
Specifying and Monitoring Composite Events for Semantic Web Services∗

Roman Vaculín, Katia Sycara
{rvaculin, katia}@cs.cmu.edu

The Robotics Institute, Carnegie Mellon University

Abstract

Execution monitoring of complex web service process
models is critical for effective management and control of
web services based systems. During the composite process
model execution or as part of the after-execution analy-
sis complex event patterns (called composite events) con-
sisting of various primitive events need to be detected. In
this paper we introduce the concept of primitive semantic
events that are used for monitoring of semantic web ser-
vices, based on OWL-S. Next, we describe mechanisms for
specification and detection of composite events. We present
a language based on an event algebra combined with se-
mantic event-filtering expressions using description logics
atoms enriched with OWL datatypes and SWRL built-ins.
Such a language can be used for specification of compos-
ite events allowing a detection of complex event patterns in
the flow of primitive events. Furthermore, the semantic fil-
tering allows detection of such events that would otherwise
be impossible without the use of semantic descriptions. We
also discuss detection mechanisms suitable for runtime ex-
ecution and after-execution analysis.

1 Introduction

Emerging Semantic Web Services standards as OWL-S
[18], WSMO [16] and SAWSDL [5] enrich web service
standards like WSDL and BPEL4WS with rich semantic
annotations to facilitate flexible dynamic web services dis-
covery, invocation and composition. While the advantages
of semantically annotated web services were recognized in
the context of service discovery and composition, little ef-
fort has been invested into studying possibilities of seman-
tic web services monitoring (semantic monitoring). The
importance of powerful monitoring techniques increases as
operating environments of web services become more dy-
namic and web services based information systems are ex-

∗This research was supported in part by Darpa contract
FA865006C7606 and in part by funding from France Telecom.

pected to work in an autonomous or semi-autonomous fash-
ion.

Execution monitoring mechanisms are needed to pro-
vide human or software agents with appropriate information
about the execution course and results. Information pro-
vided by monitoring mechanisms can be used either during
the execution to support a dynamic response to the given
execution course, or after the execution is finished for pur-
poses of analysis and auditing. For example, during the ex-
ecution, the monitoring can be used to support measuring
and evaluation of Quality of Services (QoS) metrics that are
required by Service Level Agreements (SLA). Furthermore,
since web services are often used as part of complex pro-
cesses models and workflows, the need for analyzing, diag-
nosing, simulating and optimizing of such processes mod-
els arises. The later scenario finds its applications mainly in
areas as (Semantic) Business Process Management [7] and
Process Mining [14].

For many applications simple detection of individual
events emitted by various components of the systems is a
good enough solution. However, often complex events pat-
terns (called composite events) need to be detected. In this
paper, we focus on primitive and composite event specifi-
cation and detection mechanisms suitable for monitoring of
semantic web services. The main contribution of this paper
is the description of a language for specification of com-
posite event patterns based on the event algebra developed
originally in the context of active databases [4]. To support
detection of events with semantically rich content that are
emitted during the execution of semantic web services pro-
cess model, we augmented the event detection algebra with
semantic filtering. Specifically, the filtering is based on ex-
pressions in the form of description logics atoms enriched
with OWL [2] datatypes and SWRL [8] built-ins. We dis-
cuss detection mechanisms and suitability of the language
for specific detection scenarios. We show that a restricted
combination of detection algebra with semantic filtering is
rich enough to allow detection of event patterns during the
runtime with acceptable memory and time requirements. At
the same time, an unrestricted combination is useful during
the after-execution analysis since it allows to identify more

1

complex event patterns in recorded semantic traces possibly
over many execution sessions. OWL-S based semantic web
services and derived primitive events are used as an under-
lying platform. However, the described language does not
depend on OWL-S and can be easily adapted for other se-
mantic web services frameworks, such as WSMO.

The rest of the paper is organized as follows. Section 2
briefly introduces OWL-S and the OWL-S Virtual Machine
that executes OWL-S web services. In Section 3 we de-
scribe benefits of semantic monitoring and introduce exam-
ple problems that can be addressed by semantic monitoring
and events detection. Section 4 defines primitive events spe-
cific for OWL-S web services. In Section 5 we introduce
the event detection algebra. In Section 6 we show how to
extend the event detection algebra with semantic event fil-
tering. In Section 7 we discuss event detection techniques.
In Section 8 we review related work and in Section 9 we
conclude and point out directions for future work.

2 Overview of OWL-S concepts

OWL-S [18] is a Semantic Web Services description lan-
guage, expressed in OWL [2]. OWL-S covers three areas:
web services capability-based search and discovery, specifi-
cation of service requester and service provider interactions,
and service execution. The Service Profile describes what
the service does in terms of its capabilities and it is used for
discovering suitable providers. The Process Model spec-
ifies how clients can interact with the service by defining
the requester-provider interaction protocol. The Grounding
links the Process Model to the specific execution infrastruc-
ture (e.g., maps processes to WSDL operations and allows
for sending messages in SOAP).

An elementary unit of the Process Model is an atomic
process, which represents one indivisible operation that the
client can perform by sending a particular message to the
service and receiving a corresponding response. Processes
are specified by means of their inputs, outputs, precondi-
tions, and effects (IOPEs). Types of inputs and outputs are
usually defined as concepts in some ontology or as simple
XSD data-types. After the process is invoked, the outputs
are produced and its effects are applied to change the state
of the world. OWL-S introduces the term result to refer to
coupled outputs and effects. The actual result (i.e. outputs
and effects) can depend on conditions that hold true in the
actual world state at the time the process is performed. Pro-
cesses can be combined into composite processes by using
the various control constructs such as sequence, any-order,
choice, if-then-else, etc. Besides control-flow, the process
model also specifies a data-flow between processes.

The OWL-S Virtual Machine (OVM) [13] is a generic
OWL-S processor that allows Web services and clients to
interact on the basis of the OWL-S description of the Web

service and OWL ontologies. Specifically, the OWL-S Vir-
tual Machine (OVM) executes the Process Model of a given
service by going through the Process Model while respect-
ing the OWL-S operational semantics and invoking individ-
ual services represented by atomic processes. During the
execution, the OVM processes inputs provided by the re-
quester and outputs returned by the provider’s services, re-
alizes the control and data flow of the composite Process
Model, and uses the Grounding to invoke WSDL based web
services when needed. The OVM is a generic execution en-
gine which can be used to develop applications that need to
interact with OWL-S web services.

The OVM uses an event-based model [10] as the basis
of monitoring implementation. During the execution of the
process model, the OVM emits various events specific to the
state of process model execution. Events can be processed
by event-handlers. Each event handler is associated with an
event pattern which specifies, when the handler is triggered.
In this paper, we focus on specification of appropriate event
patterns and on their detection.

3 Benefits of semantic monitoring

In most works on event monitoring and filtering, the
monitored system and its components emit event instances
during its lifetime. Emitted event instances (often called
primitive events) are typically characterized by an event
type. Primitive events are usually directly derived from
the system implementation and are represented on the syn-
tactic level. Thus, detection mechanisms are restricted only
to event types detection and syntactic parameters matching
or comparison. Furthermore, often no explicit declarative
specification of event types and their parameters is avail-
able. Reasons for the lacking semantics in emitted events
partly spring from the lack of declarative semantic descrip-
tions of the monitored components itself.

On the contrary, semantic web services frameworks pro-
vide means for explicit specification of web service capa-
bilities, interfaces and interaction protocols. This is typi-
cally done by annotating web services with semantic an-
notations using concepts with a clear semantics defined in
ontologies. Semantic descriptions can be also used for de-
scribing event types and event instances emitted during in-
teractions with semantic web services. Similar to traditional
monitoring approaches, event types can be also organized in
taxonomy. However, in the semantic monitoring approach
event types taxonomy and event parameters are defined in
an ontology. Additionally, also the data associated with an
event instance can be annotated by ontology concepts. Such
a choice has several advantages. First, due to a clearly de-
fined semantics and standardized serializations of ontolo-
gies, events and their content can be easily processed and
shared by software agents and various applications. Sec-

Operation Input names & types Output name &
type

Login username(xsd:string),
password(xsd:string)

status(xsd:boolean)

Logout username(xsd:string) status(xsd:boolean)

LookupItem category(ItemCategory),
name(ItemName)

item(ItemDetails)

AddItemToCart id(ItemID) id(CartId)

BuyAndShipItems id(CartID),
country(Country),
city(City), street(Street)

confirmation(CfID)

Table 1. Operations of a shopping service

ond, instead of pure syntactic matching during event detec-
tion semantic reasoning can be used to support more flexible
event detection. Finally, after the execution is finished, an
interaction trace containing the events emitted during the
execution and complex filtering and querying techniques
exploiting the rich semantic interaction trace can be used
for post-execution analysis.

In order to demonstrate the benefits of semantic event de-
tection, we introduce a simple semantically annotated web
service realizing an electronic shop. We assume that the
web service supports operations defined in Table 1 (repre-
sented as atomic processes in OWL-S). For simplicity, we
describe only input parameters and a return parameter type
of each operation. We assume that all parameter types (e.g.,
ItemCategory, ItemID, Country, etc.) refer to concepts de-
fined in a domain ontology. A client of this service can
communicate with it according to the following informal
process model definition: a transaction must start with the
Login operation and end with the Logout operation. In be-
tween, LookupItem, AddItemToCart and BuyAndShipItems
can be called repeatedly. OWL-S definitions of these ser-
vices are defined in the shoppingService namespace. Ex-
amples in the following sections will often refer to this web
service.

In the following paragraph we illustrate types of event
patterns that might be of interest during execution monitor-
ing or as part of the after-execution analysis.
1. Event patterns using primitive events only:

(a) Detect every call of a given operation (e.g., Logout).
(b) Detect when a particular result is produced, e.g., Lo-

gin fails since the username cannot be verified.
(c) Filter service calls with a given parameter type, e.g.,

LookupItem calls with the category parameter that is
an instance of Book class.

2. Complex event patterns:
(a) Detect repeated occurrence of some event within a

certain time, e.g., 3 unsuccessful Login calls within
2 minutes.

(b) Detect situations when the customer logs out without
buying anything.

(c) Detect service calls taking longer than a specified
time. As a result a QoS metric might be updated.

3. Event patterns that can be useful during the off-line
post-execution analysis:
(a) Identify US customers shopping for Books that spent

more than $1000 within 3 days.
(b) Analyze popularity of some workflow (specified by

some pattern and its features).
(c) Analyze efficiency of a workflow (e.g., time to buy)

or it effectiveness (i.e., if a given sequence of calls
leads to purchasing a product).

Some of the described event patterns cannot be easily de-
tected without events and their parameters being repre-
sented as instances of concepts in an ontology. For exam-
ple, patterns 1c and 3a rely on the fact that parameter types
are organized in a taxonomy and that ontology reasoning
mechanisms can be used to check if the parameter value is
an instance of required parameter type.

4 Primitive semantic events

A primitive event occurrence is an instantaneous, atomic
occurrence of an interest at a point in time [4]. Primitive
event occurrences are directly emitted by the system or its
components. Each primitive event occurrence is an instance
of some event type and possibly can have additional infor-
mation in the form of parameters associated with it. In the
context of semantically annotated web services, it is bene-
ficial to define primitive event types as concepts in an on-
tology and occurrences of primitive events as instances of
ontology concepts. Every emitted event is thus represented
as an instance of the ontology class representing its type.
Depending on the used semantic web services framework a
suitable language for ontologies definitions can be selected.
Since we use web services described in OWL-S which is
based on the OWL language, we assume the use of OWL
for representation of ontologies in the further text.

We developed an ontology1 of event types specific to
OWL-S web services execution with each particular event
type represented by one OWL class. Figure 1 presents a
structure of event types defined in the events ontology. For
space reasons only direct subclasses of the Event class are
shown. Every event type is displayed as a solid box with the
name in its heading, and the list of its properties with car-
dinalities and range type specification. Solid arrows with
the "isa" label represent subclassing relation while dashed
arrows represent relations between classes. Classes defined
in other ontologies are identified by an appropriate names-
pace and are shown as dotted boxes. For example, pro-

1Available at http://www.daml.ri.cmu.edu/owls/events.owl

Figure 1. Direct subclasses of the Event class with their properties

cess:Parameter means that the Parameter class is defined
in the OWL-S process ontology.

The Event class is a common super-class of all event
types. Each Event instance is associated with a timeStamp
referring to the time when the event was emitted. Since an
event is always emitted during the execution of some pro-
cess, the process parameter is used to refer to such a pro-
cess. The following list summarizes event types and corre-
sponding classes in the events ontology that can occur dur-
ing the execution of the process model:

• Process call (the ProcessCallEvent class and its sub-
classes): For each process type (i.e., atomic, composite
and simple) specific event types are defined represent-
ing its start and end. The ProcessCallEvent type defines
properties for specifying input and output values and ef-
fects of the executed process. The ParameterValueBind-
ing class used as range of the input and the output prop-
erty represents a value assigned to an input or to an out-
put parameter of the process. Figure 2 shows an example
event with inputs and outputs assigned.

• Parameter assignment: The AssignEvent and its sub-
classes represent inputs assignments and outputs pro-
cessing.

• Preconditions evaluation: The PreconditionEvalEvent
type represents the precondition evaluation and refers
to the precondition expression with values assigned (the
condition property) and to the truth value (the truthValue
property).

• Result evaluation: The ResultEvalEvent and its sub-
classes represent evaluation of a conditional result com-
prising produced effects and output bindings.

• Control construct execution (the ControlCon-
structEvent and its subclasses): For each control
construct one event type represents its start and one its
end. Furthermore, we define specific event types for
particular control constructs representing specifics of
their semantics.

• Grounding events: The GroundingEvent and its sub-
classes represent events that can occur during WSDL
grounding processing.

• Failures and erroneous events (represented by the
ExceptionEvent and its subclasses): For different cate-
gories of errors specific event types are defined. The Ex-
ceptionEvent defines a textMessage property containing
a text message with detail information about the excep-
tion.

More detailed description of the OWL-S events ontology is
provided in [19].

Example 1: Figure 2 shows an instance of one event
emitted by the OVM during the execution of the Login ser-
vice introduced in Section 3. The shoppingService names-
pace refers to the process model of the Login web service.
In this example, the event refers to the end of the execu-
tion of the &shoppingService;Login atomic process with
“John” as the value of the &shoppingService;username in-
put parameter, and “secret word” as the value of the &shop-
pingService;password input parameter. The service re-
turned “true” as the value of the &shoppingService;status
output parameter.

<AtomicProcessEndEvent>
<timestamp>2007-03-12T12:35:12</timestamp>
<process rdf:resource="&shoppingService;Login"/>
<input>
<ParameterValueBinding>
<toParameter

rdf:resource="&shoppingService;username"/>
<dataValue>John</dataValue>

</ParameterValueBinding>
</input>
<input>
<ParameterValueBinding>
<toParameter

rdf:resource="&shoppingService;password"/>
<dataValue>secret word</dataValue>

</ParameterValueBinding>
</input>
<output>
<ParameterValueBinding>
<toParameter

rdf:resource="&shoppingService;status"/>
<dataValue>true</dataValue>

</ParameterValueBinding>
</output>

</AtomicProcessEndEvent>

Figure 2. An event instance: atomic process
call end event representing successful Login
service call

5 Event detection algebra

Event detection algebras present a mechanism for com-
posite events specification and detection. In event algebras,
primitive events and a number of operators are used to form
event expressions that represent an event pattern of interest.
Event algebra allows us to combine primitive event types
into composite event expressions. In this section we de-
scribe operators and semantics of an event algebra defined
in [3]. For simplicity we assume a discrete time model with
abstract time units represented by natural numbers. T is
used to denote the time domain. In an implementation, real
time units as seconds and minutes are used instead.

As we mentioned before, by primitive event occurrence
we mean an instantaneous, atomic occurrence of an interest
at a point in time which is characterized by some event type
and data values in the form of parameters associated with
it. In this section, parameters will not be considered. We
also assume that the set of event types is predefined by the
system (as, e.g., defined in the previous section).

Let P denote a finite set of event type identifiers that
are of interest to the system. For each event type E ∈ P
dom(E) denotes the set of primitive event instances (or
primitive events) of type E. For a primitive event e we
say that it is an instance of the event type E if and only
if e ∈ dom(E). A primitive event occurrence is repre-
sented as a singleton set of the form {< E, e, t >}, where
< E, e, t > is a triple, E is an event type, e is a primitive
event instance of that type and t is a time when the event
occurred (t corresponds to the timeStamp value of the Event

Operator Explanation

A ∧B Conjunction. Occurs when both A and B occur
irrespective of their order.

A ∨B Disjunction. Occurs when A or B occurs.

A; B Sequence. Occurs when A occurs before B.

A−B Negation. Occurs when there is an occurrence of A

during which there is no occurrence of B.

At Temporal restriction. Occurs when there is an
occurrence of A shorter then t time units.

A + t Temporal event. A temporal event is a special type of
a primitive event that occurs t time units after an
occurrence of A. A temporal event occurrence refers
to the event occurrence of A that initiated it.

Table 2. Composition operators

class as defined in Section 4). A set representation allows
us to treat primitive and composite event occurrences uni-
formly.

During the system execution primitive event occurrences
are emitted. At a given time, several occurrences of differ-
ent event type can be emitted, however simultaneous oc-
currences of the same primitive event type are not allowed.
Event occurrences form event streams. A primitive event
stream is a set of primitive event occurrences of the same
event type with different times. We use event streams to
define the event algebra semantics. A particular scenario
(or an execution in our case) can be described be means of
event streams. We introduce an interpretation as a way of
describing one particular scenario, i.e., the occurrences of
primitive events. Formally, an interpretation is a function
mapping each event type E ∈ P to a primitive event stream
containing primitive event occurrences of the type E.

Composite events are defined by event expressions build
from primitive event types and algebra operators. Table 2
introduces event composition operators. Event expressions
are defined inductively. For each A ∈ P , A is an event
expression. If A and B are event expressions, and t ∈ T ,
then A ∧ B, A ∨ B, A;B, A − B, At, A + t are event
expressions.

With event expressions introduced we can extend the no-
tion of event occurrences and event streams also to com-
posite events. An event occurrence is a union of n prim-
itive event occurrences, where n > 0. For an event ex-
pression A, a composite event occurrence is represented
by primitive event occurrences that caused the occurrence
of the event described by the expression A. Since com-
posite events are not instantaneous but stretch over some
interval, the occurrence interval for a composite event oc-
currence needs to be defined. For an event occurrence e
we define start(e) = min({t| < E, v, t >∈ e}) and
end(e) = max({t| < E, v, t >∈ e}).

Formally, occurrences of composite events are derived
from the definition of event streams. A general event stream
is a set of event occurrences. The following composition
functions over streams are used to define semantics of com-
position operators. If S and T are event streams and t ∈ T ,
define:

dis(S, T) = S ∪ T

con(S, T) = {s ∪ t | s ∈ S ∧ t ∈ T}
neg(S, T) = {s | s ∈ S ∧ ¬∃t(t ∈ T ∧ start(s) ≤

≤ start(t) ≤ end(t) ≤ end(s))}
seq(S, T) = {s ∪ t | s ∈ S ∧ t ∈ T ∧ end(s) ≤ start(t)}
tim(S, t) = {s | s ∈ S ∧ end(s)− start(s) ≤ t}

delay(S, t) = {r | s ∈ S ∧ r is a new temporal event

refering to s ∧ start(r)← end(r)← end(s) + t}

Using defined stream composition functions a semantics
of operators can be defined. For an interpretation function
I the semantics of event expressions is defined as follows:

[A]I = I(A) if A ∈ P
[A ∨B]I = dis([A]I , [B]I)

[A ∧B]I = con([A]I , [B]I)

[A−B]I = neg([A]I , [B]I)

[A; B]I = seq([A]I , [B]I)

[At]
I = tim([A]I , t)

[A + t]I = delay([A]I , t)

These definitions result in an algebra with a simple se-
mantics and intuitive algebraic properties (e.g., commuta-
tivity of ∧, ∨ operators, associativity of ∧, ∨ , ; and distribu-
tivity of ∧, ∨). For more details see [3]. According to this
definition, given an interpretation function I, each event ex-
pression identifies an event stream with all composite event
occurrences that match the given expression.

6 Semantic filtering

In this section, we extend the detection algebra by intro-
ducing events filtering based on expressions in the form of
conjunction of description logics atoms enriched with OWL
datatypes and SWRL built-ins. The format of filtering ex-
pressions is motivated by SWRL [8] expressions that are
used in SWRL rules antecedents. Such expressions allow us
to match events represented as OWL instances. We assume
existence of a knowledge base KB that is used for evalua-
tion of filter expressions. Specifically, an execution engine
(the OVM) maintains the KB during execution of the pro-
cess model and stores produced results in the KB. Also, the
KB contains definitions introduced in the executed OWL-S
process model.

A filter expression is a conjunction of atoms. An atom
can be one of the following expressions: C(s) (con-
cept atom), Po(s, t) (object property atom), Pd(s, d)

(datatype property atom), sameAs(s, t) (same as
atom), differentFrom(s, t) (different from atom)
and builtinID(d1, ..., dn) (built-in atom), where C is
an OWL class name (primitive event type), Po is an
OWL object property, Pd is an OWL datatype property,
builtinID is an identifier of some SWRL built-in predicate
with arity n, d1, ..., dn are variables or OWL data values, s
and t are variables or OWL individuals in the KB and d is a
variable or an OWL data value.

A filter expression holds with respect to the KB, if
there exists an assignment of individuals (from the KB)
and data values to all variables in the expression, such that
all atoms hold. Informally, an atom C(s) holds if s is
an instance of the class C, an atom Po(s, t) holds if s
is related to t by property Po, an atom Pd(s, d) holds if
s is related to d by property Pd, an atom sameAs(s, t)
holds if s is interpreted as the same object as t, an atom
differentFrom(s, t) holds if s and t are interpreted as dif-
ferent objects, and builtinID(d1, ..., dn) holds if the built-
in relation builtinID holds on the interpretations of the ar-
guments (see [8] Sections 3 and 8).

In general, we allow every event expression to be associ-
ated with a filter expression. However, to maintain control
over event detection we also introduce a restricted form of
event expressions in which filter expressions can be associ-
ated with primitive event types only.

First, we introduce restricted event types. A restricted
event type is defined as follows: T =?v : A[F], where T is
a name of the defined event type, A ∈ P is a primitive type,
?v is a variable2 which is used to refer to a primitive event
occurrence that is detected as an instance of A, and F is a
filter expression. The interpretation of restricted event types
is straightforward: during event detection for every event
occurrence of type A the filter expression F is evaluated and
only if it holds the event occurrence is detected also as an
instance of T . A variable ?v can be used in the expression
F to refer to detected event occurrence.

Example 2: The following expression defines a
new restricted event type Logout derived from the
AtomicProcessEndEvent event type:
Logout = ?x : AtomicProcessEndEvent[

process(?x, ?process) ∧
sameAs(?process, ”&shoppingService;Logout”)]

An occurrence of the Logout event type will be detected
only when an atomic process identified by the &shop-
pingService;Logout URI finishes its execution and an ap-
propriate AtomicProcessEndEvent event is emitted. A pro-
cess property in this example is the property defined for ev-
ery event instance (see Figure 1 and 2).

We define restricted event expressions as event expres-
sions in which defined restricted types can be used in the

2Variable names in expressions are marked with a ? sign, e.g., ?x.

same fashion as primitive types.
Additionally, we define extended event expressions as

event expressions in which filter expression can be attached
to any event subexpression. If A is a valid event expression,
also A[F] and ?v : A[F] are valid expressions. F stands for
a filter expression and ?v is a variable identifying an event
occurrence which was detected as an instance of A. In ex-
tended event expressions, restricted event types can be used
as well.

Obviously, extended event expressions offer more ex-
pressive power than restricted expressions, since filters at-
tached to any subexpression allow to define conditions de-
pending on several primitive type occurrences. On the other
hand, restricted event expressions are more suitable for
runtime event detection, because more efficient detection
mechanisms can be used, as we show in the next section.
Also note that since in restricted event expressions filter ex-
pressions are “hidden” in restricted event type definitions,
the semantics of composition operators and the properties of
the event algebra remain unchanged. With extended expres-
sions one must be more careful, especially during detection
of composite events, as we also show in the next section.

The following examples use web services definitions in-
troduced in Section 3. In the examples we assume that
restricted types Login and Buy were defined in a similar
fashion as the Logout type in Example 2.

Example 3: The following restricted event expression
can be used to detect situations when a customer logs out
without buying anything (event pattern 2b from Section 3):

((Login;Logout)−Buy)
Example 4: The following extended event expression

detects 2 Login calls of the same user within an interval of
120 seconds. It is a simplified version of the problem 2a in
Section 3:

(?log1 : Login; ?log2 : Login)120 [
input(?log1, ?par1) ∧ toParameter(?par1, ?par1Name)
∧ sameAs(?par1Name, “&shoppingService;username”) ∧
dataValue(?par1, ?userName1) ∧ input(?log2, ?par2) ∧ toPa-
rameter(?par2, ?par2Name) ∧ sameAs(?par2Name, “&shop-
pingService;username”) ∧ dataValue(?par2, ?userName1)]

Properties input, toParameter and dataValue are defined
in the events ontology for corresponding OWL classes (for
an example of an event instance see Fig. 2).

7 Events detection

For primitive event occurrences represented as instances
of OWL classes, primitive event detection translates into
finding a set of event types for which a given event occur-
rence belongs into their domains. Formally, let e = {<
E, v, t >} be an event occurrence of an event type E, and A
be an event expression of interest. Let candidateTypes =
{A1, ..., An} denote a set of event types occurring in A. To

identify all event types that must be notified when e occurs,
we need to find a set

typesToNotify = {C |C ∈ candidateTypes ∧
C superclass of E},

since we know that for each type C if C is superclass of
E and e ∈ dom(E) then e ∈ dom(C).

For every member of the typesToNotify set, e will
be added into its primitive event stream. Finding the
typesToNotify is actually very easy. The only thing we
need to compute is a set of superclasses for each event type.
As an optimization, this set can be computed during the sys-
tem initialization.

For a restricted event type T =?x : A[F] with filter ex-
pression F , additionally the filter expression needs to be
evaluated after a primitive event occurrence e of type A is
detected to decide, if e should be added to the primitive
event stream of T as well.

7.1 Composite events detection

In earlier works, various mechanisms for composite
event detection were proposed, including Petri nets, finite
state automata, and event detection graphs. We adopted
an approach based on event detection trees presented in
[4], however we modified the algorithm according to the
work in [3] which detects sequences of events correctly,
and extended it with filtering expressions. Before giving an
overview of the detection method, we first need to introduce
a concept of restriction policies.

An occurrence of a composite event is caused by occur-
rences of primitive events that match a given event expres-
sion. Since primitive events can occur repeatedly, several
possible combinations of primitive event occurrences can
trigger a composite event at a certain time. Figure 3 illus-
trates such a situation. The upper part of the figure shows
primitive event streams for event types LookupItem and Ad-
dItemToCart displayed on the time-lines a and b running
from left to right. Black boxes stand for primitive event oc-
currences. For example, instances of LookupItem type oc-
cur at times 1, 2 and 4. The bottom part of the figure illus-
trates two different detection regimes of an event expression
(LookupItem;AddItemToCart). Each composite event oc-
currence is displayed as a pair of white boxes connected by
a dotted line. Time-line c displays all occurrences of com-
posite event gained as all possible combinations of primitive
events. For example, at time 3, two different instances of a
composite event occur. Generally, due to the combinatorial
explosion too many occurrences need to be detected, espe-
cially when primitive events can occur repeatedly. In many
situations, such a solution is not desirable and even not pos-
sible because of time and memory constraints.

In [4] authors defined several possible policies that re-
strict the amount of detected composite events to deal with

Figure 3. Composite events detection

combinatorial explosion. We will focus on the recent pol-
icy3 which maintains an invariant that at each time at most
one event occurrence for a given event expression is de-
tected. If there are more candidates, the one with the maxi-
mal start time is detected. In Figure 3, event occurrences
detected by applying the recent policy are shown on the
time-line d.

Formally, if S is an event stream and S′ is an event
stream which we get from S by applying the recent policy
to it, the following holds:
1. S′ ⊆ S
2. ∀s (s ∈ S ⇒ ∃s′(s′ ∈ S′ ∧ start(s) ≤ start(s′)))
3. ∀s, s′ ((s ∈ S′∧s′ ∈ S′ ∧ end(s) = end(s′))⇒ s = s′)

Such a policy guarantees that if there is one or more event
occurrences of a composite event, one of them will be al-
ways detected, which is a property required in many appli-
cations contexts.

It is shown in [3] that when the recent restriction policy is
applied to the event algebra based on event streams, we still
get an algebra with intuitive properties. Additionally, event
detection adhering to the recent policy can be implemented
efficiently, since only the most recent primitive event occur-
rence of each primitive event type needs to be remembered.
This makes the recent policy detection suitable especially
for runtime detection of composite events.

Since, as we noted in the previous section, allowing re-
stricted types (i.e., event types with filter expressions) in
event expressions does not have any effect on properties
of the event algebra, the same detection mechanisms us-
ing the recent policy can be applied for detection of re-
stricted event expressions. However, this is not true for
extended event expressions. Specifically, the property 2
guaranteed by the recent policy does not always hold for
event streams of extended event expressions. To demon-

3The recent policy is suitable especially for run-time event detection.
For examples of other policies suitable for different purposes we refer to
[4].

strate this, we attach a filter F to the event expression
(LookupItem;AddItemToCart) so that we get an extended
expression. Now, let us consider for example the situation at
time 3 in Figure 3. Before applying the filter F , in general
case (time-line c), there are two candidate composite event
occurrences that can be detected. If the expression F holds
only for the one with the earlier start and does not hold for
the one the later start, detection using recent policy will de-
tect no composite event at time 3, while in an unrestricted
case a composite event is detected, which is in contradic-
tion with property 2 of the recent policy. This means, that
either the recent policy should be used only for detection
of restricted event expressions, or when used with extended
event expressions, some composite events occurrences can
be missed.

In our system, we use the recent policy and restricted
event expressions for detection of complex event occur-
rences during the runtime execution of the web service pro-
cess model. For the off-line after-execution analysis of
recorded event streams extended event expressions with an
unrestricted detection mechanism can be used, since in the
off-line case the expression power is more important than
the resource efficiency. Other

7.2 Event detection trees

Event detection trees [4] present an efficient mechanism
for detection of composite events defined by event expres-
sions. For detection purposes, each event expression is rep-
resented as a tree with leaves representing event types oc-
curring in the expression and every other node representing
one composition operator in the expression. The tree repre-
sents a decomposition of the event expression into its subex-
pressions, starting from the root standing for the whole ex-
pression and ending in leaves representing event types. De-
tection of composite event occurrences starts at the bottom
with detecting primitive event occurrences and proceeds in
the bottom up direction by progressively detecting occur-
rences of more complex subexpression until eventually the
root is reached and an event occurrence for whole expres-
sion is detected. Whenever a new event occurrence is de-
tected by some node, the node notifies its parent so that the
parent node can test if the newly detected event occurrence
reported by the child causes an occurrence of a more com-
plex event matching the subexpression of the parent. Every
node maintains a history of event occurrences in its own
buffer. However, when the tree implements the recent pol-
icy, only last event occurrence needs to be remembered at
each node (with the only exception for the ; operator. For
details see [3]).

Figure 4 shows two detection trees for event expressions
(LookupItem;AddItemToCart) and ((LookupItem ∧
AddItemToCart);BuyAndShipItems). We assume

Figure 4. Event detection trees

that restricted event types LookupItem, AddItemToCart and
BuyAndShipItems are defined in a similar fashion as in Ex-
ample 2. Please note that since two trees are displayed
and since these trees share some event types, we allowed
nodes representing event types to have more than one par-
ent node. This anomaly breaks the strict tree definition, but
it does not have any negative effect on the detection method.
The only difference is that whenever a primitive event oc-
currence is detected, the appropriate leave node notifies all
its parents. We extended the original concept of detection
trees by adding support for restricted types detection and for
event filters.

The time-line at the very bottom of the Figure 4 shows
primitive event occurrences emitted by the system during
the process model execution. Event occurrences li1, li2 and
li4, emitted at times 1, 2 and 4 respectively, are instances
of the LookupItem restricted type. ai3 is an instance of Ad-
dItemToCart and bs5 is an instance of BuyAndShipItems.
In addition to the static structure of detection trees, the fig-
ure represents a snapshot of the detection process at time
5. Current values of detected events for each subexpression
are displayed next to each node (printed in bold italics).

The figure is logically divided into three layers. The bot-
tom layer shows detectors of event types, the middle layer
displays nodes responsible for detection of restricted event
types, and the top layer displays detection trees and nodes
realizing composite event detection. Since in this particu-
lar case all three restricted event types are derived from the
AtomicProcessEndEvent event type, the bottom layer con-
tains only one node for detection of a event type (shown as
a dotted box). When a event occurrence of the AtomicPro-
cessEndEvent event type is detected, the node notifies all its
parents (dotted arrows). If the parent represents a restricted

event type (as in our case), it evaluates its associated filter
expression to test if the reported event occurrence matches
it.

For example, at time 5, bs5 occurrence is detected
by the AtomicProcessEndEvent. From the three par-
ents of AtomicProcessEndEvent, only BuyAndShipItems
updates its state since filters of other two restricted
event types do not hold for bs5. Because the state of
BuyAndShipItems node has changed, it notifies its parent,
which represents the ; operator of the ((LookupItem∧
AddItemToCart);BuyAndShipItems) expression (the
root node). After receiving notification about bs5, the root
node (labeled with ;) combines it with its previous state
(instance ai3, li4 was already detected at time 4 for the
LookupItem∧AddItemToCart subexpression) and iden-
tifies a new occurrence ai3, li4, bs5. Since at this point the
root of the tree was reached, an occurrence of a new com-
posite event is reported to the system.

For details on implementation of operator nodes adher-
ing to the recent policy please refer to [3]. Described mech-
anism is used during the runtime detection of restricted
event expressions. To support detection of extended expres-
sions each operator node additionally uses a filter (not dis-
played in the Figure 4) of the corresponding subexpression
to decide whether a candidate event instance matches the
filter or not.

A final note of this section is related to filters evaluation.
An expression language introduced in filters is quite com-
plex and evaluation of filters with respect to the knowledge
base KB maintained by the process model execution com-
ponent is not trivial. In our system, first bound variables
are replaced by their values. Then the filter expression is
translated into a SPARQL [1] query that searches for values
of free variable satisfying the filter expression. Finally, the
query is evaluated w.r.t. the KB and if some result is return,
the filter expression holds, otherwise it fails. Since during
the runtime detection the KB contains only instances pro-
duced within this session, i.e. the size of KB is relatively
small, the query can be evaluated efficiently.

8 Related work

Event algebras were developed originally in the con-
text of active databases [4, 6] and later used in distributed
[11, 15], real-time [12] and embedded systems [3]. Dif-
ferent aspects of events monitoring, as predictable resource
requirements, detection efficiency or delayed events occur-
rences in distributed systems were addressed. Detection
mechanisms include Petri nets [6], event graphs [4] and fi-
nite state automata [15].

Extensive work has been done in the area of events pro-
cessing, passing and monitoring. A general coverage of
events-based systems is provided in [10]. Distributed mid-

dleware systems based on CORBA, JMS and Web Ser-
vices standards as WS-Eventing and WS-Notification typ-
ically include a monitoring subsystem and tools for analyz-
ing logged events. Such systems are usually concerned with
monitoring of performance, availability and other SLA met-
rics. The Web Service Level Agreement (WSLA) frame-
work [9] is targeted at defining and monitoring SLAs for
Web Services. Sahai et. al. [17] developed an automated
and distributed SLA monitoring engine that allows defini-
tion of SLAs and their automatic monitoring and enforce-
ment. The general problem of current systems is the lack
of machine processable semantics as identified in [7]. The
only work know to us that addresses the problem of seman-
tic process monitoring is presented in [14]. An ontology for
process monitoring and mining is used in the context of the
Super project that builds on WSMO framework [16].

9 Conclusions

In this paper, we described primitive and composite
event specification and detection mechanisms suitable for
monitoring of semantic web services. The proposed ap-
proach, which we call semantic monitoring, combines se-
mantically rich primitive events with an event algebra used
for composite events specification. We augmented the event
algebra with semantic filtering that allows occurred events
to be matched against specified filtering expressions, and
we also described appropriate detection mechanisms. Fur-
ther, we identified a restricted variant of the event algebra
combined with semantic filters that is suitable for runtime
monitoring. Although, our work is based on OWL-S, the
proposed language for specification of composite semantic
events can be easily adapted and used with different seman-
tic web services frameworks, such as WSMO.

In the future work we want to study questions related to
the efficiency and scalability of the proposed approach. Es-
pecially in case of large, complex process models and exe-
cutions stretching over a long period, the KB base can grow
substantially which might negatively impact efficiency of
event expressions evaluation. A solution to this problem
might be in imposing more strict assumptions on the detec-
tion algorithm, for example, in the form of an explicit time
limit for events lifetime as proposed in [12].

References

[1] Sparql query language for rdf. W3C Candidate Recom-
mendation 14 June 2007, http://www.w3.org/TR/rdf-sparql-
query/.

[2] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. Owl
web ontology language reference, 10 February 2004. W3C
Recommendation, http://www.w3.org/TR/owl-ref/.

[3] J. Carlson and B. Lisper. An event detection algebra for
reactive systems. In G. C. Buttazzo, editor, EMSOFT, pages
147–154. ACM, 2004.

[4] S. Chakravarthy, V. Krishnaprasad, E. Anwar, and S.-K.
Kim. Composite events for active databases: Semantics,
contexts and detection. In Proceedings of the Twentieth
International Conference on Very Large Databases, pages
606–617, Santiago, Chile, 1994.

[5] J. Farrell and H. Lausen. Semantic an-
notations for wsdl and xml schema, 2006.
http://www.w3.org/2002/ws/sawsdl/spec/, working draft.

[6] S. Gatziu and K. R. Dittrich. Events in an active object-
oriented database system. In Rules in Database Systems,
pages 23–39, 1993.

[7] M. Hepp, F. Leymann, J. Domingue, A. Wahler, and
D. Fensel. Semantic business process management: A vi-
sion towards using semantic web services for business pro-
cess management. In F. C. M. Lau, H. Lei, X. Meng, and
M. Wang, editors, ICEBE, pages 535–540. IEEE Computer
Society, 2005.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, B. Grosof, and
M. Dean. Swrl: A semantic web rule language combining
owl and ruleml. http://www.w3.org/Submission/SWRL/.

[9] A. Keller and H. Ludwig. The WSLA framework: Speci-
fying and monitoring service level agreements for web ser-
vices. J. Network Syst. Manage, 11(1), 2003.

[10] D. Luckham. The Power of Events: An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems.
Addison-Wesley, 2002.

[11] M. Mansouri-Samani and M. Sloman. GEM: a general-
ized event monitoring language for distributed systems. Dis-
tributed Systems Engineering, 4(2):96–108, 1997.

[12] J. Mellin. Resource-Predictable and Efficient Monitoring of
Events. PhD thesis, Computer Science School of Humanities
and Informatics University of Skovde, 2004.

[13] M. Paolucci, A. Ankolekar, N. Srinivasan, and K. P. Sycara.
The DAML-S virtual machine. In D. Fensel, K. P. Sycara,
and J. Mylopoulos, editors, International Semantic Web
Conference, volume 2870 of Lecture Notes in Computer Sci-
ence, pages 290–305. Springer, 2003.

[14] C. Pedrinaci and J. Domingue. Towards an ontology for pro-
cess monitoring and mining. In Workshop: Semantic Busi-
ness Process and Product Lifecycle Management (SBPM
2007), 4th European Semantic Web Conference (ESWC
2007), 2007.

[15] P. R. Pietzuch, B. Shand, and J. Bacon. Composite event
detection as a generic middleware extension. IEEE Network,
18(1):44–55, 2004.

[16] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara,
M. Stollberg, A. Polleres, C. Feier, C. Bussler, and
D. Fensel. Web service modeling ontology. Applied On-
tology, 1(1):77 – 106, 2005.

[17] A. Sahai, V. Machiraju, M. Sayal, A. van Moorsel, and
F. Casati. Automated SLA Monitoring for Web Services.
IEEE/IFIP DSOM, 2002, 2002.

[18] The OWL Services Coalition. Semantic Markup for Web
Services (OWL-S). http://www.daml.org/services/owl-s/1.1/.

[19] R. Vaculín and K. Sycara. Monitoring execution of OWL-S
web services. In European Semantic Web Conference, OWL-
S: Experiences and Directions Workshop, June 3-7 2007.

