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Sorting-Based Selection Algorithms
for Hypercubic Networks?

P. Berthone’>2 A. Ferreira? B. M. Maggs? S. Perenne$?® and C. G. Plaxtoh

Abstract.  This paper presents several deterministic algorithms for selectingttiiargest record from a

set ofn records on any-node hypercubic network. All of the algorithms are based on the selection algorithm
of Cole and Yap, as well as on various sorting algorithms for hypercubic networks. Our fastest algorithm runs
in O(lgnlg* n) time, very nearly matching the trivi& (Ig n) lower bound. Previously, the best upper bound
known for selection wa®(lgnlglgn). A key subroutine in ou(Ignlg* n) time selection algorithm is a
sparse version of the Sharesort algorithm that sorescords usingp processorsp > n, in O(lgn(lglg p —
Iglg(p/n))?) time.
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1. Introduction. This paper presents several algorithms for solving the selection prob-
lem on hypercubic networks. The input to the selection problem is & gt records

and an integek. The goal is to find th&th smallest record itS. This problem is also
called the order statistics problem. The algorithms in this paper run on the hypercube
or on any of its bounded-degree derivatives including the butterfly, cube-connected cy-
cles, and shuffle-exchange network. The fastest ruf(ig nIg* n) time on am-node
network. (Throughout the paper, we usenltp denote logn, and we use [gn to de-

note the “log-star” function defined byig = min{i > 0 : Ig” n < 1}, where Ig’ n
denotes theth iterated logarithm ofi.) The fastest previously known algorithm ran

in O(lgnlglgn) time [9]. The algorithms use a technique called successive sampling,
which was previously used by Cole and Yap [5] to solve the selection problem in an
idealized model of computation called the parallel comparison model. The algorithms
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also use as subroutines sorting algorithms for hypercubic networks due to Nassimi and
Sahni [8] and Cypher and Plaxton [6].

1.1. Hypercubic Networks A hypercubecontainsn = 2 nodes, each of which has
a distinctd-bit label d must be a nonnegative integer). A node labdigd. - by_; is
connected by edges to those nodes whose labels diffetfgombgy_; in exactly one bit
position. An edge connecting two nodes whose labels differ inibitalled a dimension

i edge. Each node hdmeighbors, one for each dimensions@bcubef the hypercube
is formed by fixing the bit values of the labels in some subset ofitdenensions of
the hypercube, and allowing the bit values in the other dimensions to vary. In particular,
for each subsejy, ..., jk_1 of the set of dimension§D, ..., d — 1}, and each set of
bit valuesuy, . .., vx_1, there is a dimensiok-subcube of the hypercube consisting of
then/2X nodes whose labels have valyein dimensionji, 0 < i < k, and the edges
connecting those nodes.

The nodes in a hypercube represent processors, and the edges represent wires. Each
processor has some local memory organize® {d)-bit words. At each time step, a
processor can send a word of data to one of its neighbors, receive a word of data from
one of its neighbors, and perform a local operation on word-sized operands. In sorting
and selection problems, the input consists of a numbed @)-word records Each
record has an associat&dythat determines its rank in the entire set of records. We
assume throughout that all keys are unique. This may be done without loss of generality,
since ties can always be broken in a consistent manner by appending the initial address
(processor and memory location) of each record to its key.

All of the algorithms described in this paper use the edges of the hypercube in a very
restricted way. At each time step, only the edges associated with a single dimension are
used, and consecutive dimensions are used on consecutive steps. Such algorithms are
callednormal[7, Section 3.1.4]. The bounded-degree variants of the hypercube, includ-
ing the butterfly, cube-connected cycles, and shuffle-exchange network, can all simulate
any normal hypercube algorithm with constant slowdown [7, Sections 3.2.3 and 3.3.3].
For simplicity, we describe all of the algorithms in terms of the hypercube.

1.2. Selection Refinement Like most selection algorithms, the algorithms in this paper
use a technique called selection refinement. Given & séh records and an integ&r

0 < k < n, aselection refinemeraigorithm finds the key with rank as follows. First,
the algorithm computes lower and upper approximations to the desired reclongeA
approximationto the record of rank is a record with rank less than or equalktcAn
upper approximatiomo the record of rank is a record with rank greater than or equal to
k. Second, the algorithm extracts the sul8eif S consisting of all records between the
lower and upper approximations. (The lower and upper approximations are considered
to be “good” if| S| is much smaller thaff|.) Third, the algorithm computes an intedér
such that the record with rakin S has rankk in S. Finally, the algorithm recursively
finds the element of rank in S

1.3. Successive Sampling Selection refinement algorithms differ in the method used
to find lower and upper approximations. Our algorithm uses a technique called successive
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sampling. This technique is also used in the algorithm of Cole and Yap [5]. Given a set
Sof nrecords and an integé&r 0 < k < n, asuccessive samplirgjgorithm computes
lower and upper approximations as follows. First, the algorithm partitions tf&-se%

into n/s groups of sizes (in an arbitrary fashion), and sorts each group. Second, a new
set§ € Sof nt/srecords is formed by takingevenly spaced records from each group.
This sampling process is repeatedly applied to obtain a s&eétS;, a subses; of S,

and so on until the set of remaining eleme8tsC Sis sufficiently small that it can be
sorted efficiently. (Different values of the paramet®andt may be used at each “level”

of sampling.) Finally, the lower (resp., upper) approximation is chosen to be the largest
(resp., smallest) record B with rank that is guaranteed (by properties of the successive
sampling process) to be less (resp., greater) than or eqkahts.

1.4. Previous Work The selection problem is closely related to the sorting problem.
On the one hand, it is obvious that any sorting algorithm can be used for selection.
On the other hand, the performance of selection refinement algorithms depends heavily
on the cost of sorting “small” sets of records (i.e., sortmgecords usingp > n
processors). For the hypercube, the fastasicordn-processor sorting algorithm known

is the Sharesort algorithm of Cypher and Plaxton [6], which run®{lg n(lgig n)?)

time. (A nonuniform version of the Sharesort algorithm run®ithg nlg Ig n) time [6].)

In addition to Sharesort, we make use of Nassimi and Sahni’s sparse enumeration sort [8],
which sortan records orp processorsp > n,in O((Ignlg p)/(g p—Ign)) time. (Note

that sparse enumeration sort runs in optialg n) time if p > n'** for some positive
constant.)

The fastest previously known algorithm for solving the selection problem on a hy-
percubic network is due to Plaxton and runsQiilg nlglg n) time on ann-node net-
work [9]. Of course, the selection problem can also be solved (g n(lg Ig n)?) time
using Sharesort. Plaxton also showed that any deterministic algorithm for solving the se-
lection problem on @-processor hypercubic network requite¢(n/p)lglg p + Ig p)
time in the worst case [9]. Since the selection problem can be solved in linear time
sequentially [3], the lower bound implies that it is not possible to design a determinis-
tic hypercubic selection algorithm with linear speedup. ket p the lower bound is
Q (Ig n), which is the diameter of the network.

In [10] Valiant proved ar(lglgn) lower bound on the time to find the largest
record in a set ofi records usingy processors in an idealized model called the parallel
comparison model. The lower bound implies a lower bound on the time to seld¢hthe
smallest record as well. Valiant also showed how to find the largest rec@ddrig n)
time. Cole and Yap [5] then described@i(lg Ig n)?) selection algorithm for this model.

The running time was later improved @(lg Ig n) by Ajtai et al. [1]. The comparisons
performed by the latter algorithm are specified by an expander graph, however, making
it unlikely that this algorithm can be efficiently implemented on a hypercubic network.

A different set of upper and lower bounds hold in the PRAM models. Beame and
Hastad [2] proved ag (Ig n/ Ig Ig n) lower bound on the time for selection in the CRCW
comparison PRAM using a polynomial number of processors. Vishkin [11] discovered
an O(lgnlglgn) time PRAM algorithm that use®(n/Ignlglgn) processors. The
algorithm is work-efficient (i.e., exhibits optimal speedup) because the processor—time
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product is equal to the timé&)(n), of the fastest sequential algorithm for this problem.
Cole [4] later found arO(Ig nlg* n) time work-efficient PRAM algorithm.

1.5. Outline A “basic” selection algorithm that runs i®(Ignlglgn) time is pre-

sented in Section 2. Several faster selection algorithms are presented in the remainder
of the paper. Pseudocode for these faster selection algorithms is provided in Section 3.
Running times o (Ignlg® n) andO(lg nig® n) are established in Sections 4 and 5,
respectively. AnO(lg nlg* n) algorithm is presented in Section 6. This time bound is
obtained at the expense of using a nonuniform variant of the Sharesort algorithm [6] that
requires a certain amount of preprocessing. Finally, in Section 7 we show how to avoid
the nonuniformity introduced in Section 6.

2. An O(lgnlglgn) Selection Algorithm. In this section we develop an efficient
subroutine for selection refinement based on the parallel comparison model algorithm
of Cole and Yap [5]. There are two major differences. First, we use Nassimi and Sahni's
sparse enumeration sort [8] instead of a constant time sort (as is possible in the parallel
comparison model), and second we obtain a total running time that is proportional to
the running time of the largest call to sparse enumeration sort, whereas in the Cole-Yap
algorithm, the running time is proportional to the number of sa@tdg Ig n), each of

which costs constant time.

As in the Cole—Yap algorithm, the selection refinement algorithm proceeds by suc-
cessively sampling the given set of records. We define “sample 0” as the entire set of
records. At thdth stage of the selection refinement algoritink 0, a “subsample”
is extracted from sample This subsample represents samiple 1, and is a proper
subset of sample. Hence the sequence of sample sizes is monotonically decreasing.
The sampling process terminates at a valuefof which theith sample is sufficiently
small that it can be sorted in logarithmic time (using sparse enumeration sort). From this
final sample, we extract lower and upper approximations to the desired record. Our goal
is to obtain “good” upper and lower approximations in the sense that the ranks of our
approximations are close ko

The following approach is used to extract sample 1 from sample. First, the
records of sampleare partitioned into a number of equal-sized groups, and each group
is assigned an equal fraction of the processors. Second, each group of records is sorted
using sparse enumeration sort. The number of groups is determined in such a way that
the running time of sparse enumeration sort is logarithmic in the group size. This is the
case, for example, if sparse enumeration sort is used tadwecords in a subcube with
md processors. Lettingdenote the group size, the third step is to extract approximately
/s uniformly spaced records (i.e., evegsth record) from each group. The union of
these extracted sets of sizés forms sampld + 1. Note that the ratio of the size of
samplei to that of samplé + 1 is \/s.

Before proceeding, we introduce a couple of definitions.

DerINITION 2.1. The rank of a record in a setS, ranke, S), is equal to the number
of records inSthat are strictly smaller thas. (Note that the record may or may not
belong to the se8.)



Sorting-Based Selection Algorithms for Hypercubic Networks 241

DEFINITION 2.2.  Anr-sample of a set of record3is the subseR of S consisting of
those records with ranks i@ congruent to 0 modulp, i.e.,R = {« € S| ranka, S) =
ir,0<i < |9/r}.

2.1. Pseudocode for the Sampling Procedur&@he input to procedur8ample, below

is a setS of records concentrated in a subcubepoprocessorsp > |S|. (A set of
recordsX is said to beconcentratedn a subcub€& if each of thel X| lowest-numbered
processors of contains a unique element ¥f) The output is a sample (i.e., subs8t)

of S. The sampleS' is chosen in such a manner that:|@)| <« |S| and (ii) the record of

rankk in the sample has rank approximatk|| /| S| in S. (Lemma 2.1 provides precise
bounds on the rank properties 8fwith respect tds.) The subscript is drawn from the

set{0, 1, 2, 3, 4}. (In effect, we are defining five slightly different sampling procedures,
one corresponding to each subscript value.) For the purposes of Section 2 the reader may
assume that = 0.

Proceduresample, (S, p)

1. PartitionSinto g groups (the parameterwill be defined momentarily)
of sizes = |S]/g, assignp/g processors to each group, and sort each
of the groups in parallel. I = 0 or 1, then use sparse enumeration
sort to accomplish the sorting. #f = 2, then use Sharesort. (Note that
Sharesort assumes an input consisting of one record at each processor; if
p > |§|, then we simply us¢S| of the p processors.) If = 3, then use
the nonuniform sparse Sharesort algorithm defined in Sectior 6= 4,
then use the uniform sparse Sharesort algorithm defined in Section 7.
The parameteg is chosen so that the running time of this step (which
dominates the overall running time of the procedur® g s) if £ =0,
and®(Ig p) otherwise.

2. Extract a/s-sample from each of thg groups.

3. Return the union of thesgs-samples.

2.2. Analysis of the Sampling ProcedureGiven the rank of a record in the sample
returned by a call tésample, (S, p), the following lemma provides upper and lower
bounds on the rank of that record $

LEMMA 2.1. Leté, ', andd” denote integers satisfyirly< §” < §’ < 4. Let X denote
a set of2’ records and assume that X is partitioned ined% sets %, 0 < k < 20=%,
of size2”. Let X' denote the union of th#’"-samples of each of the,X%. If record o
has rank j in set X then the rank of in set X lies in the interval

(j 2 _ 48 j2’5”] .

PROOF Letr, denote the rank af in the 2”-sample extracted from s&, 0 < k <
2°=%_ Then the rank of in setX, lies in the interval (ry — 1)2°", r,2%"], and so the rank
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of o in X belongs to

Yo =02, Y on2' |,

O<k<25-¢ O<k<25-¢

which proves the claim since= » o, o+ k- O

2.3. Pseudocode for the Basic Approximate Selection Procedurle input to proce-
dureBasicBounds below is a seB of 2° records concentrated in a subcubgpeE 25>
processors, and integeks andky in the range 0 tqS| — 1. The output is a pair of
records(R., Ry) such thatR_ (resp.,Ry) is in Sand the rank oR_ (resp.,Ry) in Sis

at most,_ (resp., greater thay ). FurthermoreR, (resp.,Ry) is chosen so that its rank

in Sis “close” tok, (resp.ky). (To obtain precise bounds on the rankfpfandRy in

S, we make use of Lemma 2.3 as in the proof of Theorem 1.) We remark that all calls to
BasicBounds in Section 2 satisf, = ky. The reason we have not replaced the two
parameterg, andky with a single parameter will become apparent in Section 3.

ProcedurédBasicBounds(S, p, k., ky)

1. Setito0and seito S.

2. While|S|¥? > p, setS, 1 to Sampley(S, p) and incremenit.

3. SortS in O(lg |S|) time using sparse enumeration sort.

4. Determine recordR_ and Ry as in the proof of Theorem 1 below. (Set
k = k. when determinindR_, and sek = ky when determinindRy .)

5. Return(R., Ry).

2.4. Analysis of the Basic Approximate Selection ProceduiEhe inputto our algorithm

is a setg of 2° elements concentrated in a subctbef size 2+*. The factor by which
the size of the subcube exceeds the siz&oP*, is called theexcess processor ratio

In the first iteration, the records i® are partitioned into 22 groups of size 2 and

2% processors are assigned to each group. Each group is then sa@téx) itime using
sparse enumeration sort, and*asample is taken from each group. The samples from
all the groups are combined to form a new Sgtontaining 27 elements. In general,
afteri — 1 iterations, a se§_; of 2~X27'-D records remain. In thigh iteration, set

S is formed by partitioning the records &f_; into gi_; 2 25—x@3271-1) groups of size
22 and then extracting a@'l-sample from each group. Since the ratio of the number
of processors i€ to |[S_1] is 227 ‘we can (alssign3'22"l processors to each group of
size 22, and each group can be sorteddix2') time using sparse enumeration sort.

LEMMA 2.2, Thetime required for proceduiasicBounds to compute sets$hrough
S is O(x2).

PROOF  Thetimeis)_,_;_ O(x21) = O(x2"). O
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LEMMA 2.3. Letrecorda have rank j in set;Sfor some i> 1. Then the rank of in
set $_1 lies in the interval

(j 2L _ 26—x(2‘—1)’ j2x2i*11| .

PROOF A straightforward application of Lemma 2.1, with the variabieg’, ands”
of the lemma replaced by the expressiéns x(2' 1 — 1), x(3- 21 — 1), andx2' 1,
respectively. O

LEMMA 2.4. Let recorda belong to $and let j denote the rank ef in §, for some
i > 1. Then the rank of in § lies in the range

<j2x(2i—1) _ Z 26—x2k’ j2x(2i—1):| )

O<k<i

PrROOE The proof is by induction om. The base casé, = 1, is a special case of
Lemma 2.3.

Now we assume that the claim holds inductively. Suppose that recload rankj in
S. Then, by Lemma 2.3, the rank efin the setS_; lies in the interval

(j x2~t _ 28—x(2i—1)’ j2x2‘*11| .

Applying the induction hypothesis, the rank of recarih the setS is strictly greater
than

<j2x2i-1 _ 287x(2‘71)) oX@1-1) _ Z 98 —x2
O<k<i—1

which is equal tj 269 — 3~ . 25-% and at most

i X2 ox(@7-1) _ j X2 -1)
as required. O

THEOREM1. Let S denote a set @f records concentrated in a subcube C of 4%&
(x integer4 < x < §/2), and let k be an integef < k < 2°. Then in Q) time it is
possible to compute a subséto$ S and an integer’lsuch that the following conditions
are satisfied

() IS]=27""3,

(i) 0 <k <IS],
(iii) the record of rank kin S has rank k in $Sand
(iv) Sisconcentrated in C

PrROOF A call to BasicBounds (S, p, k, k) produces a sequence of s&ghrough$§
where|S§| = 2=X@-D and, as we shall se¢§ + x)/3 < x2' < § + 1. By Lemma 2.2,
the time required to computg is O(x2') = O(9).
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Next, the records il§ are sorted using sparse enumeration sort. There’ar& 2%
records and 2™ processors; hence, the excess processor ratig i3/2e choosé to be
the smallest value such that the excess processor ratio is at least the square root of the
number of records¢2' > £(8 — x(2' — 1)). Solving fori yields 2 > (§ + x)/3x and
i = [lg((§ + x)/3x)]. The time for sparse enumeration sor€Gigs + x) = O(S).

We would now like to find two records}, and Ry in §, with ranksr_ andry in
S, such thak belongs to the interval [, ry) andry — ri is small. In the following,
let A= 2X?-D andB = 2~*+1, By Lemma 2.4, the key with rankin S lies in the
interval (jA — B, jA]in &. Let j. = |k/Al, ju = [(k+ B)/A], andR_ andRy, be
the records in§ with ranksj_ and jy in §, respectively. (Ifk is sufficiently close to
|Sl, we can havgy > |S| and hence the recofid; is not well defined; in this case, we
can setRy to a dummy record that is greater than any recor§ jrand sety to |S].)
Thenj,A—B <r. < jtA<k,andk < jyA— B <ry < juA Note thatB = bA,
with b an integer, and there exist integeraindg, 0 < 8 < A, such thak = 0 A + 8.
Hencejy =a+ b+ [B/Al <a+b+1,j. =«,and

fru—r. < (ju—JjuA+B
< (@+1+b-a)A+B
= A+ 2B.

We setS to be the set of at mogt + 2B records ing with ranks in [, ry). Note that,
given recordsR, and Ry, it is straightforward to identify and concentrate the Seh

O(8) time. ForA < B, we have|S| < 3B < 273 Fori = [lg((§ + x)/3x)], the
inequality A < B is satisfied since

i J+x
X2 -1 < x[Z-( 3 )—1}
. (8—x)—8_2X
N 3
Eg_x’

where the last inequality follows from the assumption that §/2. The value ok’ is
determined by finding the rank &fin S, which can easily be done @(5) time. O

2.5. Pseudocode for the Basic Selection AlgorithrnThe input to procedurBasic-
Select below is a se6 of records concentrated in a subcubegpof | S| processors, and
an integek in the range 0 t¢S| — 1. The output is the record of ramkkin S.

ProceduréBasicSelect(S, p, k)

1. If|S]¥? < p, then sortSin O(Ig | S|) time using sparse enumeration sort
and return the record of rarkin S.

2. Set(R_, Ry) to BasicBounds(S, p, k, k).

3. Setr, (resp.ry) to the rank ofR_ (resp.,Ry) in S.

4. Let S denote thay — r| records inS with ranks (inS) in the interval
[rL,ru),andsek’ tok —ry.

5. ReturnBasicSelect(S, p, k).
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2.6. Analysis of the Basic Selection AlgorithmWe defineT (8, x) as the worst-case
(over allk) running time of a call tBasicSelect(S, p, k) with |S| = 2° andp = 20X,
Note that, for§’ < § andx’ > x, we haveT (8, X') < T (8, X); in what follows, we
occasionally make implicit use of this trivial inequality.

Theorem 1 implies that

(1) TG,X) <T@ —X=+3,2x—3)+ 0()

for 4 < x < §/2. Forx > &8, wheree denotes an arbitrarily small positive constant,
sparse enumeration sort implies tAg$, x) = O(38). We are interested in obtaining an
upper bound foff (8, 0). Note thafT (6, 0) = @ (T (8, 4)), since we can simulate &"2-
processor hypercube on &@rocessor hypercube with only constant factor slowdown.
By iterating the recurrence of (1), we can obtain an upper bound ¢&r4). Fors > 8,
one application of the recurrence givess, 4) < T(§ — 1, 5) + cé for some constant
¢ > 0. Foré > 11 we can apply the recurrence again to ob%ai$, 4) < TS —3,7) +
2¢8. In general, fors > 2 + 2~ 4+ 5 we can apply the recurrencdimes to obtain
TG,4) <T@ -2 +1,2 +3) +ics (this claim is easily verified by induction on
i). Foré > 20, we can set = |Igé] — 1 to obtainT (8,4) < T(138/4] + 1, [6/4] +
3)+ 0O(@lgd) = O(51gd). HenceT (d, 0) = O(dlgd) = O(lgnlglgn), and we have
proved the following theorem.

THEOREM2. Any calltoBasicSelect(S, p, k)ywithn = |S| = prunsin Qllgnlglgn)
time

ProcedureBasicSelect is essentially equivalent to a selection algorithm described
by Plaxton in [9]. Prior to this algorithm, the best bounds known for selection on the
hypercube were given by sorting algorithms.

3. Pseudocode for Several Faster Selection Algorithms.In this section we present
the procedure8ounds, and Select,, which will be used to establish improved time
bounds for selection in Sections 4-7.

The input to procedur8ounds, below is a setS of 2° records concentrated in a
subcube op = 2°*X processors, and an intedein the range 0 t¢S| — 1. The output is
apairofrecordsR, , Ry) suchthaR, (resp.Ry)isin SandtherankoR, (resp.,Ry)in
Sisatmosk (resp., greater thak). FurthermoreR, (resp.,Ry) is chosen so that its rank
in Sis “close” tok. (See the analysis of Sections 4—7 for precise bounds.) The subscript
¢ is drawn from the sef0, 1, 2, 3, 4}. (In effect, we are defining five slightly different
procedures, one corresponding to each subscript value.) Our interest lies primarily with
subscript values other than 0 since the proce@mendsy is essentially equivalent to
the procedur®asicBounds of Section 2.3.

ProcedurBounds, (S, p, k)

1. SetS to Sample,(S, p).
2. Sek, (resp.ky)tothelargest(resp., smallest) integer suchthatthe record
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of rankk, (resp.ky)in S is guaranteed by Lemma 2.1 to have rank less
than or equal td in S.
3. ReturnBasicBounds(S, p, k., ky).

The proceduréselect, (S, p, k) is identical to the procedurBasicSelect(S, p, k)
of Section 2.5 except that the callBasicBounds(S, p, k, k) in Step 2 is replaced by
a call toBounds, (S, p, k).

4. An O(lgnlig® n) Selection Algorithm. Throughout this section, we refer to the
O(lgnlglgn) selection algorithm of Section 2 as the “basic” algorithm. Our present goal
is to improve the running time of the basic algorithmQed Ig lg d) = O(lgnig® n) by

a simple modification. The basic algorithm consist©dfg d) applications of theD(d)
selection refinement subroutine corresponding to Theorem 1. We view each application
of the selection refinement subroutine as a “phase” of the basic algorithm. In order to
improve the performance of the basic algorithm, we augment each phase in the following
manner: Before applying the selection refinement subroutine, we partition the remaining
data into subcubes of dimensiéf) sort these subcubes completely, and extracfa 2
sample from each subcube, whéfe= [5//2'|. These samples are then passed on to the
selection refinement subroutine for successive sampling.

The parameteY is chosenin such away that, given the excess processor ratio available
at that particular phase, the sort can be complete®(d) time. The motivation for
definingd’ in this manner is to balance the time spent on the initial sort withQie)
running time of the selection refinement subroutine. Sparse enumeration sort is used to
perform the initial sort in each phase.

The modified basic selection algorithm described above corresponds to procedure
Select; of Section 3. The goal of the present section is to prove that any call to
Select;(S, p, k) with n = |S| = p runs inO(Ignlg® n) time (see Theorem 3 be-
low).

We now analyze the performance of each phase in greater detail. Before the phase,
let S denote the set of remaining records, assume|®jai= 2°, and assume that the
excess processor ratio i8,X > 0. At the beginning of the phase, we partitiSrinto
2°-% sets of size 2, and sort each set in a subcube of dimensicax. We then extract
a 2"-sample from each sorted set, whéfe= [§'/2]. Let S denote the set of’2"
records in the union of all of these samples. By Lemma 2.1, the key ofjramiS has
rank in the interval

(2" =20, j2"]

in S, wherea = § — §’ 4+ §”. Accordingly, we can obtain a lower approximation for the
kth record inS by computing a lower approximation (via Theorem 1) for th@ " |th
record inS'. Similarly, we can obtain an upper approximation for kilerecord inS by
computing an upper approximation for thjg2 "1 + 20-%)th record inS.

By Theorem 1, inO(8) time we can determine a set of at mo$tr2cords with
contiguous ranks ir§ that contains any desired rank, whdre= § — x — 28" + 3.
(To see this, apply Theorem 1 with the variabfeand x of the theorem replaced by
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the expression — §” andx + §”, respectively.) In particular, we can obtain a lower
approximation for the record of rak in S that has rank strictly greater thah— 2°,
and we can obtain an upper approximation with rank strictly lesskhar2®. Thus, in
O(5) time, we can determine:

(i) alower approximation to the record of rank2—®" | in S with rank strictly greater
than|k2=%"] — 2P in S, and

(ii) an upper approximation to the record of raf2 "1 +2°~%" in S with rank strictly
less tharrk2=%"1 4+ 2-% + 2°in S.

With the bounds of the preceding paragraph, the aforementioned lower and upper ap-
proximations represent, respectively:

(i) a lower approximation to the record of rakkin S with rank strictly greater than
k—2"—22_2"%"in S and

(ii) an upper approximation to the record of rakkn S with rank strictly less than
k42" +22+22+"inS

Hence, within the same time bound we can identify a set of at most

2E2. (2" 4204 22)

records with contiguous ranks 8and which contains the record of rakin S. Observe
thata > §” anda + 3 > b + §” (recall thata = § — 8’ + 8”). Hencez < 23+5,

Note that the initial application of sparse enumeration sort run®{#) time if
8" = O(+/8x), since the running time of sparse enumeration so(8 (8’ 4+ x)/x) =

0((8")?/x). Accordingly, we set’ = ’VC«/S—‘ for some positive constant Note that, for

x > 1,¢ > 1, ands sufficiently large, 2-9+9"+5 < 2‘37[“/&-' ,and hence < 2°~ |'~/&'|
As in Section 2.6 (where in fact we assumed that 4), we may assume that> 1
without loss of generality.

Hence, the foregoing discussion has established the recurrence

T (3— (x/ﬁ-‘ X+ (\/&-‘) +c's
T (5. [Vax]) +cs

T, x)

IA

IA

for1 < x < §/2 and some constant > 0. Forx > 1 and{\/ax] < §/2 we can iterate

this recurrence to obtain
T (5, { 5 («/axﬂ) +205

T (8, [6¥*xY4]) + 2c's.

T, X)

A

IA

More generally, fox > 1 and{sl—z’i xz’i-l < §/2,i > 0, we can apply the recurrence
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i times to obtain
T, X)

IA

T (3, [51—2" xz"D +ic's

T (5.[6*27]) +ics.

It is straightforward to verify that the recurrence can be applieddgigO (1) times, at
which point we have

IA

T(,x) <T(,y)+ O(Slglgs)
for somey with §/2 < y < §. Sparse enumeration sort implies tAa®, y) = O(9)
and hencd (d, 0) = O(dIglgd) = O(lgnig® n). We have thus proved the following
theorem.

THEOREM3. Any call toSelect;(S, p, k) with n = |S| = p runs in Qlgnlg® n)
time

5. AnO(lgnlg® n) Algorithm.  We canimprove the time bound achieved in Section 4

by making use of the Sharesort algorithm of Cypher and Plaxton [6]. Several variants
of that algorithm exist; in particular, detailed descriptions of two versions of Sharesort
may be found in [6]. Both of these variants are designed to rseeicords on am-
processor hypercubic network. The first algorithm run®iitg n(lg Ig n)) time and the
second algorithm, which is somewhat more complicated, ru@(ig n(lg lg n)?) time.

The selection algorithm of this section makes use of Sharesort as a subroutine. For this
purpose, either of the aforementioned variants of Sharesort may be used; this choice
does not affect the overall running time by more than a constant factor. For the sake of
concreteness, in the calculations that follow we assume that the si@@éen(lg Ig n)®)
algorithm is used.

The only change to the algorithm of Section 4 is that, in the initial phase, Sharesort
is used instead of sparse enumeration sort to perform the ifid)-time sort. With
Sharesort, we can afford to s&t= ©(d/(Igd)®), which is substantially larger than
the ®(+/d) bound achievable with sparse enumeration sort. For all phases subsequent
to the first phase, however, we make use of sparse enumeration sort. The reason is that,
in the absence of a suitable processor-time tradeoff for the Sharesort algorithm, sparse
enumeration sort is actually faster than Sharesort after the first phase (due to the large
excess processor ratio created by the first phase). In Section 6 we obtain an even faster
selection algorithm by developing and applying an effective processor—time tradeoff for
the Sharesort algorithm.

The selection algorithm described above corresponds to a hybrid of the procedures
Select; and Select, of Section 3. (The top-level selection call is $®lect,, but the
recursive selection calls are 8elect;.) We refer to this hybrid selection procedure as
Selects,.

In order to analyze the running time of proced@edect,, we repeat the analysis of
Section 4, but with$’ set to®(d/(Ig d)®) in the first phase. The first phase establishes
the inequality

T(d,0) < T (d, [d/(gd)*]) + O(d).
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Now d/(Igd)® = d¥-2" withi = Iglgd — Ig® d — O(1). Hence, the recurrence of
Section 4 impliesthak (d, [d/(Ig d)®]) = O(dIg® d). ThusT (d, 0) = O(dIg® d) =
O(lgnlg® n), and we have proved the following theorem.

THEOREM4. Any call toSelecty(S, p, k) with n = |S| = p runs in Qlgnig® n)
time

6. A Nonuniform O(Ignlg* n) Algorithm. The improvement described in Section 5
resulted from applying Sharesort instead of sparse enumeration sort at the beginning of
the first phase. Note, however, that all of the phases (including the first) continue to make
extensive use of sparse enumeration sort. The calls to sparse enumeration sort made by
each of the algorithms defined thus far may be partitioned into two classes: (i) those calls
made within applications of Theorem 1, and (ii) those calls used to perfor@(ej

time sort (actually, a set of parall€(d)-time sorts) before applying Theorem 1. The
algorithm of Section 2 contains only calls of Type (i), since each phase consists solely
of an application of Theorem 1. The algorithm of Section 4 contains both Type (i) and
Type (ii) calls, since each phase consists o€4d)-time sort followed by an application

of Theorem 1. The algorithm of Section 5 is the same as the algorithm of Section 4, except
that the Type (ii) call of the first phase is replaced with a call to Sharesort (causing the
number of phases to be substantially reduced).

Could we obtain an even faster selection algorithm than that of Section 5 by replacing
some or all of the remaining calls to sparse enumeration sort with calls to Sharesort? With
regard to the Type (i) calls, the answer is no. Even if the Type (i) sorts were performed in
optimal logarithmic time, the reduction in data (i.e., relevant records) between successive
phases would not be improved significantly. The reason is that the amount of data that
“survives” to the next phase is predominantly determined by the size of the subcubes
sorted in the Type (ii) sorts. Thus, in all of the algorithms described in this paper,
we continue to make use of sparse enumeration sort to perform all of the sorts within
applications of Theorem 1.

Now we consider the Type (ii) calls. All of these calls to sparse enumeration sort
will in fact be replaced with calls to a more efficient sorting algorithm in order to obtain
the O(lg nlg* n) time bound. Unfortunately, we cannot obtain such a bound by merely
replacing all of the Type (ii) calls to sparse enumeration sort with calls to one of the
single-item-per-processor variants of Sharesort. Instead, we proceed by developing a
time—processor tradeoff for Sharesort, and then using the resulting algorithm, a sparse
Sharesort, to perform all of the Type (ii) sorts.

THEOREMD5. Letn records be concentrated in a subcube of a p-processor hypercubic
network p > n. There exists a nonuniform deterministic algorithm for sorting these
records in time

2 Odlgn(glg p —Iglg(p/n))).

PrOOE As indicated in Section 5, there are a number of variants of the Sharesort
algorithm of Cypher and Plaxton [6]. These algorithms differ solely in the way that the
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so-calledshared key sortingubroutine is implemented. The shared key sorting problem
represents a restricted version of the sorting problem; a formal definition of the shared
key sorting problem is not needed in this paper, and so is not given. All variants of
Sharesort make use of precisely the same recursive framework to reduce the problem of
sorting to that of shared key sorting.

Perhaps the simplest variant of Sharesort rurd{lg nlg Ig n) time and relies upon
an optimal logarithmic time shared key sorting subroutine. This particular result is men-
tioned in the original Sharesort paper [6] and more fully described by Leighton [7,
Section 3.5.3]. Although it is the fastest of the Sharesort variants, this sorting algorithm
suffers from the disadvantage that it is nonuniform. From the point of view of a user
who would like to run this sorting algorithm on a particular hypercube of dimension
d, what this nonuniformity implies is that a “setup” routine must be executed when the
machine is first configured in order to generate a version of the algorithm that is capable
of efficiently sorting any subcube of dimension less than or equdl tdote that the
setup routine need only be executed once in the lifetime of the machine (and not once
per sort) and so this deficiency may not be considered overly severe. Unfortunately, the
most efficient deterministic algorithms currently known for performing the setup task
run in time that is exponential in.

We will establish the validity of (2) by developing a time—processor tradeoff for the
O(lgnlglgn) time, nonuniform variant of Sharesort.

As mentioned above, all variants of Sharesort are based on a particular system of
recurrences. At the highest level, sorting is performed recursivehjigiaorder merging
(i.e., mergingn® sorted lists of lengtn—* for some constant, 0 < ¢ < 1). The running
time of Sharesort is dominated by the time required for high-order merging, which is
itself performed recursively. Lé¥l (x) denote the task of mergingsorted lists of length
x4. One possible recurrence for performing the merge is (minor technical details related
to integrality constraints are dealt with in [6] and are not addressed here)

®3) M(n*®) < M(n**%) + M(n"®) + O(Ign) + SKSn),

whereSKSn) denotes the time required to solve the shared key sorting problem. (To
justify the preceding recurrence, apply (1) of [6] with= % Ign,b=4a,a = 4i5 lgn,

b =4a,a" = % Ilgn,b” = 4a”, and observe that the additi@a Ig a) term corresponds

to the sum ofO(a) and the cost of a call to the shared key sorting subroutine.) For the
O(lgnlglgn) time, nonuniform variant of Shareso8KSn) = O(lgn), and so the
SK8n) term essentially disappears from the recurrence of (3). In order to obtain the
time bound of (2), we make use of additional processors in the following simple way:
whenever a merging problem of the forkh(x) arises andk® is less than the excess
process ratio, we apply*® processors to solve that merging subproblem in optimal
O(lg x) time using sparse enumeration sort. A straightforward analysis shows that this
modification to theD(Ig nlg Ig n) algorithm of Sharesort yields the sorting time bound

of (2). O

We modify theO(Ig nlg®® n) algorithm of Section 4 by replacing all of the Type (ii)
calls to sparse enumeration sort with calls to the sorting algorithm of Theorem 5. The
resulting selection algorithm corresponds to proce@sgiect; of Section 3.
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In order to analyze the performance of procedseéects, one may simply repeat the
analysis of Section 4, settirfgto [c§/(Ig § — Ig x)] for some sufficiently large positive
constant. Doing this, we obtain the recurrence

T@,x) =T (5, [L—D +c'8
lg§ —lgx

for 1 < x < /2 and some constant > 0. Forx > 1 and[s/1g"(Igs —Igx)| < §/2,
i > 0, we can apply the recurrencéimes to obtain

8 L
T@G,X)<T (8, ’V@TS—‘> +1c’é.

In general, the recurrence can be applie€dlg- O(1) times, and we find thak (d, 0) =
O(dlg*d) = O(gnlg* n). We have thus proved the following theorem.

THEOREMG6. Any call toSelects(S, p, k) withn=|§] = p runsin g nlg* n) time

7. A Uniform O(lgnlg* n) Selection Algorithm. In Section 6, we proved the exis-
tence of an algorithm for selection that rungrilg nIg* n) time. However, as indicated
in Section 6, that algorithm is nonuniform because it makes use of a nonuniform version
of the Sharesort algorithm. In the present section we establish the existence of a uniform
selection algorithm with the same asymptotic complexity as the algorithm of Section 6.
The version of the Sharesort algorithm employed in Section 6 makes use of a nonuni-
form shared key sorting subroutine. The running time of the nonuniform shared key
sorting subroutine i©(Ig n), which is easily seen to be optimal. The fastest known uni-
form version of the shared key sorting subroutine taRélg nlg Ig n) time, which leads
to an O(lg n(lglg n)?) running time for the corresponding uniform variant of Share-
sort [6]. In the following we show how to adapt this uniform version of Sharesort to
obtain a uniform version of a “sparse” Sharesort, that is, an algorithm for sarting
records onp > n processors. We express the running tim&pérseSharedKeySort
in terms of the two parametensand p.

THEOREM7. Let n records be concentrated in a subcube of a p-processor hypercubic
network p > n. There exists a uniform deterministic algorithm for sorting these records
in time

(4) O(lgndiglg p —Iglg(p/n))?).

PrROOF To obtain the result, we show how to improve the time complexity of the
shared key sorting procedure when we have a significant number of “extra” processors
(i.e., p > n). Let SSK$n, p) be the time needed to solve the followisgarse shared

key sorting problemPerform 2 identical sorts of lists of size*®2with a andb such that
a+b=nandb—-a/2 = ®(a), on ahypercube of sizp, p > n. By a similar analysis

as that provided in Section 6, the theorem follows if we can prove that

5) SSK$n, p) = Odgn(glg p —Iglg(p/n))) .
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We modify theSharedKeySort algorithm of [6] to obtain aSparseSharedKeySort”
routine satisfying (5). Because the complete description oftheredKeySort algo-
rithm is quite lengthy, we content ourselves with a description of the differences between
SparseSharedKeySort andSharedKeySort. Fortunately these differences are minor.

We begin by observing th&haredKeySort consists of a call to subroutifdanRoute
followed by a call to subroutinBoRoute [6, Section 7.1]. For the case= p considered
in [6], each of these two subroutines rungidlg nlg Ig n) time. We now argue that each
of these subroutines can be generalized to ruddlg n(glg p — Iglg(p/n))) time for
p > n, which implies the desired bound of (5).

We consider subroutifi2oRoute first, since itis simpler to deal with thdanRoute.
Looking at the three-parameter recurrence for the running tinizo&oute appearing
in Section 7.3 of [6], we observe that: (i) the third parameter does not affect the running
time and hence can be ignored, and (ii) we can assume without loss of generality that
the first two parameters are equal since they are equal in every recursive call. With the
preceding observations, we find that the running timBa@Route is upper-bounded by
a recurrence of the form

(6) T(n) < 2T(O(v/nlgn)) + O(lgn),

where the parameter above corresponds t&*® (which can be assumed to be equal

to 222, by observation (ii) above) in the recurrence of Section 7.3 of [6]. Note that (6)

is very similar to (3); in each case the additive termQg¢lgn) and the sum of the
exponents associated with the “recursive” terms on the right-hand side is equal to the
exponent appearing on the left-hand side (ges 4 + § in (3) and 1=  +  in (6)).

(The reader may wonder whether it is significant that the argumentari the right-

hand side of (6) i€ (4/nlgn) and not simply,/n; it is easy to argue that th@-bound
implied by the recurrence is the same in either case.) In fact, the same technique that
we used in conjunction with (3) in the proof of Theorem 5 can now be used to modify
DoRoute to obtain the desire®(Ign(glg p — Iglg(p/n))) time bound; namely, we

cut off the recurrence and apply sparse enumeration sort as soon as the excess processor
ratio is polynomial in the input size (so that sparse enumeration sort runs in logarithmic
time). (We are free to replace any callbmRoute with a call to a sorting routine since
DoRoute implements a restricted type of permutation route, and a sorting routine can
be use to route an arbitrary permutation.)

It remains to consider the subroutifanRoute. Looking at the three-parameter
recurrence for the running time BfanRoute appearing in Section 7.2 of [6], we observe
that: (i) the third parameter does not affect the running time and hence can be ignored,
and (ii) we can assume without loss of generality that the first two parameters are equal
since they are equal in every recursive call. With the preceding observations, we find
that the running time oPlanRoute is upper-bounded by a recurrence of the form

7) T(n) < T(O(/nlgn)) + O(lgnlglign),

where the paramet@rabove corresponds t62 (which can be assumed to be equal to
2% by observation (ii) above) in the recurrence of Section 7.2 of [6]. This recurrence
solvesto givel (n) = O(lgnlglgn). Because the overhead term associated with the first
level of the recurrence is al$d(lg nlg Ig n), the technique of cutting off the recurrence at
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some depth (i.e., the technique used in conjunction witlDibiRoute recurrence above)
cannot give more than a constant factor improvement in the upper bound. To obtain the
desiredO(lgn(glg p—Iglg(p/n))) time bound, we instead argue tianRoute can
be generalized to the case pf> n processors in such a manner that the Ig fgctor
appearing within the additive term of (7) becomes lglg Iglg(p/n) (the resulting
recurrence is easily solved and yields the desired time bound).

In order to see that this Ig lyfactor can in fact be replaced by lgjg-1g Ig(p/n), we
need to understand how the Igidactor arises. A cursory examination of tRenRoute
algorithm [6, Section 7.2] reveals that the Igidactor corresponds to the number of
“classes” into which the set afi input records is partitioned. The partitioning into
classes is performed through Igigalls to the subroutinBalance. Each successive
call to Balance runs inO(lg n) time and acts only on those records that have yet to be
assignedto a class. Thi call toBalance determines a class of siggn2-2) and leaves
©(n2-2"") records unassigned. In other words, the ratio of the number of processors to
the number of unassigned records is squared with each successivéeddirioe. Thus,
if we start withn unassigned records an@> n processors (instead afprocessors),
every record is assigned to one of iaX{glgn —Iglg(p/n)} < lglg p—Iglg (p/n)]
classes using the same number of calls to the subroBtitence. O

We can now make use of Theorem 7 to obtain a uniform selection algorithm in the same
way that Theorem 5 was used to define a nonuniform selection algorithm in Section 6.
The resulting selection algorithm corresponds to proce8etect, of Section 3.

To determine the time complexity &elect,, we can apply the analysis of Section 6
with §" set to[c3/(Ig 8 — Ig x)?|. We obtain the recurrence

cs /
TG0 <T (3, {7095 © ng>2D s

for 1 < x < §/2, and some constaot > 0. Applying this recurrence fg(lgd)?) +
O = lg*d + O(1) times, we find thafl (d, 0) = O(dlg*d) = O(lgnlg*n). We
have thus proved the following theorem.

THEOREM8. Any call toSelects(S, p, k) withn = |S| = prunsin Qlgnlg* n) time

8. Concluding Remarks. We have developed a number of asymptotically fast selec-
tion algorithms for hypercubic networks. Our analysis of these algorithms has focused
on determining their running times to within a constant factor. In order to simplify the
analysis, we have occasionally employed rather loose bounds, and so the multiplicative
constants implicit in ouD-bounds are correspondingly pessimistic.

The selection algorithms described in Sections 2-5 of this paper can be easily ex-
pressed in terms of: (i) local operations, (ii) standard normal hypercube primitives (e.g.,
prefix sum and monotone routing operations), and (iii) calls to previously known normal
sorting algorithms (i.e., sparse enumeration sort, Sharesort). Hence, these algorithms
are also normal. Furthermore, it is not difficult to argue that both the nonuniform and
uniform sparse Sharesort subroutines developed in Sections 6 and 7 are, like Sharesort,
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normal. Hence all of the selection algorithms discussed in this paper are normal, and
we can conclude that our asymptotic time bounds hold not only for the hypercube but
also for bounded-degree variants of the hypercube such as the butterfly, cube-connected
cycles, and shuffle-exchange.

It is noteworthy that the algorithm devised by Cole and Yap for the powerful and
abstract parallel comparison model has essentially pointed the way to the best known
algorithms for realistic models of parallel computation.

Acknowledgments. We are grateful to the anonymous referee for insightful remarks
that helped to improve the presentation considerably.
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