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Undirected Graphical Models

An Undirected Graphical Model (UGM; or Markov Network) is a graphical
representation of the dependence relationships between a set of random
variables. In an UGM, the joint probability over M variables x = [x1, . . . , xM ],
can be written in a factored form:

p(x) =
1
Z

J∏
j=1

gj(xCj)

Here the gj are non-negative potential functions over subsets of variables
Cj ⊆ {1, . . . ,M} and the notation: xS ≡ [xm : m ∈ S].

The normalization constant (a.k.a. partition function) is Z =
∑

x

∏
j

gj(xCj)

We represent this type of probabilistic model graphically.

Graph Definition: Let each variable be a node. Connect nodes i and k if there
exists a set Cj such that both i ∈ Cj and k ∈ Cj. These sets form the cliques of
the graph (fully connected subgraphs).



Undirected Graphical Models: An Example

A

C

B

D

E

p(A,B,C,D,E) =
1
Z
g(A,C)g(B,C,D)g(C,D,E)

Markov Property: Every node is conditionally independent from its non-
neighbors given its neighbors.

Conditional Independence: A⊥⊥B|C ⇔ p(A|B,C) = p(A|C) for p(B,C) > 0
also A⊥⊥B|C ⇔ p(A,B|C) = p(A|C)p(B|C).



Applications of Undirected Graphical Models

• Markov Random Fields in Vision, Bioinformatics

• Conditional Random Fields, and Exponential Language Models, e.g.:

p(s) =
1
Z
p0(s) exp

{∑
i

λifi(s)

}

• Products of Experts: p(x) =
1
Z

∏
j

pj(x|θj)

• Semi-Supervised Learning:

? Boltzmann Machines



Boltzmann Machines

Undirected graph over a vector of binary variables si ∈
{0, 1}. Variables can be hidden or visible (observed).

p(s|W ) =
1
Z

exp

∑
j<i

Wijsisj


where Z is the partition function (normalizer)

Maximum Likelihood Learning Algorithm: a gradient version of EM

• E step involves computing averages w.r.t. p(sH|sV ,W ) (“clamped phase”).
This could be done via an exact message passing algorithm (e.g. Junction
Tree) or more usually an approximate method such as Gibbs sampling.

• M step also requires gradients w.r.t. Z, which can be computed by averages
w.r.t. p(s|W ) (“unclamped phase”).

Hebbian and anti-Hebbian rule: ∆Wij = η[〈sisj〉c − 〈sisj〉u]



Bayesian Learning

Prior over parameters: p(W )

Posterior over parameters, given data set S = {s(1), . . . s(N)},

p(W |S) =
p(W )p(S|W )

p(S)

Model Comparison (for example for two different graph structures m, m′) using
Bayes factors:

p(m|S)
p(m′|S)

=
p(m)
p(m′)

p(S|m)
p(S|m′)

where the marginal likelihood is:

p(S|m) =
∫
p(S|W,m)p(W |m) dW



Why Bayesian Learning?

• Useful prior knowledge can be included (e.g. sparsity, domain knowledge)

• Avoids overfitting (because nothing needs to be fit)

• Error bars on all parameters, and predictions

• Model and feature selection



A Simple Idea

Define the following joint distribution of weights W and matrix of binary
variables S, organized into N rows (data vectors) and M columns (features,
variables). Some variables on some data points may be hidden and some may
be observed.

p(S,W ) =
1
Z

exp

− 1
2σ2

M∑
i,j=1

W 2
ij +

N∑
n=1

M∑
j<i

Wijsnisnj


Where Z =

∫
dW

∑
S exp{. . .} is a nasty partition function.

Gibbs sampling in this model is very easy!

• Gibbs sample sni given all other s and W : Bernouilli, easy as usual.

• Gibbs sample W given s: diagonal multivariate Gaussian, easy as well.

What is wrong with this approach?



...a Strange Prior on W

p(S,W ) =
1
Z

exp

− 1
2σ2

M∑
i,j=1

W 2
ij +

N∑
n=1

M∑
j<i

Wijsnisnj


This defines a Boltzmann machine for the data given W , but defines a
somewhat strange and hard to compute “prior” on the weights.
What is the prior on W?

p(W ) =
∑
S

p(S,W ) ∝ N(0, σ2I)
∑
S

exp

∑
n,j<i

Wijsnisnj


where the second factor is data-size dependent, so it’s not a valid hierarchical
Bayesian model of the kind W → S. The second factor can be written as:

∑
S

exp

∑
n,j<i

Wijsnisnj

 =

∑
s

exp

∑
j<i

Wijsisj


N

= Z(W )N

This will not work!



Three Families of Approximations

In order to do Bayesian inference in undirected models with nontrivial partition
functions we can develop three classes of methods:

• Approximate Partition Function: Z(W ) =
∑

s

exp

∑
j<i

Wijsisj


• Approximate Ratio of Partition Functions.

Z(W )
Z(W ′)

=
∑

s

p(s|W )

exp

∑
j<i

(Wij −W ′ij) sisj




• Approximate Gradients.
∂ lnZ(W )
∂Wij

=
∑

s

p(s|W ) sisj

The above quantities can be approximated using modern tools developed in the
machine learning/statistics/physics communities.

Surprisingly, none of the following methods have been explored!



I. Metropolis with Nested Sampling

Simplest sampling approach: Metropolis Sampling

• Start with random weight matrix W

• Perturb it with a small-radius Gaussian proposal distribution W →W ′

• Accept the change with probability min [1, a], where

a =
p (S|W ′) p (W ′)
p (S|W ) p (W )

=
(
Z(W )
Z(W ′)

)N
exp

∑
n,i<j

(
W ′ij −Wij

)
s

(n)
i s

(n)
j

 p (W ′)
p (W )

The partition function ratio is nasty.
But one can estimate it using an MCMC sampling inner loop:

Z(W )
Z(W ′)

=

∑
s exp

{∑
j<iWijsisj

}
∑
s exp

{∑
j<iW

′
ijsisj

} =

〈
exp

∑
j<i

(Wij −W ′ij)sisj


〉
p(s|W ′)

too slow: inner loop can take exponential time



II. Naive Mean-Field Metropolis

Same as above, but use naive mean-field to estimate the partition function.
Jensen’s inequality gives us:

lnZ(W ) = ln
∑

s

exp{
∑
j<i

Wijsisj}

≥
∑

s

q(s)
∑
j<i

Wijsisj +H(q) = F (W, q)

where q(s) =
∏
im

si
i (1−mi)(1−si) and H is the entropy.

Gradient-based variant: use expectations to compute approximate gradients



III. Tree Mean-Field Metropolis

Same as above, but use tree-structured mean-field to estimate the partition
function. Jensen’s inequality gives us:

lnZ(W ) = ln
∑

s

exp{
∑
j<i

Wijsisj}

≥
∑

s

q(s)
∑
j<i

Wijsisj +H(q) = F (W, q)

where q(s) ∈ Qtree, the set of tree-structured distributions and H is the entropy.

Gradient-based variant: use expectations to compute approximate gradients



IV. Loopy Metropolis

Belief Propagation (BP) is an exact method for inference on trees. Run belief
propagation (BP) on the (loopy) graph and use the Bethe free energy as an
estimate of Z(W ). Loopy BP provides on non-trees:

1. approximate marginals bi ≈ p (si|W )
2. approximate pairwise marginals bij ≈ p (si, sj|W )

These marginals are fixed points of the Bethe Free energy

FBethe = U −HBethe ≈ − logZ(W )

where U is the expected energy and the approximate entropy is:

HBethe =−
∑
(ij)

∑
si,sj

bij(si, sj) log bij(si, sj)−
∑
i

(1− ne(i))
∑
si

bi(si) log bi(si).

Gradient-based variant: use expectations to compute approximate gradients



V. The Langevin MCMC Sampling Procedure

So far, we’ve been describing Metropolis procedures, but these suffer from
random walk behaviour.

Langevin makes use of gradient information and resembles noisy steepest
descent. This is uncorrected Langevin:

W ′ij = Wij +
ε2

2
∂

∂Wij
log p(S,W ) + ε nij

where n ∼ N (0, 1).

There are many ways of estimating gradients, but we use a method based on
Contrastive Divergence (Hinton, 2000).



VI. Pseudo-Likelihood Based Approximations

p(s|W ) =
1
Z

exp

∑
j<i

Wijsisj


The pseudo-likelihood is defined as

p(s|W ) ≈
∏
i

p(si|s\i,W ) =
∏
i

exp{1
2si
∑
j 6=iWijsj}

1 + exp{1
2

∑
j 6=iWijsj}

=

[
1∏

i(1 + exp{1
2

∑
j 6=iWijsj})

]
exp

∑
j<i

Wijsisj


Therefore the use of pseudo-likelihood corresponds to:

Z(W ) ≈
∏
i

1 + exp

1
2

∑
j 6=i

Wijsj




Has not been tried yet—one can design and compare many other approaches.



Naive Mean Field vs Tree Mean Field Approximation
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The tree based approximation found an MST and then used Wiegerinck’s (UAI,
2000) variational approximation.



Bethe Free Energy

Plots of ZBethe vs Ztrue for some independently drawn Boltzmann machines.

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Points in red show where belief propagation failed to converge. No hacks were
applied to fix up the results; there are ways in the literature.



Results on Coronary Heart Disease Data

Classic data set of 6 binary variables detailing risk factors for coronary heart
disease in 1841 men. Small enough exact Z(W ) can be computed.1 Blue:
exact; Red: CD Langevin; Purple: loopy Metropolis.
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1100000 samples; local Metropolis proposals 0.01 variance; CD Langevin step = 0.01.



Results on Synthetic Data Sets

100 node random network. 204 and 500 edge systems. Weights∼ N (0, 1). 100
data points. Dashed Blue: Loopy Metropolis; Black: CD Langevin; Red: true.
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Part II: Summary and Future Directions

• The problem of Bayesian learning in large tree-width undirected models (log-
linear models) appears to have been completely overlooked (!?)

• Standard MCMC procedures are intractable due to the need to compute
partition functions at each step.

• This problem offers a natural opportunity for combining modern deterministic
approximations with MCMC.

• We have proposed a variety of novel methods for approximate MCMC
sampling for parameters of undirected models, based on known ideas .

• Naive mean field and tree-based mean field Metropolis do not seem to work.
Trapped by areas of poor approximation (loose bound).

• The loopy Metropolis and contrastive Langevin both seem to work well. We
found Langevin to be more robust.

• Other methods need to be compared.

• Potential applications to text modelling and computer vision.

• There is still a lot to do in this area!



End of Talk

Please allow me one more slide...



My Research Interests

• Modelling complex multivariate time series
• Learning Bayesian networks
• Causality
• Semi-supervised learning
• Active learning
• Non-parametric Bayesian methods
• Decision making and control under uncertainty
• Model selection
• Kernel methods
• Sensory-motor control
• Bioinformatcs

I’m looking to co-supervise one of more students in machine learning.
Specifically on a project involving modelling the rich multivariate time line of a
user’s activities on a computer, so as to anticipate user actions and needs. Part
of larger Enduring Personalized Cognitive Assistants (EPCA) project at CMU.

Email me: zoubin@cs.cmu.edu



Appendix



Contrastive Divergence 2

The gradient for maximum likelihood learning:

∂ log p (s|W )
∂Wkl

∝ 〈sksl〉Data − 〈sksl〉p(s|W )

becomes

∂ log p (s|W )
∂Wkl

∝ 〈sksl〉p0(W ) − 〈sksl〉p∞(W )

≈ 〈sksl〉p0(W ) − 〈sksl〉p1(W )

where pn(W ) is defined to be the distribution obtained at the nth step of Gibbs
sampling starting from the data.

2Hinton (2000)



Contrastive Divergence for Bayesian Learning

A pretty accurate Taylor expansion makes the comparison easier:

log a+ log
p (W )
p (W ′)

= N
{
δ 〈sksl〉p0(W ) − log 〈exp δsksl, 〉p∞(W )

}
≈ Nδ

{
〈sksl〉p0(W ) − 〈sksl, 〉p∞(W )

}
It is now tempting to try:

log a+ log
p (W )
p (W ′)

= Nδ
{
〈sksl〉p0(W ) − 〈sksl, 〉p1(W )

}
We will call this contrastive sampling.


