limited computational resources. As our point of departure in structur-
ing an agent, we extend and specialize the Task Control Architecture
(TCA) [13] for real-time user interaction, information gathering, and
decision support. The overall architectural design of a TCA-based
agent is shown in Figure 2.

The planning module takes as input a set of goals and produces a
plan that satisfies the goals. The key component of this architecture is
a hierarchical representation of task/subtask relationships[13]. This
representation, called atask tree, has goals as non-terminal nodes,
and executable actions and execution monitoring mechanisms at the
leaves. Temporal constraints between nodes are used to schedule
task planning and execution: actions are queued until their temporal
constraints are satisfied. For example, asequential-achievementcon-
straint between two nodes implies that all actions associated under
the first node must be handled before any of those under the second
node; whereas aparallel-achievementconstraint allows that the ac-
tions under the first node can be parallelly executed along with the

Multi-Agent Systems 550 K. Sycara and D. Zeng

Domain-Independent Control Constructs Domain-Specfic
Knowledge

Action

Scheduling

Resource

Allocation

Exception
Handling

Beliefs, Facts Base

Communication

Plan Retrieval

Execution
Monitoring

Task

Tree

Plan Library

Figure 2. Agent Architecture

actions under the second node. This combination of hierarchical task
decomposition and temporal constraints form the agent’s representa-
tion of plans. Either a first principle general planner or a plan retrieval
component plus domain-specific plan fragments can be used to gener-
ate plans. We adopt the plan retrieval approach in our implementation
because of efficiency considerations.

We have extended the original TCA architecture with a communi-
cation module that accepts and interprets messages from other agents
in KQML. In addition, interface agents also accept and interpret e-
mail messages. We have found that e-mail is a convenient medium
of communicating with the user and/or other interface agents (e.g.,
agents that provide event notification services). Messages can con-
tain request for services. These requests become goals of the recipient
agent.

For the information agents, there are three important types of goals;
(1) Answering a one-shot query about associated information sources,
(2) Answering periodic queries that will be run repeatedly, and the
results sent to the requester each time (e.g., “tell me the price of IBM
every 30 minutes”), and (3) Monitoring an information source for a
change in a piece of information (e.g., “tell me if the price of IBM
drops below $80 within 15 minutes of the occurrence of that event”).

The scheduling module schedules each of the plan steps. The agent
scheduling process in general takes as input the agent’s current set
of plan instances, in particular, the set of all executable actions, and
decides which action, if any, is to be executed next. Whereas for task
agents, scheduling can be very sophisticated, in our initial implemen-
tation of information agents, we use a simple earliest-deadline-first
schedule execution heuristic.

Agent reactivity considerations are handled by theexecution mon-
itoring andexception handlingprocesses. The agent execution moni-
toring process takes as input the agent’s next intended action and pre-
pares, monitors, and completes its execution. The execution monitor
prepares an action for execution by setting up a context (including
the results of previous actions, etc.) for the action. It monitors the
action by optionally providing the associated computation limited
resources—for example, the action may be allowed only a certain
amount of time and if the action does not complete before that time is
up, the computation is interrupted and the action is marked as having
failed.

When an action is marked as failed, the exception handling pro-
cess takes over to replan from the current execution point to help the

agent recover from the failure. For instance, when a certain external
information source is out of service temporarily, the agent who needs
data from this information source shouldn’t just wait passively until
the service is back. Instead, the agent might want to try another infor-
mation source or switch its attention to other tasks for a certain period
of time before returning to the original task. Whenever an agent fails
to retrieve the information of interest from a certain source within
a predetermined time limit, the agent will automatically invoke an
exception handling routine, which might invoke a replanning process
or simply wait for a particular time interval before re-trying accessing
the information. Upon completion of an action, results are recorded,
downstream actions are enabled if so indicated, and statistics col-
lected.

The agent’splan library contains skeletal plans and plan frag-
ments that are indexed by goals and can be retrieved and instantiated
according to the current input parameters. The retrieved and instan-
tiated plan fragments are used to form the agent’s task tree that is
incrementally executed.

Thebelief and factsdata structures contain facts and other knowl-
edge related to the agent’s functionality. For example, the belief struc-
tures of an interface agent contain the user profile, and the belief
structures of an information agent contain a local data base that holds
relevant records of external information sources the agent is monitor-
ing. Since an information agent does not have control of information
sources on the Internet, it must retrieve and store locally any infor-
mation that it must monitor. For example, suppose an information
agent monitors the Security APL, an Internet source that provides the
New York Stock Exchange data, to satisfy another agent’s monitor-
ing request, “notify me when the price of IBM exceeds $80”. The
information agent must periodically retrieve the price of IBM from
the Security APL, bring it to its local data base and perform the ap-
propriate comparison. For information agents, the local data base is
a major part of their reusable architecture. It is this local database
that allows all information agents to present a consistent interface to
other agents, and re-use behaviors, even in very different information
environments [1].

An agent architecture may also contain components that are not
reusable. For example, the architecture of information agents contains
a small amount of site-specific external query interface code.

Since task tree management, plan retrieval, action scheduling, ex-
ecution monitoring, resource allocation, and exception handling are
handled by the agent in a domain-independent way, all these control
constructs are reusable. Therefore the development of a new agent is
simplified and involves the following steps:

� Build the domain-specific plan library
� Develop the domain-specific knowledge-base
� Instantiate the reusable agent control architecture using the domain-

specific plan library and knowledge-base

3.1 An Example of Agent Planning and Execution

We present an example of how the agent architecture is used in the
control of one of our task agents, calledPersonnel Finder , de-
scribing in detail how the task tree models associated withPersonnel
Finder are generated (See Figure 3) and how the control con-
structs operate on this tree. The basic functionality ofPersonnel
Finder is, given a person’s name, find relevant personnel infor-
mation, such as title, phone number, office number, etc. The current
implementation ofPersonnel Finder can access a variety of
information sources that are either locally available to the Carnegie
Mellon community or are distributed over the Internet.

Multi-Agent Systems 551 K. Sycara and D. Zeng

Gather Personnel

Information

Gather Personnel

Information

Parse

Finger

Data

Parse

Finger

Data

Select Information

Sources

Access Information

Sources

Resolve
Conflicts

Integrating Resulting
Information

Access Who’s-Who

Formulate

Finger

Queries

Access

Finger

Service

Access Finger

Formulate

Finger

Queries

Access

Finger

Service Service

Access Finger

Access Room Database

Availability?

Service

Availability?

Legends:

Monitor Command Goal Temporal

Constraint Task/Subtask

Figure 3. Task Tree forPersonnel Finder

ThePersonnel Finder receives “Gathering Personnel Infor-
mation” goal in messages coming from other software agents or from
a user interface directly. Since “Gathering Personnel Information” is
not a terminal node (it is not directly executable), the communica-
tion component forwards the “Gathering Personnel Information” goal
message to the plan retrieval component, queuing any other personnel
information gathering goals that might also have been received. Based
on the goal message and the associated parameters (e.g., a person’s
name), the plan retrieval component first finds the appropriate plan
fragment from the plan library and then instantiates this fragment us-
ing these parameters. Once the instantiation is done, the plan retrieval
component issues a “Select Information Sources” command, an “Ac-
cess Information Sources” sub-goal, a “Resolve Conflicts” sub-goal,
and an “Integrate Resulting Information” sub-goal, and attaches them
to the task tree. The agent immediately executes the “Select Infor-
mation Sources” since it is a terminal node and readily executable.
When this action completes, the communication component sends the
“Access Information Sources” goal message to the plan retrieval com-
ponent to get the instantiated plan fragment capable of accomplishing
the information accessing goal. This goal message is also added to
the task tree. Note that the task tree always reflects the current state
of the plan and plan execution and is updated incrementally.

After the plan retrieval component finishes plan instantiation, it
issues a “Access Finger” sub-goal, a “Access Who’s-Who” sub-goal,
and a “Access Room Database” sub-goal. Besides the finger utility for
accessing a person’s plan file, Carnegie Mellon University (CMU) has
two data bases, the “Who’s Who at CMU” which is part of the elec-
tronic University Library system, and a database containing room and
telephone information for CMU employees. It should be noted that
since there is nosequential-achievementconstraint existing among

these sub-goals, they are being handledconcurrently. We will focus
on the first one, “Access Finger”. The other two are handled in a simi-
lar way. Once again, the plan retrieval component is invoked to decide
what to do to accomplish this goal. As a result of plan instantiation,
the following nodes are added to the task tree: a “Formulate Fin-
ger Query” command (The major functionality of “Formulate Finger
Query” is to compose heuristically the email address given the name
and affiliation of a given person), a “Access Finger Service” com-
mand, a monitor to ensure that the finger action has been carried out
properly, and a “Parse Finger Data” command. In turn, these actions
are carried out and the monitoring condition is checked. If the finger
action reports a failure, an exception is raised and the plan retrieval
component is invoked to replan from the current position. As a result
of replanning, the “Formulate Finger Query” may try a different email
address. If everything goes well, after all “Access Finger”, “Access
Who’s-Who”, and “Access Room Database” finish, the agent contin-
ues similarplan retrieval-execution-execution monitoringcycles for
“Resolve Conflicts” and “Integrate Resulting Information” subgoals.
After this particular instance of “Gathering Personnel Information”
completes, the agent waits for the next “Gathering Personnel Infor-
mation” cycle. Since the control mechanism is able to monitor the
time spent for tasks/subtasks and the depth of the task tree, it is fairly
easy to constraint the computational resources dedicated to certain
tasks either by enforcing an absolute timeout constraint or limiting
the number of retries.

4 Everyday Organizational Decision Making

In performing everyday routine tasks, people spend much time in
finding, filtering, and processing information. Delegating some of the
information processing to Intelligent Agents could increase human
productivity and reduce cognitive load. Within the context of our
PLEIADES project, we have applied our distributed agent architec-
ture to tasks, such as distributed, collaborative meeting scheduling
among multiple human attendees [7], finding people information on
the Internet, hosting a visitor to Carnegie Mellon University [14],
accessing and filtering information about conference announcements
and requests for proposals (RFPs) from funding organizations and
notifying Computer Science faculty of RFPs that suit their research
interests [11].

5 An Extended Example: The Visitor Hosting Task

We will use the task of hosting a visitor to Carnegie Mellon University
(CMU) as an illustrative example of system operation. Hosting a
visitor involves arranging the visitor’s schedule with faculty whose
research interests match the interests that the visitor has expressed in
his/her visit request. A different variation of the hosting visitor task
has also been explored by Kautz and his colleagues at Bell Labs [5].

Our system consisting of a collection of agents, collectively re-
ferred to asVisitor Hosting system, supports the visitor hosting task.
The Visitor Hosting system takes as input a visit request, the tenta-
tive requested days for the meeting and the research interests of the
visitor. Its final output is a detailed schedule for the visitor consisting
of time, location, and name of attendees. Attendees in these meetings
are faculty members whose interests match the ones expressed in the
visitor’s request and who have been automatically contacted by the
agents in the Visitor Hosting system and have agreed to meet with
the visitor at times convenient for them. The Visitor Hosting system
has an interface agent which interacts with the person who is hosting
the visit. It also has the following task agents: (1) aPersonnel

Multi-Agent Systems 552 K. Sycara and D. Zeng

Finder task agent, who finds detailed information about the visi-
tor, and also finds detailed information about CMU faculty for better
matching the visitor and the faculty he/she meets, (2) the visitor’s
Scheduling task agent, and (3) various personal calendar manage-
ment task agents that manage calendars of various faculty members.
In addition, the Visitor Hosting system has a number of information
agents that (1) retrieve information from a CMU data base that has
faculty research interests (Interests agent), and (2) retrieve personnel
and location information from various university data bases.

The interactions of the various agents in the Visitor Hosting task
are:

� The user inputs a visitor request to the Visitor Hoster agent.
� The Visitor Hoster agent extracts the visitor’s areas of interest and

visitor’s name and organization.
� The Visitor Hoster agent passes to the Interests agent the visitor’s

areas of interest and asks the Interest agent to find faculty members
whose interest areas match the request.

� The Visitor Hoster agent passes the name and organization of the
visitor to thePersonnel Finder agent and asks it to find more
detailed information about the visitor (e.g. rank in the organization,
projects the visitor is working on). The visitor information is used
by faculty calendar software agents, such as CAP (see [2]), to
decide level of interest of a faculty member to meet with the
visitor.

� The Personnel Finder agent accesses Internet resources to
find more detailed information about the visitor (e.g. visitor’s rank).

� Meanwhile, the Interests agent queries the faculty interests data
base and returns names of CMU faculty whose research matches
the request.

� The Visitor Hoster agent passes the returned faculty names to
thePersonnel Finder agent requesting more information on
these faculty.

� ThePersonnel Finder agent submits queries to three person-
nel data bases (Finger, CMU Who’s-Who, CMU Room Database),
at CMU to find more detailed information about the faculty mem-
ber (e.g., rank, telephone number, e-mail address), resolves ambi-
guities in the returned information, and integrates results.

� Based on the information returned by thePersonnel Finder ,
the Visitor Hoster agent selects an initial set of faculty to be con-
tacted. The user can participate in this selection process.

� The Visitor Hoster agent automatically composes messages to the
calendar assistant agents of the selected faculty asking whether
they are willing to meet with the visitor and at what time. For
those faculty that do not have machine calendar agents, e-mail is
automatically composed and sent.

� The Visitor Hoster agent collects responses and passes them to the
visitor’s Scheduling agent.

� The visitor’s Scheduling agent composes the visitor’s schedule
through subsequent interaction and negotiation of scheduling con-
flicts with the attendees’ calendar management agents3.

6 Conclusions

In this paper, we have described concepts and techniques for struc-
turing and organizing distributed collections of intelligent software
agents in a reusable way. We presented the various agent types that we
believe are necessary for supporting and seamlessly integrating infor-
mation gathering from distributed internet-based information sources

3 For details on the distributed meeting scheduling algorithm, see [7].

and decision support. We have also described and illustrated our im-
plemented, distributed system of such collaborating agents. We be-
lieve that such flexible distributed architectures, consisting of reusable
agent components, will be able to answer many of the challenges that
face users as a result of the availability of the new, vast, net-based
information environment. These challenges include locating, access-
ing, filtering and integrating information from disparate information
sources, monitoring the Infosphere and notifying the user or an ap-
propriate agent about events of particular interest in performing the
user-designated tasks, and incorporating retrieved information into
decision support tasks.

ACKNOWLEDGEMENTS

This research has been sponsored in part by ONR Grant #N00014-
95-1-1092, by ARPA Grant #F33615-93-1-1330, and by NSF Grant
#IRI-9508191.

REFERENCES
[1] Keith Decker and Katia Sycara, ‘Designing reusable behaviors for in-

formation agents’, Technical report, The Robotics Institute, Carnegie
Mellon University, Pittsburgh, U.S.A., (1996).

[2] Lisa Dent, Jesus Boticario, John McDermott, Tom Mitchell, and David
Zabowski, ‘A personal learning apprentice’, inProceedings of the Tenth
National Conference on Artificial Intelligence. AAAI, (1992).

[3] Oren Etzioni and Daniel Weld, ‘A softbot-based interface to the internet’,
Communications of the ACM, 37(7), (July 1994).

[4] Tim Finin, Rich Fritzson, and Don McKay, ‘A language and protocol
to support intelligent agent interoperability’, inProceedings of the CE
and CALS Washington 92 Conference, (June 1992).

[5] Henry A. Kautz, Bart Selman, and Michael Coen, ‘Bottom-up design
of software agents’,Communications of the ACM, 37(7), (July 1994).

[6] Kan Lang, ‘Newsweeder: Learning to filter netnews’, inProceedings of
Machine Learning Conference, (1995).

[7] JyiShane Liu and Katia Sycara, ‘Distributed meeting scheduling’, in
Proceedings of the Sixteenth Annual Conference of the Cognitive Sci-
ence Society, Atlanta, Georgia, (August 13-16 1994).

[8] Pattie Maes, ‘Agents that reduce work and information overload’,Com-
munications of the ACM, 37(7), (July 1994).

[9] Tom Mitchell, Rich Caruana, Dayne Freitag, John McDermott, and
David Zabowski, ‘Experience with a learning personal assistant’,Com-
munications of the ACM, 37(7), (July 1994).

[10] Tim Oates, M. V. Nagendra Prasad, and Victor R. Lesser, ‘Coopera-
tive information gathering: A distributed problem solving approach’,
Technical Report 94-66, Department of Computer Science, University
of Massachusetts, (September 1994).

[11] Anandeep Pannu and Katia Sycara, ‘Learning text filtering preferences’,
in 1996 AAAI Symposium on Machine Learning and Information Access,
(1996).

[12] Anand S. Rao and Michael P. Georgeff, ‘A model-theoretic approach to
the verification of situated reasoning systems’, inProceedings of IJCAI-
93, pp. 318–324, Chambery, France, (28 August - 3 September 1993).
IJCAI.

[13] Reid Simmons, ‘Structured control for autonomous robots’,IEEE Jour-
nal of Robotics and Automation, (1994).

[14] Katia Sycara and Dajun Zeng, ‘Towards an intelligent electronic secre-
tary’, in Proceedings of the CIKM-94 (International Conference on
Information and Knowledge Management) Workshop on Intelligent
Information Agents, National Institute of Standards and Technology,
Gaithersburg, Maryland, (December 1994).

[15] M. Wooldridge and N. R. Jennings, ‘Intelligent agents: Theory and
practice’,The Knowledge Engineering Review, 10(2), 115–152, (1995).

Multi-Agent Systems 553 K. Sycara and D. Zeng

