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Abstract

Much recent planning research has focused on two related issues. First, there
has been a strong interest in information-gathering (or \sensing", or \knowledge-
producing") actions. Second, has been an investigation of plans with sophisticated
control structures, such as conditional branches and loops. But the combination of
these two lines of research poses a representational problem: plans with information-
gathering actions that can be executed more than once can have complex information-

ow and control-
ow relationships. In this paper, we present a framework for the
representation and execution of hierarchical plans with information producing actions,
conditional branches, periodic actions, and loops. Our framework subsumes several
techniques found in the recent literature.

1 Introduction

What is a plan? The answer to this question would seem to be a fundamental characteristic
of any planning formalism. Historically, there has been a good deal of research aimed at
developing representations for actions, but this work has generally been done in the context
of planning formalisms that adopt a very limited de�nition of plans, namely that a plan
is a (partially-ordered) sequence of primitive actions. This de�nition of plans has been
widely accepted in both the generative and the hierarchical task network (HTN) planning
paradigms. Recently, though, there has been a strong interest in plan representations that
support sophisticated control 
ow, such as parallel execution [9], conditional branching [15, 3]
and loops [17, 11, 14, 8]. These developments have gone hand-in-hand with the creation of
models for informative (a.k.a. \sensing", \information-gathering") actions [12, 5]. The two
developments are closely interrelated, since contingencies in a plan are only meaningful if
new information becomes available, and conversely, sensing the world is most useful when
doing so can have some impact on one's course of action.
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1. Retrieve the initial contents of the web page.

2. Periodically retrieve the current contents of the page.

3. Compare the results of actions (1) and (2).

4. If action (3) indicates a di�erence, give noti�cation of the new content, and signal
successful completion of the task.

Figure 1: An informal plan to monitor a web page for change.

This paper will discuss two additional kinds of control 
ow in plans: 1) periodic actions,
which are performed repeatedly at speci�c intervals, and 2) triggered actions, which are per-
formed (perhaps repeatedly) in response to external events. There is a clear motivation for
allowing such actions: they provide the only reasonable way to perform many useful tasks.
For example, consider the task of monitoring a web page for new information. There is a
simple plan for this task consisting of four actions, shown in Figure 1. This example illus-
trates the control-
ow and information-
ow issues that arise when a plan contains repetitive,
information-producing actions. How does the execution system determine when to execute
actions (3) and (4)? How does action (3) obtain the information generated by actions (1)
and (2)?

Existing planning formalisms explicitly describe control 
ow in terms of ordering rela-

tionships between actions, (i.e. A � B denoting that action A must be performed before
action B). But these relationships are insu�cient to distinguish between a number of dis-
tinct control relationships that might arise in plans with repetitive actions. In the plan in
Figure 1, for example, both actions (1) and (2) must precede action (3) the �rst time each is
executed. But thereafter, action (3) stands in very di�erent control relationships to actions
(1) and (2); it must be performed again when and only when action (2) has been repeated,
whereas action (1) need not be repeated in order to reactivate action (3). In order to rep-
resent plans such as the one in Figure 1 we need a formalism capable distinguishing these
control-
ow relationships.

We hold the position that most control 
ow relationships in a plan are derivative from
information 
ow relationships. This paper will present an integrated representation for in-
formation and control 
ow in hierarchical task networks. Our perspective is essentially prag-
matic; the formalism we present arose from our need to represent and execute hierarchical
task networks in our agent architecture. We have implemented this formalism in an Internet-
based multi-agent information system,warren, which uses cooperative, autonomous agents
to support �nancial portfolio management.

1.1 The agent architecture

A brief sketch of our agent architecture will assist in understanding the issues we are ad-
dressing. The internal structure of our agents is similar to the decaf architecture [2]. An
agent comprises concurrent planning, scheduling, and execution processes operating on a
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Figure 2: An overview of the agent architecture.

shared task agenda (Figure 2). The planner evaluates the agent's objectives, formulates top-
level tasks (goals), and elaborates hierarchical task networks for each top-level task. The
task networks consist of higher-level tasks (which must be reduced by the planner to some
network of subtasks), and primitive tasks (actions) which may be executed directly. The
scheduler's role is to determine when each action should be executed. That is, the scheduler
is responsible for making control-
ow decisions about the plan. The executor actually car-
ries out an action (in our case by directly invoking a code object attached to the action).
Action execution can have external e�ects on the state of the world, and internal e�ects on
an agents state of knowledge. If an action produces information, that information may need
to be routed to other actions that utilize the information. Thus, the executor is responsible
for carrying out information-
ow within the plan.

Caveat We are designing and building an architecture for distributed, cooperative software
agents. Our representation is strongly motivated by the kinds of tasks and actions that arise
in such an agent, particularly information-gathering actions which utilize Internet resources,
and communicative actions with other agents. The applicability of our representation to
other kinds of agents in other domains may be limited.
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Figure 4: Information 
ow from the planner by parameter binding.

2 Background

Information 
ow within plans has received little explicit study. Regarding the formal repre-
sentation of actions themselves, an action's information requirements have sometimes been
framed in terms of preconditions on the state of an agent's knowledge, while the information
produced by an action is similarly described in terms of its e�ects on that knowledge [12, 13].
Thus, information 
ow in a plan is indirect, taking place through an agent's corpus of beliefs
about the world. (See Figure 3.) This work has been primarily theoretical in nature, and
does not address practical issues that arise during the execution of plans containing such
actions.

The most ubiquitous mechanism for information 
ow is parameter binding. Most planning
systems employ some sort of schematic action representations, where the preconditions (and
e�ects) may make reference to variable parameters which are bound by the planner when
the plan is created. This allows information to be statically provided from outside the plan
before execution begins (Figure 4. A Blocksworld Stack action, for example, needs to be
informed of which block to stack, and where to stack it; this information is provided by the
planner binding the action's variable parameters to speci�c values.

Several planning formalisms [1, 5, 10] extend the concept of variable parameters to include
\runtime variables." Runtime variables appearing in the e�ects of an action are bound to
some particular value when that action is executed, and may be used in the preconditions of
subsequent actions. Thus, runtime variables are an explicit representation of the information

ow relationship between producers and consumers (Figure 5). uwl [5] also uses runtime
variables to control the 
ow of execution within a plan. At any point, a plan may bifurcate

4



ActionAction

Plan:

Runtime variable
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ow by binding runtime variables.

into two branches depending on whether or not a runtime variable takes on a particular
value.

The conditional planners cnlp [15] and c-buridan [3] use a somewhat di�erent method
to control execution 
ow based on gathered information. In these systems, the execution of
an action leads to one of a number of prespeci�ed outcomes (\consequences" in c-buridan's
parlance). The outcomes of an action are partitioned into discernible equivalence classes
representing the distinctions between outcomes that are apparent to the agent at plan-
execution time.1 Each equivalence class is annotated with an outcome label. The information
produced by the execution of a plan consists of the sequence of outcome labels produced
by the execution of each action. Subsequent actions in the plan may be annotated with a
context, a conjunction of outcome labels. An action is executed only if its context is consistent
with the outcome labels produced by all previously executed actions. The outcome/context
mechanism thus provides an explicit representation of the control-
ow relationships in a
plan. Reactive task network architectures, such as TCA [16] and RAPS [7], provide similar
models of control 
ow

Runtime variables and outcomes/contexts are su�cient to capture the information-
ow
and control-
ow relationships in a conditional sequential plan, where each action is executed
at most once. Smith and Williamson [17] extended the outcome/context mechanism to
support control 
ow in plans with loops, but did not address information 
ow. In this
paper we present a uni�cation and extension of all these techniques, which supports the
representation and e�cient execution of plans with periodic actions, externally triggered
actions, and loops.

3 Information-producing and consuming actions

In this section, we describe our representation for information 
ow within plans. The foun-
dation of this representation is a description of the information requirements of actions, and
of the information-producing abilities of actions. We will also discuss how information 
ow
is used to control plan execution.2

1In cnlp all outcomes are distinguishable, so each is in its own discernible equivalence class.
2We discuss here only those aspects of our representation that relate to information 
ow, and omit the

more traditional aspects of action modeling such descriptions of the actions preconditions and e�ects. We
believe that our representation for information 
ow could be used with a variety of di�erent action repre-
sentations, from simple, propositional, deterministic representations such as strips to the more expressive
representations supporting conditionality, quanti�cation, non-determinism and/or metric attributes.

5



3.1 Consuming information: provisions

The information needs of an action are represented by a set of provisions. Provisions can be
thought of as a generalization of both parameters and runtime variables. (In fact, we de�ne
an action's parameters to be a subset of its provisions that obey certain conditions, described
below). Like parameters and runtime variables, each provision has a symbolic name. For
example, an action to fetch a page from the web might have a provision named URL. Unlike
runtime variables (and outcome labels), the scope of provision names is local to each action,
so there is no necessary connection between di�erent actions with the same provision name.

The primary di�erence between provisions and parameters or runtime variables is that
instead of being bound to a single value, each provision has an associated queue of values.
When information is supplied to some provision of some action, it is inserted into the queue.
Information may be supplied statically by the planner when a plan is being composed, or
dynamically during plan execution, either as the result of the execution of some other action
or because of the occurrence of some external event (such as the arrival of a message to the
agent).

Individual action instances may be designated by the planner as periodic or aperiodic. An
aperiodic action will only be scheduled for execution once. A periodic action is rescheduled
upon execution for subsequent re-execution according to its associated period. An action is
enabled, and thus eligible for execution, when there is at least one value queued for each of
its provisions. Upon execution, the action \consumes" its provisions by removing them from
the queue. If multiple values are available on a provision's queue, the action may consume
all values, thus disabling itself until new information arrives, or consume a single value, thus
leaving itself enabled and eligible for future re-execution. An action that has no provisions
is always enabled; if it is periodic it will be perpetually available for re-execution.

Parameters are a subset of the provisions with somewhat di�erent behavior. First, a
parameter may only be provided once, so its queue will either contain no values or a single
value. Second, the value of a parameter is not consumed during execution, so its value
will remain available for future executions of the action. Note that the distinction between
parameters and provisions in our system is not the same as the distinction between plan-time
and runtime variables in previous planners; our parameters may have their values supplied
dynamically during plan execution, while provisions might have values supplied ahead of
time by the planner.

3.2 Producing information: outcomes and results

Where does the information come from that is supplied to the provisions of actions? As we
said above, it may be provided by the planner, and it may be produced by the occurrence of
external events (more on both of these later), but the most common source of information
is the execution of actions.

In our framework, the execution of an action produces an outcome and a result. The out-
come is one of a �nite set of predesignated symbols (equivalent to the outcomes of cnlp and
the observation labels of c-buridan). The result can be any arbitrary piece of information
returned by the code object that implements the action. An example will help make clear
the intended di�erence. Consider the action to retrieve a web page. The outcomes of such
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an action might be OK and ERROR, depending on whether the action succeeds in fetching the
page, or fails for some reason. If the outcome is OK, the result of the action would be the
web page itself. In the event of an ERROR outcome, the result might be some description of
the error.

Having both outcomes and results may seem redundant, but there is a good practical
motivation. The outcomes represent a partitioning of the (perhaps in�nite) set of possible
results into equivalence classes which are distinguished by their expected use in routing
information. Outcomes allow the executor to e�ciently route results (as described below)
without needing to actually examine those results. Thus, outcomes allow control 
ow to be
decoupled from the speci�c content of information produced.

4 Information 
ow relationships

The previous section described how individual actions produce and consume information. A
task network consists of a set of actions and a set of information-
ow relationships between
those actions. In this section, we will describe how these information-
ow relationships are
represented in our system. We will �rst discuss those relationships which may occur between
actions in a non-hierarchical (or \
at") task network, then later address the additional
relationships that arise in the hierarchical case.

4.1 Provision links

Information 
ow relationships between actions in a non-hierarchical task network are rep-
resented by provision links. Each provision link is a tuple hP; !;C; �i where P and C are
actions, ! is an outcome of P , and � is a provision of C. The meaning of such a link is that
if the execution of P gives rise to outcome !, its result is supplied to provision � of action
C.

We will demonstrate the use of provision links with an example. Recall the monitoring
plan shown in Figure 1. Figure 6 shows the task network representation of that plan in
our framework. Periodic actions are represented by large boxes with rounded corners, while
aperiodic actions are represented by large, square-cornered boxes. The small boxes on the left
side of each action represent parameters (with square corners) and provisions (with rounded
corners).

The two fetch actions will both always be enabled, since their single parameter is provided
by the planner. The �rst one will only be executed once because it is not periodic, but the
second one will be executed repeatedly. (It stays enabled since parameters are not consumed
on execution.) The comparison action will be enabled when both of the fetches have supplied
results. Upon execution, the value of page2 (a provision) will be consumed, so the action
will be disabled. It will be re-enabled when the periodic fetch action is executed again, and a
new value is supplied. The �nal noti�cation action will be enabled whenever the comparison
has a same outcome.

Note that provision links obviate the need for the ordering constraints that are used
in many existing planning formalisms. The planner instead describes the information-
ow
relationships that hold between actions. A correct ordering of actions is determined by the
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Figure 6: A task network for a simple monitoring plan.

scheduler, which selects an action for execution if and only if all the required information is
available.

4.2 Inheritance and disinheritance

In our hierarchical task network planning framework, a task is reduced by instantiating a
set of subtasks. Unlike some recent formalizations of HTN planning [4], we do not replace
the reduced task with its subtasks, but instead represent the task network as a tree-like
structure. The de�nition of a reduction speci�es how the provisions and outcomes of the
new subtasks relate to each other, and to their parent task. In order that our reduction
schemas be modular, the provision links described in the previous section can only be used
between siblings (i.e. immediate subtasks of a common higher level task). The provisions and
outcomes of the subtasks are related to their parent task by two other kinds of relationships:
provision inheritance and outcome disinheritance.

A provision inheritance link is a tuple hT; �T ; S; �Si, where S is a subtask of T , �T is a
provision of T , and �S is a provision of S. The meaning of such a link is that any value
supplied to �T will be passed on to �S.

Similarly, an outcome disinheritance link is a tuple hS; !S ; T; !T i, where S is a subtask
of T , !S is an outcome of S, and !T is an outcome of T . Such a link indicates that if the
execution of S results in outcome !S , the supertask T will have the outcome !T . Additionally,
the result of S will also be passed on as the result of T .

We will illustrate these relationships with a simple example. The agents in our system,
warren, often gather information by communicating with other agents. An abstract task of
answering a particular query could be broken down into two subtasks as shown in Figure 7.
The �rst subtask determines which agent should be used to answer the query, and the second
subtask asks that agent to answer the query. Both subtasks inherit the query from their
parent. The Determine-Agent subtask has two possible outcomes. If an appropriate agent
is known, its name is provided to the Ask-Agent-Query subtask. Otherwise, the failure
outcome is propagated upwards, and indicates the failure of the parent task. The task
that actually answers the query will be enabled when it is provided an agent's name. The
successful completion of this subtask de�nes the successful completion of the parent.
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Figure 7: A task reduction for answering a query, showing provision inheritance and outcome
disinheritance.

4.3 External provision

We mentioned above that one of our objectives was to support triggered actions, which are
executed in response to external events. In our system, the most common such event is the
arrival of a message from another agent. Our architecture has a mechanism for dynamically
routing incoming messages to the provisions of speci�c actions in the task network. Our
agents communicate using KQML [6], and the incoming messages are routed according to
the value of their IN-REPLY-TO �eld. Such a routing can be established as part of a reduction
schema.

For example, the \Ask Agent Query" task in Figure 7 might be further reduced into two
subtasks: one which sends the query to another agent, and one which receives the reply and
extracts the answer to the query (Figure 8). The Process-Reply task will be enabled when
it is provided with an incoming message.

5 Provisions, parameters, and planning

In a fully-instantiated task network, control 
ow is derived entirely from information-
ow
relationships. These relationships are established when the plan is generated. In our hierar-
chical task reduction planner, each reduction schema de�nes a set of subtasks and speci�es
the various provision, inheritance, disinheritance, and external provision links that exist be-
tween subtasks and their parent. A reduction may also specify that certain values are to be
supplied to certain subtasks at task reduction time. Thus, a task in the network may have
its provisions supplied either before or after it is reduced.

Provisions supplied to a task are supplied to the subtasks that inherit them regardless
of whether they are supplied before or after the reduction occurs. In Figure 8, for example,
the Ask-Agent-Query task could have its Query provision supplied after it was reduced, in
which case the given value would be immediately forwarded on to the Send-Query subtask.
But on the other hand, the value could also be provided beforeAsk-Agent-Query was reduced.
In that case, it would be queued there until reduction occured. Upon reduction, any existing
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Figure 8: A task reduction for asking a speci�c agent a query, showing external provision.

provisions are passed on to the inheriting subtasks.
Parameters are handled somewhat di�erently. A task that has parameters will not be

reduced until all the parameters have been provided. This is because the choice of which
reduction to use can depend on the values of the task's parameters. This does not mean,
however, that all parameters in a task network must be supplied before execution can begin.
Our agents generate and execute plans concurrently; any actions can be executed whenever
they are enabled, which may occur before a task tree is fully reduced. It is possible for a
task to have parameters provided by one of its siblings, in which case planning for that task
will be blocked until the task providing the parameter is complete. For example, if Agent
is a parameter to the Ask-Agent-Query task in Figure 7, then that task will not be reduced
until the Determine-Agent task has completed execution and provided a result. This would
allow the planner to reduce Ask-Agent-Query di�erently depending on to whom the query
is directed.

6 Conclusion

In this paper, we have addressed the issue of control 
ow and information 
ow in hierar-
chical task networks. We have proposed that control 
ow is derived from information 
ow
relationships. We have presented a framework which uni�es and generalizes two existing
information-
ow mechanisms, runtime variables and outcomes/contexts. This framework
supports the representation and execution of task networks with information producing ac-
tions, conditional branches, loops, periodic actions, and externally enabled actions. An
implementation of this framework is currently in use in the warren multi-agent system.
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