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ABSTRACT

In dangerous and uncertain environments initial plans must
be revised. Communication failures hamper this replanning.
We introduce fractured subteams as a novel formalism for
modeling breakdowns in communication. We present a hy-
brid approach that employs distributed coordination mech-
anisms to provide robustness to these communication break-
downs and exploits opportunistic centralization. By mod-
eling the problem as a mixed integer linear programming
problem, we are able to apply constraint optimization tech-
niques to efficiently find optimal or near optimal solutions
to the difficult class of time critical tight coordination team
planning problems. We then demonstrate that explicitly
reasoning about communication failures through the incor-
poration of selective disruption minimization can improve
team performance.
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1. BACKGROUND

Teams of robots are necessary for a number of applications
in which a single robot is unable or inefficient at accomplish-
ing the goals. For example, time critical domains such as
search and rescue, where lives are at stake, require careful
consideration of plan efficiency. While some domains con-
sist entirely of tasks that may be independently completed
by individual robots permitting loose coordination, we are
interested in the more challenging problem of tight coordi-
nation [2] where robots must work together to accomplish a
joint goal. This requires robots to simultaneously solve the
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dual N"P-hard scheduling and task allocation problems with
additional consideration for path planning [3].

The resulting domain of time critical tight coordination
team planning problems are characterized by a set of robots,
R, with heterogeneous capabilities seeking to accomplish
a set of joint goals, G, with heterogeneous requirements.
These goals are distributed throughout some physical envi-
ronment, F. Additional system constraints, C, may apply to
robots, goals, or resources in the problem. The objective is
to maximize team utility by accomplishing goals while goal
rewards decrease over time to 0 at some time limit, Tyaz.

For teams of robots operating in physical environments,
coordination inefficiencies may by magnified by the spatial
constraints inherent to the problem. The time needed for
robots to traverse the environment often dominates team
performance. Consequently, it is beneficial to generate an
optimal or near optimal plan at the start. In previous work
[3], we describe COCOA, a Constraint Optimization Coordi-
nation Architecture, that maps this team planning problem
to a mixed integer linear programming (MILP) problem and
then combines domain specific heuristics and standard inte-
ger programming algorithms to efficiently generate optimal
or near optimal plans. The resulting team plan generated
by COCOA includes a schedule for each robot on the team
broken down into the three components necessary to accom-
plish each of the robot’s goals: time traveling to the goal,
time waiting for teammates, and time working on the goal.

Unfortunately, few domains are so benign that this orig-
inal plan can be successfully executed. Robots must inter-
leave planning and execution as robots fail or are incapaci-
tated, new robots join the team or receive new capabilities,
goals are added and removed, goal requirements, rewards,
or durations are changed, paths through the environment
are found to be longer or shorter than believed, system con-
straints are added or removed, or the time limit is changed.
Events that necessitate replanning are known as replanning
catalysts. The discovery of replanning catalysts is beyond
the scope of this paper but is discussed in other work [2].

Due to the physical nature of the environment, robots
may not be in full communication at any given time. Al-
though communication failure is a common phenomenon
in multirobot coordination, models for these communica-
tion breakdowns are relatively primitive. Multirobot coor-
dination architectures that address the problem assume any
given message is lost with some uniform probability. How-
ever, since robots generally depend on peer to peer wireless



RF networks for communication, signal strength between
two robots varies according to din where d is the distance
between the robots and n is the path loss exponent that is
dependent on the environment [6]. Since robot communica-
tion is frequently based on TCP which is a reliable protocol,
dropped packets are relatively unimportant. A more ac-
curate model for robots which frequently have some limited
range of communication is to model subsets of the team with
good local communication but little or no communication
between subsets. We introduce the terminology fractured
subteam to refer to subsets of robots in the original team
that are able to communicate with each other, directly or
indirectly, but not with the rest of the team.

2. FRACTURED SUBTEAMS

A fractured subteam consists of a set of robots that jointly
believe in a time critical tight coordination team planning
problem, share a team plan, share a belief evolution model,
are able to communicate with each other through transitive
closure, and are unable to communicate with any robot not
in the fractured subteam. A belief evolution model is a data
structure that represents this fractured subteam’s knowledge
of beliefs of robots in other fractured subteams. Since all
robots start with a common problem and team plan, all
robots’ belief evolution models contain a common element.

As robots seek to execute their team plan in dangerous
and uncertain environments, they may discover that the
problem and environment which they encounter does not
match the problem for which they planned requiring them
to refine their model of the problem and replan. This re-
planning must be performed quickly due to the time sensi-
tive nature of the domain; COCOA has algorithms that can
find good solutions in real time [3]. The second problem
arises when failures in communication prevent the refined
problem and solution from being disseminated to all team
members resulting in inconsistencies. Fractured subteams
force distributed replanning.

We extend COCOA from a purely centralized solver to a
hybrid architecture. This hybrid architecture employs op-
portunistic centralization but is fundamentally distributed
in that each fractured subteam is unable to communicate
with other fractured subteams requiring distributed replan-
ning. Each fractured subteam maintains its own knowledge
from all previous subteams encountered which it uses for
this replanning. Fractured subteams are themselves another
variable in the system which must be considered while re-
planning.

Since COCOA was designed to be a centralized planner,
only a single robot was required to possess the planning
capabilities and complete problem and team plan. Other
than this centralized planning robot, robots required only
their individual tightly coupled schedule. In the distributed
version of COCOA, each robot possesses full planning capa-
bilities and a copy of the complete problem and team plan.
The increase in communication cost is marginal. When a
replanning catalyst is discovered, the architecture leverages
the nature of a fractured subteam for opportunistic central-
ization. A robot from that fractured subteam is elected to
replan and broadcast the results to the subteam.

Although the replanning is locally centralized, COCOA
is distributed with respect to the individual fractured sub-
teams. Each fractured subteam maintains its own problem
and team plan. Each robot carries with it the complete
knowledge of the fractured subteam to which it belongs.

When two fractured subteams, Fi and Fb, are merged into
a single fractured subteam, their problems, team plans, and
belief evolution models must likewise be merged. We have
developed a simple algorithm for this merge, though we in-
tend to investigate more sophisticated methods in the future
since merging different beliefs is a deep research problem.

1. If the currently held problem and team plan of F
match the currently held problem and team plan of
F>, no changes need to be made.

2. If the currently held problem and team plan of F}
match a state in the belief evolution model of F5 and
the team plan of F3 is valid given the current status of
the members of Fi and F», all members of the merged
fractured subteam adopt the problem, team plan, and
belief evolution model of F5.

3. By symmetry, the previous rule applies if the currently
held problem and team plan of F> match a state in the
belief evolution model of FY.

4. If none of the above hold, create a new problem by
combining the team planning problems of Fi and F»
and generate a new team plan to the resulting problem.

While full replanning works well in perfect communica-
tion, it tends to perform poorly with fractured subteams
due to the inconsistencies in team plans. We can improve
performance by explicitly reasoning about communication
failure and fractured subteam composition during replan-
ning and preferring solutions that only change the commit-
ments of robots in the fractured subteam. The changes in
coordination commitments are known as disruption.

One of the advantages of the MILP problem formulation
in COCOA is the relative ease in combining multiple objec-
tive functions. We selectively minimize disruption by adding
a cost function. There are several possible cost functions.
We penalize near term changes more than long term changes
since there is a higher probability that changes in the plan
will be discovered in time for the robots to respond if the
change is sufficiently far in the future. We then define our
disruption objective function as follows. Minimize:

> [Cost(G™) + > Cost(R",G™)]

ms.t. GMeg ns.t. RPER

In general, every goal assigned to a robot represents a
commitment to the team. However, not all changes to com-
mitments are undesirable. If a robot is in the fractured sub-
team and aware of the replanning catalyst, some changes in
the robot’s schedule are advantageous as they increase sys-
tem performance. Since the problem is tightly coupled, dis-
tinguishing between commitments that should be preserved
and those that may be modified is challenging. We have de-
veloped commitment graphs to represent dependencies be-
tween robots in different fractured subteams. Commitment
graphs can be easily generated from the team plan as de-
scribed in Algorithm 1.

The cost function for each goal, Cost(G™), can be com-
puted from the commitment graph and the current member-
ship of the fractured subteam. The original time at which
the goal was scheduled is denoted by oldT'ime. The new
time at which the goal is to be scheduled (a variable in the
MILP) is newTime, and the system time when replanning,
is replanTime. If G™ has edges linking it to nodes of robots
not in the fractured subteam and G™ was originally sched-



Algorithm 1 Build commitment graph

1: for all Goals G™ € G such that isScheduled(G™) do
2 Add goal node to graph

3: end for

4: for all Robots R™ € R do

5:  Add robot node to graph
6:
7
8

Sprn = last known schedule for R™ in belief evolution model
for all Goals in this robot’s schedule do
Add edge with robot coordination commitments from
robot node to goal node
9:  end for
10: end for
11: for all Temporal goal constraints C; € C do
12:  Add edge C; between constrained goal nodes
13: end for

uled, canceling the goal results in a penalty of

oldTime — replanTime
Tmaz — replanTime

Qcancel (1 -

and changing the start time results in a penalty of

)

The cost function for each robot not a member of the
fractured subteam, Cost(R™,G™), can also be calculated.
If R™ is not currently allocated to G™, the cost adding the
goal into robot n’s schedule is determined by equation (1).

) (1)

Similarly, the cost of removing a goal from robot n’s schedule
is determined by equation (2).

newTime — replanT'ime

Qinsert(l — ;
zn9e7t( Tmaz — repla?’LTZme

newTime — replanTime
Tmaz — replanTime

ﬁinse'rt (1 -

oldTime — replanTime

cance, 17 B
p i Tmaz — replanTime

) (2)

We model the cost of changing the time of a goal in robot
n’s schedule as canceling and then adding a goal or the sum
of equations (1) and (2).

The constants « and 3 may be tuned depending on the de-
sired emphasis but should match the level of communication
disruption in the environment. The new MILP combines the
reward maximizing objective function [3] and the disruption
minimization objective function.

3. EVALUATION

We conducted preliminary experiments to analyze the ef-
fect of fractured subteams on system performance. We used
an abstract simulator with a randomly generated environ-
ment, 5 robots, and 10 goals. The environments are ran-
domly partitioned into various blackout zones which impose
the communication limitations, resulting in a set of fractured
subteams. The number of fractured subteams is dependent
on the topology of the environment and the composition of
these subteams changes as robots traverse the environment.
As an starting point for understanding the effect of commu-
nication breakdown on performance, we conducted a simple
set of experiments in which one robot in the team was ran-
domly disabled at some random time early in the plan.

We compared three different replanning strategies: mno
replanning where robots attempt to execute their original
schedules, full replanning in which robots replan without
consideration of communication failure, and replanning with
selective disruption minimization. The results vary depend-
ing on the topology of the environment but we found that,

in general, if the communication failures are minimal, full
replanning outperforms the no replanning strategy, but as
violations of the implicit assumption of full communication
in the full replanning strategy increase, full replanning ac-
tually decreases team performance. By applying selective
disruption minimization, as the number of partitions in the
environment (communication failures) increases, the perfor-
mance eventually converges to the no replanning strategy.
Choosing a and 8 to match the amount of communication
failure in the environment is an important challenge that we
will address in future work.

4. RELATED WORK AND CONCLUSIONS

Market-based algorithms are a popular approach for mul-
tirobot coordination and have been successfully demonstrated
in a variety of domains. A survey of the field [2] cites the
lack of performance guarantees as one of the biggest draw-
backs to current market-based approaches and suggests op-
portunistic centralization in future challenges. Our coordi-
nation approach addresses both of these issues.

In the MAS literature, token-based algorithms have been
shown empirically to perform well in large scale teams [7].
However, token-based algorithms fail to provide the perfor-
mance guarantees necessary for time critical domains. Ex-
isting work has assumed perfect communication. Pynadath
and Tambe provide the COM-MTDP model for reasoning
about the cost of communication [5] but do not explicitly
model communication failure. The COM-MTDP model does
not apply to time critical team planning problems since
it uses a Markov assumption which does not immediately
accommodate the time varying rewards or temporal con-
straints in our formulation of the problem. Distributed con-
straint optimization (DCOP) has been successfully applied
to meeting scheduling [4] and to the multiagent plan coordi-
nation problem (MPCP) [1]. However, MPCPs require loose
rather than tight coordination.

This preliminary work in developing an architecture inter-
leaving planning and execution with communication failures
for tightly coupled robot teams is promising and warrants
additional investigation.
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