
DOI: 10.1007/s004539910011

Algorithmica (2000) 26: 237–254 Algorithmica
© 2000 Springer-Verlag New York Inc.

Sorting-Based Selection Algorithms
for Hypercubic Networks1

P. Berthom´e,2,3 A. Ferreira,2 B. M. Maggs,4 S. Perennes,2,5 and C. G. Plaxton6

Abstract. This paper presents several deterministic algorithms for selecting thekth largest record from a
set ofn records on anyn-node hypercubic network. All of the algorithms are based on the selection algorithm
of Cole and Yap, as well as on various sorting algorithms for hypercubic networks. Our fastest algorithm runs
in O(lg n lg∗ n) time, very nearly matching the trivialÄ(lg n) lower bound. Previously, the best upper bound
known for selection wasO(lg n lg lg n). A key subroutine in ourO(lg n lg∗ n) time selection algorithm is a
sparse version of the Sharesort algorithm that sortsn records usingp processors,p ≥ n, in O(lg n(lg lg p−
lg lg(p/n))2) time.

Key Words. Selection, Hypercube, Parallel algorithms.

1. Introduction. This paper presents several algorithms for solving the selection prob-
lem on hypercubic networks. The input to the selection problem is a setS of n records
and an integerk. The goal is to find thekth smallest record inS. This problem is also
called the order statistics problem. The algorithms in this paper run on the hypercube
or on any of its bounded-degree derivatives including the butterfly, cube-connected cy-
cles, and shuffle-exchange network. The fastest runs inO(lg n lg∗ n) time on ann-node
network. (Throughout the paper, we use lgn to denote log2 n, and we use lg∗ n to de-
note the “log-star” function defined by lg∗ n = min{i ≥ 0 : lg(i) n ≤ 1}, where lg(i) n
denotes thei th iterated logarithm ofn.) The fastest previously known algorithm ran
in O(lg n lg lg n) time [9]. The algorithms use a technique called successive sampling,
which was previously used by Cole and Yap [5] to solve the selection problem in an
idealized model of computation called the parallel comparison model. The algorithms

1 Work by the first author was supported by the French CNRS Coordinated Research Program on Parallelism
C3 and the French PRC/GDR MATHINFO. Work by the fifth author was supported by NSF Research Initiation
Award CCR-9111591, the Texas Advanced Research Program (TARP) under Grant Nos. 93-003658-461 and
91-003658-480, and the NEC Research Institute.
2 Laboratoire de l’Informatique du Parall´elisme, CNRS, Ecole Normale Sup´erieure de Lyon, 46, All´ee d’Italie,
69364 Lyon Cedex 07, France. Afonso.Ferreira@ens-lyon.fr, www.ens-lyon.fr/˜ferreira.
3 Current address: LRI, Bˆat 490, Universit´e Paris-Sud, 91405 Orsay Cedex, France. berthome@lri.fr,
www.lri.fr/people/berthome.html.
4 School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA. bmm@cs.cmu.edu,
www.cs.cmu.edu/˜bmm. This work was performed while the author was at NEC Research Institute, 4 Inde-
pendence Way, Princeton, NJ 08540, USA.
5 I3S, CNRS, rue A. Einstein, Sophia Antipolis, 06560 Valbonne, France. sp@essi.fr, www.i3s.unice.fr/˜sp.
6 Department of Computer Science, University of Texas at Austin, Austin, TX 78712, USA. plax-
ton@cs.utexas.edu, www.cs.utexas.edu/users/plaxton.

Received March 23, 1994; revised October 30, 1997. Communicated by Chee-Keng Yap.

238 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

also use as subroutines sorting algorithms for hypercubic networks due to Nassimi and
Sahni [8] and Cypher and Plaxton [6].

1.1. Hypercubic Networks. A hypercubecontainsn = 2d nodes, each of which has
a distinctd-bit label (d must be a nonnegative integer). A node labeledb0 · · ·bd−1 is
connected by edges to those nodes whose labels differ fromb0 · · ·bd−1 in exactly one bit
position. An edge connecting two nodes whose labels differ in biti is called a dimension
i edge. Each node hasd neighbors, one for each dimension. Asubcubeof the hypercube
is formed by fixing the bit values of the labels in some subset of thed dimensions of
the hypercube, and allowing the bit values in the other dimensions to vary. In particular,
for each subsetj0, . . . , jk−1 of the set of dimensions{0, . . . ,d − 1}, and each set of
bit valuesv0, . . . , vk−1, there is a dimension-k subcube of the hypercube consisting of
then/2k nodes whose labels have valuevi in dimension ji , 0 ≤ i < k, and the edges
connecting those nodes.

The nodes in a hypercube represent processors, and the edges represent wires. Each
processor has some local memory organized inO(d)-bit words. At each time step, a
processor can send a word of data to one of its neighbors, receive a word of data from
one of its neighbors, and perform a local operation on word-sized operands. In sorting
and selection problems, the input consists of a number ofO(1)-word records. Each
record has an associatedkey that determines its rank in the entire set of records. We
assume throughout that all keys are unique. This may be done without loss of generality,
since ties can always be broken in a consistent manner by appending the initial address
(processor and memory location) of each record to its key.

All of the algorithms described in this paper use the edges of the hypercube in a very
restricted way. At each time step, only the edges associated with a single dimension are
used, and consecutive dimensions are used on consecutive steps. Such algorithms are
callednormal[7, Section 3.1.4]. The bounded-degree variants of the hypercube, includ-
ing the butterfly, cube-connected cycles, and shuffle-exchange network, can all simulate
any normal hypercube algorithm with constant slowdown [7, Sections 3.2.3 and 3.3.3].
For simplicity, we describe all of the algorithms in terms of the hypercube.

1.2. Selection Refinement. Like most selection algorithms, the algorithms in this paper
use a technique called selection refinement. Given a setSof n records and an integerk,
0 ≤ k < n, aselection refinementalgorithm finds the key with rankk as follows. First,
the algorithm computes lower and upper approximations to the desired record. Alower
approximationto the record of rankk is a record with rank less than or equal tok. An
upper approximationto the record of rankk is a record with rank greater than or equal to
k. Second, the algorithm extracts the subsetS′ of Sconsisting of all records between the
lower and upper approximations. (The lower and upper approximations are considered
to be “good” if|S′| is much smaller than|S|.) Third, the algorithm computes an integerk′

such that the record with rankk′ in S′ has rankk in S. Finally, the algorithm recursively
finds the element of rankk′ in S′.

1.3. Successive Sampling. Selection refinement algorithms differ in the method used
to find lower and upper approximations. Our algorithm uses a technique called successive

Sorting-Based Selection Algorithms for Hypercubic Networks 239

sampling. This technique is also used in the algorithm of Cole and Yap [5]. Given a set
S of n records and an integerk, 0≤ k < n, asuccessive samplingalgorithm computes
lower and upper approximations as follows. First, the algorithm partitions the setS= S0

into n/s groups of sizes (in an arbitrary fashion), and sorts each group. Second, a new
setS1 ⊆ Sof nt/s records is formed by takingt evenly spaced records from each group.
This sampling process is repeatedly applied to obtain a subsetS2 of S1, a subsetS3 of S2,
and so on until the set of remaining elementsS′ ⊆ S is sufficiently small that it can be
sorted efficiently. (Different values of the parameterss andt may be used at each “level”
of sampling.) Finally, the lower (resp., upper) approximation is chosen to be the largest
(resp., smallest) record inS′ with rank that is guaranteed (by properties of the successive
sampling process) to be less (resp., greater) than or equal tok in S.

1.4. Previous Work. The selection problem is closely related to the sorting problem.
On the one hand, it is obvious that any sorting algorithm can be used for selection.
On the other hand, the performance of selection refinement algorithms depends heavily
on the cost of sorting “small” sets of records (i.e., sortingn records usingp À n
processors). For the hypercube, the fastestn-recordn-processor sorting algorithm known
is the Sharesort algorithm of Cypher and Plaxton [6], which runs inO(lg n(lg lg n)2)
time. (A nonuniform version of the Sharesort algorithm runs inO(lg n lg lg n) time [6].)
In addition to Sharesort, we make use of Nassimi and Sahni’s sparse enumeration sort [8],
which sortsn records onp processors,p ≥ n, in O((lg n lg p)/(lg p− lg n)) time. (Note
that sparse enumeration sort runs in optimalO(lg n) time if p ≥ n1+ε for some positive
constantε.)

The fastest previously known algorithm for solving the selection problem on a hy-
percubic network is due to Plaxton and runs inO(lg n lg lg n) time on ann-node net-
work [9]. Of course, the selection problem can also be solved inO(lg n(lg lg n)2) time
using Sharesort. Plaxton also showed that any deterministic algorithm for solving the se-
lection problem on ap-processor hypercubic network requiresÄ((n/p) lg lg p+ lg p)
time in the worst case [9]. Since the selection problem can be solved in linear time
sequentially [3], the lower bound implies that it is not possible to design a determinis-
tic hypercubic selection algorithm with linear speedup. Forn = p the lower bound is
Ä(lg n), which is the diameter of the network.

In [10] Valiant proved anÄ(lg lg n) lower bound on the time to find the largest
record in a set ofn records usingn processors in an idealized model called the parallel
comparison model. The lower bound implies a lower bound on the time to select thekth
smallest record as well. Valiant also showed how to find the largest record inO(lg lg n)
time. Cole and Yap [5] then described anO((lg lg n)2) selection algorithm for this model.
The running time was later improved toO(lg lg n) by Ajtai et al. [1]. The comparisons
performed by the latter algorithm are specified by an expander graph, however, making
it unlikely that this algorithm can be efficiently implemented on a hypercubic network.

A different set of upper and lower bounds hold in the PRAM models. Beame and
Håstad [2] proved anÄ(lg n/ lg lg n) lower bound on the time for selection in the CRCW
comparison PRAM using a polynomial number of processors. Vishkin [11] discovered
an O(lg n lg lg n) time PRAM algorithm that usesO(n/ lg n lg lg n) processors. The
algorithm is work-efficient (i.e., exhibits optimal speedup) because the processor–time

240 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

product is equal to the time,O(n), of the fastest sequential algorithm for this problem.
Cole [4] later found anO(lg n lg∗ n) time work-efficient PRAM algorithm.

1.5. Outline. A “basic” selection algorithm that runs inO(lg n lg lg n) time is pre-
sented in Section 2. Several faster selection algorithms are presented in the remainder
of the paper. Pseudocode for these faster selection algorithms is provided in Section 3.
Running times ofO(lg n lg(3) n) andO(lg n lg(4) n) are established in Sections 4 and 5,
respectively. AnO(lg n lg∗ n) algorithm is presented in Section 6. This time bound is
obtained at the expense of using a nonuniform variant of the Sharesort algorithm [6] that
requires a certain amount of preprocessing. Finally, in Section 7 we show how to avoid
the nonuniformity introduced in Section 6.

2. An O(lg n lg lg n) Selection Algorithm. In this section we develop an efficient
subroutine for selection refinement based on the parallel comparison model algorithm
of Cole and Yap [5]. There are two major differences. First, we use Nassimi and Sahni’s
sparse enumeration sort [8] instead of a constant time sort (as is possible in the parallel
comparison model), and second we obtain a total running time that is proportional to
the running time of the largest call to sparse enumeration sort, whereas in the Cole–Yap
algorithm, the running time is proportional to the number of sorts,O(lg lg n), each of
which costs constant time.

As in the Cole–Yap algorithm, the selection refinement algorithm proceeds by suc-
cessively sampling the given set of records. We define “sample 0” as the entire set of
records. At thei th stage of the selection refinement algorithm,i ≥ 0, a “subsample”
is extracted from samplei . This subsample represents samplei + 1, and is a proper
subset of samplei . Hence the sequence of sample sizes is monotonically decreasing.
The sampling process terminates at a value ofi for which thei th sample is sufficiently
small that it can be sorted in logarithmic time (using sparse enumeration sort). From this
final sample, we extract lower and upper approximations to the desired record. Our goal
is to obtain “good” upper and lower approximations in the sense that the ranks of our
approximations are close tok.

The following approach is used to extract samplei + 1 from samplei . First, the
records of samplei are partitioned into a number of equal-sized groups, and each group
is assigned an equal fraction of the processors. Second, each group of records is sorted
using sparse enumeration sort. The number of groups is determined in such a way that
the running time of sparse enumeration sort is logarithmic in the group size. This is the
case, for example, if sparse enumeration sort is used to sortm2 records in a subcube with
m3 processors. Lettings denote the group size, the third step is to extract approximately√

s uniformly spaced records (i.e., every
√

sth record) from each group. The union of
these extracted sets of size

√
s forms samplei + 1. Note that the ratio of the size of

samplei to that of samplei + 1 is
√

s.
Before proceeding, we introduce a couple of definitions.

DEFINITION 2.1. The rank of a recordα in a setS, rank(α, S), is equal to the number
of records inS that are strictly smaller thanα. (Note that the recordα may or may not
belong to the setS.)

Sorting-Based Selection Algorithms for Hypercubic Networks 241

DEFINITION 2.2. Anr -sample of a set of recordsS is the subsetR of S consisting of
those records with ranks inScongruent to 0 modulor , i.e., R= {α ∈ S | rank(α, S) =
ir ,0≤ i < |S|/r }.

2.1. Pseudocode for the Sampling Procedure. The input to procedureSample` below
is a setS of records concentrated in a subcube ofp processors,p ≥ |S|. (A set of
recordsX is said to beconcentratedin a subcubeC if each of the|X| lowest-numbered
processors ofC contains a unique element ofX.) The output is a sample (i.e., subset)S′

of S. The sampleS′ is chosen in such a manner that: (i)|S′| ¿ |S| and (ii) the record of
rankk in the sample has rank approximatelyk|S|/|S′| in S. (Lemma 2.1 provides precise
bounds on the rank properties ofS′ with respect toS.) The subscript̀ is drawn from the
set{0,1,2,3,4}. (In effect, we are defining five slightly different sampling procedures,
one corresponding to each subscript value.) For the purposes of Section 2 the reader may
assume that̀ = 0.

ProcedureSample`(S, p)

1. PartitionS into g groups (the parameterg will be defined momentarily)
of sizes = |S|/g, assignp/g processors to each group, and sort each
of the groups in parallel. If̀ = 0 or 1, then use sparse enumeration
sort to accomplish the sorting. If̀= 2, then use Sharesort. (Note that
Sharesort assumes an input consisting of one record at each processor; if
p > |S|, then we simply use|S| of the p processors.) If̀ = 3, then use
the nonuniform sparse Sharesort algorithm defined in Section 6. If` = 4,
then use the uniform sparse Sharesort algorithm defined in Section 7.
The parameterg is chosen so that the running time of this step (which
dominates the overall running time of the procedure) is2(lg s) if ` = 0,
and2(lg p) otherwise.

2. Extract a
√

s-sample from each of theg groups.
3. Return the union of these

√
s-samples.

2.2. Analysis of the Sampling Procedure. Given the rank of a record in the sample
returned by a call toSample`(S, p), the following lemma provides upper and lower
bounds on the rank of that record inS.

LEMMA 2.1. Letδ, δ′, andδ′′ denote integers satisfying0≤ δ′′ ≤ δ′ ≤ δ. Let X denote
a set of2δ records, and assume that X is partitioned into2δ−δ

′
sets Xk, 0≤ k < 2δ−δ

′
,

of size2δ
′
. Let X′ denote the union of the2δ

′′
-samples of each of the Xk’s. If record α

has rank j in set X′, then the rank ofα in set X lies in the interval(
j 2δ

′′ − 2δ−δ
′+δ′′ , j 2δ

′′]
.

PROOF. Let rk denote the rank ofα in the 2δ
′′
-sample extracted from setXk, 0 ≤ k <

2δ−δ
′
. Then the rank ofα in setXk lies in the interval((rk−1)2δ

′′
, rk2δ

′′
], and so the rank

242 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

of α in X belongs to  ∑
0≤k<2δ−δ′

(rk − 1)2δ
′′
,

∑
0≤k<2δ−δ′

rk2δ
′′

 ,
which proves the claim sincej =∑0≤k<2δ−δ′ rk.

2.3. Pseudocode for the Basic Approximate Selection Procedure. The input to proce-
dureBasicBounds below is a setSof 2δ records concentrated in a subcube ofp = 2δ+x

processors, and integerskL andkU in the range 0 to|S| − 1. The output is a pair of
records(RL , RU) such thatRL (resp.,RU) is in Sand the rank ofRL (resp.,RU) in S is
at mostkL (resp., greater thankU). Furthermore,RL (resp.,RU) is chosen so that its rank
in S is “close” tokL (resp.,kU). (To obtain precise bounds on the ranks ofRL andRU in
S, we make use of Lemma 2.3 as in the proof of Theorem 1.) We remark that all calls to
BasicBounds in Section 2 satisfykL = kU . The reason we have not replaced the two
parameterskL andkU with a single parameter will become apparent in Section 3.

ProcedureBasicBounds(S, p, kL , kU)

1. Seti to 0 and setS0 to S.
2. While |Si |3/2 > p, setSi+1 to Sample0(Si , p) and incrementi .
3. SortSi in O(lg |Si |) time using sparse enumeration sort.
4. Determine recordsRL andRU as in the proof of Theorem 1 below. (Set

k = kL when determiningRL , and setk = kU when determiningRU .)
5. Return(RL , RU).

2.4. Analysis of the Basic Approximate Selection Procedure. The input to our algorithm
is a setS0 of 2δ elements concentrated in a subcubeC of size 2δ+x. The factor by which
the size of the subcube exceeds the size ofS0, 2x, is called theexcess processor ratio.
In the first iteration, the records inS0 are partitioned into 2δ−2x groups of size 22x and
23x processors are assigned to each group. Each group is then sorted inO(x) time using
sparse enumeration sort, and a 2x-sample is taken from each group. The samples from
all the groups are combined to form a new setS1 containing 2δ−x elements. In general,
after i − 1 iterations, a setSi−1 of 2δ−x(2i−1−1) records remain. In thei th iteration, set

Si is formed by partitioning the records ofSi−1 into gi−1
def= 2δ−x(3·2i−1−1) groups of size

2x2i
and then extracting a 2x2i−1

-sample from each group. Since the ratio of the number
of processors inC to |Si−1| is 2x2i−1

, we can assign 23x2i−1
processors to each group of

size 2x2i
, and each group can be sorted inO(x2i) time using sparse enumeration sort.

LEMMA 2.2. The time required for procedureBasicBounds to compute sets S0 through
Si is O(x2i).

PROOF. The time is
∑

1≤ j≤i O(x2 j) = O(x2i).

Sorting-Based Selection Algorithms for Hypercubic Networks 243

LEMMA 2.3. Let recordα have rank j in set Si , for some i≥ 1. Then the rank ofα in
set Si−1 lies in the interval (

j 2x2i−1 − 2δ−x(2i−1), j 2x2i−1
]
.

PROOF. A straightforward application of Lemma 2.1, with the variablesδ, δ′, andδ′′

of the lemma replaced by the expressionsδ − x(2i−1 − 1), x(3 · 2i−1 − 1), andx2i−1,
respectively.

LEMMA 2.4. Let recordα belong to Si and let j denote the rank ofα in Si , for some
i ≥ 1. Then the rank ofα in S0 lies in the range(

j 2x(2i−1) −
∑

0≤k<i

2δ−x2k
, j 2x(2i−1)

]
.

PROOF. The proof is by induction oni . The base case,i = 1, is a special case of
Lemma 2.3.

Now we assume that the claim holds inductively. Suppose that recordα has rankj in
Si . Then, by Lemma 2.3, the rank ofα in the setSi−1 lies in the interval(

j 2x2i−1 − 2δ−x(2i−1), j 2x2i−1
]
.

Applying the induction hypothesis, the rank of recordα in the setS0 is strictly greater
than (

j 2x2i−1 − 2δ−x(2i−1)
)

2x(2i−1−1) −
∑

0≤k<i−1

2δ−x2k
,

which is equal toj 2x(2i−1) −∑0≤k<i 2δ−x2k
, and at most

j 2x2i−1
2x(2i−1−1) = j 2x(2i−1),

as required.

THEOREM1. Let S denote a set of2δ records concentrated in a subcube C of size2δ+x

(x integer, 4 ≤ x ≤ δ/2), and let k be an integer, 0 ≤ k < 2δ. Then in O(δ) time it is
possible to compute a subset S′ of S and an integer k′ such that the following conditions
are satisfied:

(i) |S′| = 2δ−x+3,
(ii) 0 ≤ k′ < |S′|,

(iii) the record of rank k′ in S′ has rank k in S, and
(iv) S′ is concentrated in C.

PROOF. A call to BasicBounds (S, p, k, k) produces a sequence of setsS0 throughSi

where|Si | = 2δ−x(2i−1) and, as we shall see,(δ + x)/3≤ x2i ≤ δ + 1. By Lemma 2.2,
the time required to computeSi is O(x2i) = O(δ).

244 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

Next, the records inSi are sorted using sparse enumeration sort. There are 2δ−x(2i−1)

records and 2δ+x processors; hence, the excess processor ratio is 2x2i
. We choosei to be

the smallest value such that the excess processor ratio is at least the square root of the
number of records,x2i ≥ 1

2(δ − x(2i − 1)). Solving for i yields 2i ≥ (δ + x)/3x and
i = dlg((δ + x)/3x)e. The time for sparse enumeration sort isO(δ + x) = O(δ).

We would now like to find two records,RL and RU in Si , with ranksr L andrU in
S0, such thatk belongs to the interval [r L , rU) andrU − r L is small. In the following,
let A = 2x(2i−1) andB = 2δ−x+1. By Lemma 2.4, the key with rankj in Si lies in the
interval(j A − B, j A] in S0. Let jL = bk/Ac, jU = d(k+ B)/Ae, andRL andRU be
the records inSi with ranks jL and jU in Si , respectively. (Ifk is sufficiently close to
|S0|, we can havejU ≥ |Si | and hence the recordRU is not well defined; in this case, we
can setRU to a dummy record that is greater than any record inSi , and setrU to |Si |.)
Then jL A− B < r L ≤ jL A ≤ k, andk ≤ jU A− B < rU ≤ jU A. Note thatB = bA,
with b an integer, and there exist integersα andβ, 0≤ β < A, such thatk = αA+ β.
Hence jU = α + b+ dβ/Ae ≤ α + b+ 1, jL = α, and

rU − r L ≤ (jU − jL)A+ B

≤ (α + 1+ b− α)A+ B

= A+ 2B.

We setS′ to be the set of at mostA+ 2B records inS0 with ranks in [r L , rU). Note that,
given recordsRL andRU , it is straightforward to identify and concentrate the setS′ in
O(δ) time. For A ≤ B, we have|S′| ≤ 3B < 2δ−x+3. For i = dlg((δ + x)/3x)e, the
inequalityA ≤ B is satisfied since

x(2i − 1) ≤ x

[
2 ·
(
δ + x

3x

)
− 1

]
= (δ − x)− δ − 2x

3
≤ δ − x,

where the last inequality follows from the assumption thatx ≤ δ/2. The value ofk′ is
determined by finding the rank ofk in S′, which can easily be done inO(δ) time.

2.5. Pseudocode for the Basic Selection Algorithm. The input to procedureBasic-
Select below is a setSof records concentrated in a subcube ofp ≥ |S| processors, and
an integerk in the range 0 to|S| − 1. The output is the record of rankk in S.

ProcedureBasicSelect(S, p, k)

1. If |S|3/2 ≤ p, then sortS in O(lg |S|) time using sparse enumeration sort
and return the record of rankk in S.

2. Set(RL , RU) to BasicBounds(S, p, k, k).
3. Setr L (resp.,rU) to the rank ofRL (resp.,RU) in S.
4. Let S′ denote therU − r L records inS with ranks (inS) in the interval

[r L , rU), and setk′ to k− r L .
5. ReturnBasicSelect(S′, p, k′).

Sorting-Based Selection Algorithms for Hypercubic Networks 245

2.6. Analysis of the Basic Selection Algorithm. We defineT(δ, x) as the worst-case
(over allk) running time of a call toBasicSelect(S, p, k) with |S| = 2δ andp = 2δ+x.
Note that, forδ′ ≤ δ andx′ ≥ x, we haveT(δ′, x′) ≤ T(δ, x); in what follows, we
occasionally make implicit use of this trivial inequality.

Theorem 1 implies that

T(δ, x) ≤ T(δ − x + 3,2x − 3)+ O(δ)(1)

for 4 ≤ x ≤ δ/2. For x > εδ, whereε denotes an arbitrarily small positive constant,
sparse enumeration sort implies thatT(δ, x) = O(δ). We are interested in obtaining an
upper bound forT(δ,0). Note thatT(δ,0) = 2(T(δ,4)), since we can simulate a 2δ+4-
processor hypercube on a 2δ-processor hypercube with only constant factor slowdown.
By iterating the recurrence of (1), we can obtain an upper bound forT(δ,4). Forδ ≥ 8,
one application of the recurrence givesT(δ,4) ≤ T(δ − 1,5) + cδ for some constant
c > 0. Forδ ≥ 11 we can apply the recurrence again to obtainT(δ,4) ≤ T(δ − 3,7)+
2cδ. In general, forδ ≥ 2i + 2i−1 + 5, we can apply the recurrencei times to obtain
T(δ,4) ≤ T(δ − 2i + 1,2i + 3) + icδ (this claim is easily verified by induction on
i). For δ ≥ 20, we can seti = blg δc − 1 to obtainT(δ,4) ≤ T(b3δ/4c + 1, dδ/4e +
3)+ O(δ lg δ) = O(δ lg δ). HenceT(d,0) = O(d lg d) = O(lg n lg lg n), and we have
proved the following theorem.

THEOREM2. Any call toBasicSelect(S, p, k)with n= |S| = p runs in O(lg n lg lg n)
time.

ProcedureBasicSelect is essentially equivalent to a selection algorithm described
by Plaxton in [9]. Prior to this algorithm, the best bounds known for selection on the
hypercube were given by sorting algorithms.

3. Pseudocode for Several Faster Selection Algorithms.In this section we present
the proceduresBounds` andSelect`, which will be used to establish improved time
bounds for selection in Sections 4–7.

The input to procedureBounds` below is a setS of 2δ records concentrated in a
subcube ofp = 2δ+x processors, and an integerk in the range 0 to|S|−1. The output is
a pair of records(RL , RU) such thatRL (resp.,RU) is in Sand the rank ofRL (resp.,RU) in
Sis at mostk (resp., greater thank). Furthermore,RL (resp.,RU) is chosen so that its rank
in S is “close” tok. (See the analysis of Sections 4–7 for precise bounds.) The subscript
` is drawn from the set{0,1,2,3,4}. (In effect, we are defining five slightly different
procedures, one corresponding to each subscript value.) Our interest lies primarily with
subscript values other than 0 since the procedureBounds0 is essentially equivalent to
the procedureBasicBounds of Section 2.3.

ProcedureBounds`(S, p, k)

1. SetS′ to Sample`(S, p).
2. SetkL (resp.,kU) to the largest (resp., smallest) integer such that the record

246 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

of rankkL (resp.,kU) in S′ is guaranteed by Lemma 2.1 to have rank less
than or equal tok in S.

3. ReturnBasicBounds(S′, p, kL , kU).

The procedureSelect`(S, p, k) is identical to the procedureBasicSelect(S, p, k)
of Section 2.5 except that the call toBasicBounds(S, p, k, k) in Step 2 is replaced by
a call toBounds`(S, p, k).

4. An O(lg n lg(3) n) Selection Algorithm. Throughout this section, we refer to the
O(lg n lg lg n) selection algorithm of Section 2 as the “basic” algorithm. Our present goal
is to improve the running time of the basic algorithm toO(d lg lg d) = O(lg n lg(3) n) by
a simple modification. The basic algorithm consists ofO(lg d) applications of theO(d)
selection refinement subroutine corresponding to Theorem 1. We view each application
of the selection refinement subroutine as a “phase” of the basic algorithm. In order to
improve the performance of the basic algorithm, we augment each phase in the following
manner: Before applying the selection refinement subroutine, we partition the remaining
data into subcubes of dimensionδ′, sort these subcubes completely, and extract a 2δ′′ -
sample from each subcube, whereδ′′ = ⌈δ′/2⌉. These samples are then passed on to the
selection refinement subroutine for successive sampling.

The parameterδ′ is chosen in such a way that, given the excess processor ratio available
at that particular phase, the sort can be completed inO(d) time. The motivation for
definingδ′ in this manner is to balance the time spent on the initial sort with theO(d)
running time of the selection refinement subroutine. Sparse enumeration sort is used to
perform the initial sort in each phase.

The modified basic selection algorithm described above corresponds to procedure
Select1 of Section 3. The goal of the present section is to prove that any call to
Select1(S, p, k) with n = |S| = p runs in O(lg n lg(3) n) time (see Theorem 3 be-
low).

We now analyze the performance of each phase in greater detail. Before the phase,
let S denote the set of remaining records, assume that|S| = 2δ, and assume that the
excess processor ratio is 2x, x ≥ 0. At the beginning of the phase, we partitionS into
2δ−δ

′
sets of size 2δ

′
, and sort each set in a subcube of dimensionδ′ + x. We then extract

a 2δ
′′
-sample from each sorted set, whereδ′′ = ⌈

δ′/2
⌉
. Let S′ denote the set of 2δ−δ

′′

records in the union of all of these samples. By Lemma 2.1, the key of rankj in S′ has
rank in the interval

(j 2δ
′′ − 2a, j 2δ

′′
]

in S, wherea = δ − δ′ + δ′′. Accordingly, we can obtain a lower approximation for the
kth record inSby computing a lower approximation (via Theorem 1) for thebk2−δ

′′ cth
record inS′. Similarly, we can obtain an upper approximation for thekth record inSby
computing an upper approximation for the(dk2−δ

′′ e + 2δ−δ
′
)th record inS′.

By Theorem 1, inO(δ) time we can determine a set of at most 2b records with
contiguous ranks inS′ that contains any desired rank, whereb = δ − x − 2δ′′ + 3.
(To see this, apply Theorem 1 with the variablesδ andx of the theorem replaced by

Sorting-Based Selection Algorithms for Hypercubic Networks 247

the expressionsδ − δ′′ andx + δ′′, respectively.) In particular, we can obtain a lower
approximation for the record of rankk′ in S′ that has rank strictly greater thank′ − 2b,
and we can obtain an upper approximation with rank strictly less thank′ + 2b. Thus, in
O(δ) time, we can determine:

(i) a lower approximation to the record of rankbk2−δ
′′ c in S′ with rank strictly greater

thanbk2−δ
′′ c − 2b in S′, and

(ii) an upper approximation to the record of rankdk2−δ
′′ e+2δ−δ

′
in S′ with rank strictly

less thandk2−δ
′′ e + 2δ−δ

′ + 2b in S′.

With the bounds of the preceding paragraph, the aforementioned lower and upper ap-
proximations represent, respectively:

(i) a lower approximation to the record of rankk in S with rank strictly greater than
k− 2δ

′′ − 2a − 2b+δ′′ in S, and
(ii) an upper approximation to the record of rankk in S with rank strictly less than

k+ 2δ
′′ + 2a + 2b+δ′′ in S.

Hence, within the same time bound we can identify a set of at most

z
def= 2 ·

(
2δ
′′ + 2a + 2b+δ′′

)
records with contiguous ranks inSand which contains the record of rankk in S. Observe
thata ≥ δ′′ anda+ 3≥ b+ δ′′ (recall thata = δ − δ′ + δ′′). Hencez≤ 2a+5.

Note that the initial application of sparse enumeration sort runs inO(δ) time if
δ′ = O(

√
δx), since the running time of sparse enumeration sort isO(δ′(δ′ + x)/x) =

O((δ′)2/x). Accordingly, we setδ′ =
⌈

c
√
δ
⌉

for some positive constantc. Note that, for

x ≥ 1, c > 1, andδ sufficiently large, 2δ−δ
′+δ′′+5 ≤ 2δ−

⌈√
δx
⌉
, and hencez≤ 2δ−

⌈√
δx
⌉
.

As in Section 2.6 (where in fact we assumed thatx ≥ 4), we may assume thatx ≥ 1
without loss of generality.

Hence, the foregoing discussion has established the recurrence

T(δ, x) ≤ T
(
δ −

⌈√
δx
⌉
, x +

⌈√
δx
⌉)
+ c′δ

≤ T
(
δ,
⌈√
δx
⌉)
+ c′δ

for 1≤ x ≤ δ/2 and some constantc′ > 0. Forx ≥ 1 and
⌈√
δx
⌉
≤ δ/2 we can iterate

this recurrence to obtain

T(δ, x) ≤ T

(
δ,

⌈√
δ
⌈√
δx
⌉⌉)
+ 2c′δ

≤ T
(
δ,
⌈
δ3/4x1/4

⌉)+ 2c′δ.

More generally, forx ≥ 1 and
⌈
δ1−2−i

x2−i
⌉
≤ δ/2, i ≥ 0, we can apply the recurrence

248 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

i times to obtain

T(δ, x) ≤ T
(
δ,
⌈
δ1−2−i

x2−i
⌉)
+ ic′δ

≤ T
(
δ,
⌈
δ1−2−i

⌉)
+ ic′δ.

It is straightforward to verify that the recurrence can be applied lg lgδ + O(1) times, at
which point we have

T(δ, x) ≤ T(δ, y)+ O(δ lg lg δ)

for somey with δ/2 < y < δ. Sparse enumeration sort implies thatT(δ, y) = O(δ)
and henceT(d,0) = O(d lg lg d) = O(lg n lg(3) n). We have thus proved the following
theorem.

THEOREM3. Any call toSelect1(S, p, k) with n = |S| = p runs in O(lg n lg(3) n)
time.

5. AnO(lg n lg(4) n)Algorithm. We can improve the time bound achieved in Section 4
by making use of the Sharesort algorithm of Cypher and Plaxton [6]. Several variants
of that algorithm exist; in particular, detailed descriptions of two versions of Sharesort
may be found in [6]. Both of these variants are designed to sortn records on ann-
processor hypercubic network. The first algorithm runs inO(lg n(lg lg n)3) time and the
second algorithm, which is somewhat more complicated, runs inO(lg n(lg lg n)2) time.
The selection algorithm of this section makes use of Sharesort as a subroutine. For this
purpose, either of the aforementioned variants of Sharesort may be used; this choice
does not affect the overall running time by more than a constant factor. For the sake of
concreteness, in the calculations that follow we assume that the simplerO(lg n(lg lg n)3)
algorithm is used.

The only change to the algorithm of Section 4 is that, in the initial phase, Sharesort
is used instead of sparse enumeration sort to perform the initialO(d)-time sort. With
Sharesort, we can afford to setδ′ = 2(d/(lg d)3), which is substantially larger than
the2(

√
d) bound achievable with sparse enumeration sort. For all phases subsequent

to the first phase, however, we make use of sparse enumeration sort. The reason is that,
in the absence of a suitable processor–time tradeoff for the Sharesort algorithm, sparse
enumeration sort is actually faster than Sharesort after the first phase (due to the large
excess processor ratio created by the first phase). In Section 6 we obtain an even faster
selection algorithm by developing and applying an effective processor–time tradeoff for
the Sharesort algorithm.

The selection algorithm described above corresponds to a hybrid of the procedures
Select1 andSelect2 of Section 3. (The top-level selection call is toSelect2, but the
recursive selection calls are toSelect1.) We refer to this hybrid selection procedure as
Select′2.

In order to analyze the running time of procedureSelect′2, we repeat the analysis of
Section 4, but withδ′ set to2(d/(lg d)3) in the first phase. The first phase establishes
the inequality

T(d,0) ≤ T
(
d,
⌈
d/(lg d)3

⌉)+ O(d).

Sorting-Based Selection Algorithms for Hypercubic Networks 249

Now d/(lg d)3 = d1−2−i
with i = lg lg d − lg(3) d − O(1). Hence, the recurrence of

Section 4 implies thatT(d,
⌈
d/(lg d)3

⌉
) = O(d lg(3) d). ThusT(d,0) = O(d lg(3) d) =

O(lg n lg(4) n), and we have proved the following theorem.

THEOREM4. Any call toSelect′2(S, p, k) with n = |S| = p runs in O(lg n lg(4) n)
time.

6. A Nonuniform O(lg n lg∗ n) Algorithm. The improvement described in Section 5
resulted from applying Sharesort instead of sparse enumeration sort at the beginning of
the first phase. Note, however, that all of the phases (including the first) continue to make
extensive use of sparse enumeration sort. The calls to sparse enumeration sort made by
each of the algorithms defined thus far may be partitioned into two classes: (i) those calls
made within applications of Theorem 1, and (ii) those calls used to perform anO(d)-
time sort (actually, a set of parallelO(d)-time sorts) before applying Theorem 1. The
algorithm of Section 2 contains only calls of Type (i), since each phase consists solely
of an application of Theorem 1. The algorithm of Section 4 contains both Type (i) and
Type (ii) calls, since each phase consists of anO(d)-time sort followed by an application
of Theorem 1. The algorithm of Section 5 is the same as the algorithm of Section 4, except
that the Type (ii) call of the first phase is replaced with a call to Sharesort (causing the
number of phases to be substantially reduced).

Could we obtain an even faster selection algorithm than that of Section 5 by replacing
some or all of the remaining calls to sparse enumeration sort with calls to Sharesort? With
regard to the Type (i) calls, the answer is no. Even if the Type (i) sorts were performed in
optimal logarithmic time, the reduction in data (i.e., relevant records) between successive
phases would not be improved significantly. The reason is that the amount of data that
“survives” to the next phase is predominantly determined by the size of the subcubes
sorted in the Type (ii) sorts. Thus, in all of the algorithms described in this paper,
we continue to make use of sparse enumeration sort to perform all of the sorts within
applications of Theorem 1.

Now we consider the Type (ii) calls. All of these calls to sparse enumeration sort
will in fact be replaced with calls to a more efficient sorting algorithm in order to obtain
the O(lg n lg∗ n) time bound. Unfortunately, we cannot obtain such a bound by merely
replacing all of the Type (ii) calls to sparse enumeration sort with calls to one of the
single-item-per-processor variants of Sharesort. Instead, we proceed by developing a
time–processor tradeoff for Sharesort, and then using the resulting algorithm, a sparse
Sharesort, to perform all of the Type (ii) sorts.

THEOREM5. Let n records be concentrated in a subcube of a p-processor hypercubic
network, p ≥ n. There exists a nonuniform deterministic algorithm for sorting these
records in time

O(lg n(lg lg p− lg lg(p/n))).(2)

PROOF. As indicated in Section 5, there are a number of variants of the Sharesort
algorithm of Cypher and Plaxton [6]. These algorithms differ solely in the way that the

250 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

so-calledshared key sortingsubroutine is implemented. The shared key sorting problem
represents a restricted version of the sorting problem; a formal definition of the shared
key sorting problem is not needed in this paper, and so is not given. All variants of
Sharesort make use of precisely the same recursive framework to reduce the problem of
sorting to that of shared key sorting.

Perhaps the simplest variant of Sharesort runs inO(lg n lg lg n) time and relies upon
an optimal logarithmic time shared key sorting subroutine. This particular result is men-
tioned in the original Sharesort paper [6] and more fully described by Leighton [7,
Section 3.5.3]. Although it is the fastest of the Sharesort variants, this sorting algorithm
suffers from the disadvantage that it is nonuniform. From the point of view of a user
who would like to run this sorting algorithm on a particular hypercube of dimension
d, what this nonuniformity implies is that a “setup” routine must be executed when the
machine is first configured in order to generate a version of the algorithm that is capable
of efficiently sorting any subcube of dimension less than or equal tod. Note that the
setup routine need only be executed once in the lifetime of the machine (and not once
per sort) and so this deficiency may not be considered overly severe. Unfortunately, the
most efficient deterministic algorithms currently known for performing the setup task
run in time that is exponential inn.

We will establish the validity of (2) by developing a time–processor tradeoff for the
O(lg n lg lg n) time, nonuniform variant of Sharesort.

As mentioned above, all variants of Sharesort are based on a particular system of
recurrences. At the highest level, sorting is performed recursively viahigh-order merging
(i.e., mergingnε sorted lists of lengthn1−ε for some constantε, 0< ε < 1). The running
time of Sharesort is dominated by the time required for high-order merging, which is
itself performed recursively. LetM(x) denote the task of mergingx sorted lists of length
x4. One possible recurrence for performing the merge is (minor technical details related
to integrality constraints are dealt with in [6] and are not addressed here)

M(n1/5) ≤ M(n4/45)+ M(n1/9)+ O(lg n)+ SKS(n),(3)

whereSKS(n) denotes the time required to solve the shared key sorting problem. (To
justify the preceding recurrence, apply (1) of [6] witha = 1

5 lg n, b = 4a, a′ = 4
45 lg n,

b′ = 4a′,a′′ = 1
9 lg n,b′′ = 4a′′, and observe that the additiveO(a lg a) term corresponds

to the sum ofO(a) and the cost of a call to the shared key sorting subroutine.) For the
O(lg n lg lg n) time, nonuniform variant of Sharesort,SKS(n) = O(lg n), and so the
SKS(n) term essentially disappears from the recurrence of (3). In order to obtain the
time bound of (2), we make use of additional processors in the following simple way:
whenever a merging problem of the formM(x) arises andx5 is less than the excess
process ratio, we applyx10 processors to solve that merging subproblem in optimal
O(lg x) time using sparse enumeration sort. A straightforward analysis shows that this
modification to theO(lg n lg lg n) algorithm of Sharesort yields the sorting time bound
of (2).

We modify theO(lg n lg(3) n) algorithm of Section 4 by replacing all of the Type (ii)
calls to sparse enumeration sort with calls to the sorting algorithm of Theorem 5. The
resulting selection algorithm corresponds to procedureSelect3 of Section 3.

Sorting-Based Selection Algorithms for Hypercubic Networks 251

In order to analyze the performance of procedureSelect3, one may simply repeat the
analysis of Section 4, settingδ′ to dcδ/(lg δ − lg x)e for some sufficiently large positive
constantc. Doing this, we obtain the recurrence

T(δ, x) ≤ T

(
δ,

⌈
δ

lg δ − lg x

⌉)
+ c′δ

for 1≤ x ≤ δ/2 and some constantc′ > 0. Forx ≥ 1 and
⌈
δ/ lg(i)(lg δ − lg x)

⌉ ≤ δ/2,
i ≥ 0, we can apply the recurrencei times to obtain

T(δ, x) ≤ T

(
δ,

⌈
δ

lg(i) δ

⌉)
+ ic′δ.

In general, the recurrence can be applied lg∗ d+O(1) times, and we find thatT(d,0) =
O(d lg∗ d) = O(lg n lg∗ n). We have thus proved the following theorem.

THEOREM6. Any call toSelect3(S, p, k)with n= |S| = p runs in O(lg n lg∗ n) time.

7. A Uniform O(lg n lg∗ n) Selection Algorithm. In Section 6, we proved the exis-
tence of an algorithm for selection that runs inO(lg n lg∗ n) time. However, as indicated
in Section 6, that algorithm is nonuniform because it makes use of a nonuniform version
of the Sharesort algorithm. In the present section we establish the existence of a uniform
selection algorithm with the same asymptotic complexity as the algorithm of Section 6.

The version of the Sharesort algorithm employed in Section 6 makes use of a nonuni-
form shared key sorting subroutine. The running time of the nonuniform shared key
sorting subroutine isO(lg n), which is easily seen to be optimal. The fastest known uni-
form version of the shared key sorting subroutine takesO(lg n lg lg n) time, which leads
to an O(lg n(lg lg n)2) running time for the corresponding uniform variant of Share-
sort [6]. In the following we show how to adapt this uniform version of Sharesort to
obtain a uniform version of a “sparse” Sharesort, that is, an algorithm for sortingn
records onp ≥ n processors. We express the running time ofSparseSharedKeySort
in terms of the two parametersn and p.

THEOREM7. Let n records be concentrated in a subcube of a p-processor hypercubic
network, p ≥ n. There exists a uniform deterministic algorithm for sorting these records
in time

O
(
lg n(lg lg p− lg lg(p/n))2

)
.(4)

PROOF. To obtain the result, we show how to improve the time complexity of the
shared key sorting procedure when we have a significant number of “extra” processors
(i.e., p À n). Let SSKS(n, p) be the time needed to solve the followingsparse shared
key sorting problem: Perform 2b identical sorts of lists of size 2a, with a andb such that
a+ b = n andb− a/2= 2(a), on a hypercube of sizep, p ≥ n. By a similar analysis
as that provided in Section 6, the theorem follows if we can prove that

SSKS(n, p) = O(lg n(lg lg p− lg lg(p/n))) .(5)

252 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

We modify theSharedKeySortalgorithm of [6] to obtain a “SparseSharedKeySort”
routine satisfying (5). Because the complete description of theSharedKeySort algo-
rithm is quite lengthy, we content ourselves with a description of the differences between
SparseSharedKeySort andSharedKeySort. Fortunately these differences are minor.

We begin by observing thatSharedKeySortconsists of a call to subroutinePlanRoute
followed by a call to subroutineDoRoute [6, Section 7.1]. For the casen = p considered
in [6], each of these two subroutines runs inO(lg n lg lg n) time. We now argue that each
of these subroutines can be generalized to run inO(lg n(lg lg p− lg lg(p/n))) time for
p ≥ n, which implies the desired bound of (5).

We consider subroutineDoRoutefirst, since it is simpler to deal with thanPlanRoute.
Looking at the three-parameter recurrence for the running time ofDoRoute appearing
in Section 7.3 of [6], we observe that: (i) the third parameter does not affect the running
time and hence can be ignored, and (ii) we can assume without loss of generality that
the first two parameters are equal since they are equal in every recursive call. With the
preceding observations, we find that the running time ofDoRoute is upper-bounded by
a recurrence of the form

T(n) ≤ 2T(O(
√

n lg n))+ O(lg n),(6)

where the parametern above corresponds to 2a+b (which can be assumed to be equal
to 22a, by observation (ii) above) in the recurrence of Section 7.3 of [6]. Note that (6)
is very similar to (3); in each case the additive term isO(lg n) and the sum of the
exponents associated with the “recursive” terms on the right-hand side is equal to the
exponent appearing on the left-hand side (i.e.,1

5 = 4
45 + 1

9 in (3) and 1= 1
2 + 1

2 in (6)).
(The reader may wonder whether it is significant that the argument ofT on the right-
hand side of (6) isO(

√
n lg n) and not simply

√
n; it is easy to argue that theO-bound

implied by the recurrence is the same in either case.) In fact, the same technique that
we used in conjunction with (3) in the proof of Theorem 5 can now be used to modify
DoRoute to obtain the desiredO(lg n(lg lg p − lg lg(p/n))) time bound; namely, we
cut off the recurrence and apply sparse enumeration sort as soon as the excess processor
ratio is polynomial in the input size (so that sparse enumeration sort runs in logarithmic
time). (We are free to replace any call toDoRoute with a call to a sorting routine since
DoRoute implements a restricted type of permutation route, and a sorting routine can
be use to route an arbitrary permutation.)

It remains to consider the subroutinePlanRoute. Looking at the three-parameter
recurrence for the running time ofPlanRoute appearing in Section 7.2 of [6], we observe
that: (i) the third parameter does not affect the running time and hence can be ignored,
and (ii) we can assume without loss of generality that the first two parameters are equal
since they are equal in every recursive call. With the preceding observations, we find
that the running time ofPlanRoute is upper-bounded by a recurrence of the form

T(n) ≤ T(O(
√

n lg n))+ O(lg n lg lg n),(7)

where the parametern above corresponds to 2a+b (which can be assumed to be equal to
22a, by observation (ii) above) in the recurrence of Section 7.2 of [6]. This recurrence
solves to giveT(n) = O(lg n lg lg n). Because the overhead term associated with the first
level of the recurrence is alsoO(lg n lg lg n), the technique of cutting off the recurrence at

Sorting-Based Selection Algorithms for Hypercubic Networks 253

some depth (i.e., the technique used in conjunction with theDoRoute recurrence above)
cannot give more than a constant factor improvement in the upper bound. To obtain the
desiredO(lg n(lg lg p− lg lg(p/n))) time bound, we instead argue thatPlanRoute can
be generalized to the case ofp ≥ n processors in such a manner that the lg lgn factor
appearing within the additive term of (7) becomes lg lgp − lg lg(p/n) (the resulting
recurrence is easily solved and yields the desired time bound).

In order to see that this lg lgn factor can in fact be replaced by lg lgp− lg lg(p/n), we
need to understand how the lg lgn factor arises. A cursory examination of thePlanRoute
algorithm [6, Section 7.2] reveals that the lg lgn factor corresponds to the number of
“classes” into which the set ofn input records is partitioned. The partitioning into
classes is performed through lg lgn calls to the subroutineBalance. Each successive
call to Balance runs inO(lg n) time and acts only on those records that have yet to be
assigned to a class. Thei th call toBalance determines a class of size2(n2−2i

)and leaves
2(n2−2i+1

) records unassigned. In other words, the ratio of the number of processors to
the number of unassigned records is squared with each successive call toBalance. Thus,
if we start withn unassigned records andp ≥ n processors (instead ofn processors),
every record is assigned to one of max{1, lg lg n− lg lg(p/n)} ≤ dlg lg p− lg lg (p/n)e
classes using the same number of calls to the subroutineBalance.

We can now make use of Theorem 7 to obtain a uniform selection algorithm in the same
way that Theorem 5 was used to define a nonuniform selection algorithm in Section 6.
The resulting selection algorithm corresponds to procedureSelect4 of Section 3.

To determine the time complexity ofSelect4, we can apply the analysis of Section 6
with δ′ set to

⌈
cδ/(lg δ − lg x)2

⌉
. We obtain the recurrence

T(δ, x) ≤ T

(
δ,

⌈
cδ

(lg δ − lg x)2

⌉)
+ c′δ

for 1 ≤ x ≤ δ/2, and some constantc′ > 0. Applying this recurrence lg∗((lg d)2) +
O(1) = lg∗ d + O(1) times, we find thatT(d,0) = O(d lg∗ d) = O(lg n lg∗ n). We
have thus proved the following theorem.

THEOREM8. Any call toSelect4(S, p, k)with n= |S| = p runs in O(lg n lg∗ n) time.

8. Concluding Remarks. We have developed a number of asymptotically fast selec-
tion algorithms for hypercubic networks. Our analysis of these algorithms has focused
on determining their running times to within a constant factor. In order to simplify the
analysis, we have occasionally employed rather loose bounds, and so the multiplicative
constants implicit in ourO-bounds are correspondingly pessimistic.

The selection algorithms described in Sections 2–5 of this paper can be easily ex-
pressed in terms of: (i) local operations, (ii) standard normal hypercube primitives (e.g.,
prefix sum and monotone routing operations), and (iii) calls to previously known normal
sorting algorithms (i.e., sparse enumeration sort, Sharesort). Hence, these algorithms
are also normal. Furthermore, it is not difficult to argue that both the nonuniform and
uniform sparse Sharesort subroutines developed in Sections 6 and 7 are, like Sharesort,

254 P. Berthom´e, A. Ferreira, B. M. Maggs, S. Perennes, and C. G. Plaxton

normal. Hence all of the selection algorithms discussed in this paper are normal, and
we can conclude that our asymptotic time bounds hold not only for the hypercube but
also for bounded-degree variants of the hypercube such as the butterfly, cube-connected
cycles, and shuffle-exchange.

It is noteworthy that the algorithm devised by Cole and Yap for the powerful and
abstract parallel comparison model has essentially pointed the way to the best known
algorithms for realistic models of parallel computation.

Acknowledgments. We are grateful to the anonymous referee for insightful remarks
that helped to improve the presentation considerably.

References

[1] M. Ajtai, J. Komlós, W. L. Steiger, and E. Szemer´edi. Optimal Parallel Selection Has Complexity
O(log logN). Journal of Computer and System Sciences, 38:125–133, 1989.

[2] P. Beame and J. H˚astad. Optimal Bounds for Decision Problems on the CRCW PRAM.Journal of the
ACM, 36:643–670, 1989.

[3] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and R. E. Tarjan. Time Bounds for Selection.Journal of
Computer and System Sciences, 7:448–461, 1973.

[4] R. Cole. An Optimally Efficient Parallel Selection Algorithm.Information Processing Letters, 26:295–
299, 1988.

[5] R. Cole and C. K. Yap. A Parallel Median Algorithm.Information Processing Letters, 20:137–139, 1985.
[6] R. E. Cypher and C. G. Plaxton. Deterministic Sorting in Nearly Logarithmic Time on the Hypercube

and Related Computers.Journal of Computer and System Sciences, 47:501–548, 1993.
[7] F. T. Leighton.Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes.

Morgan-Kaufmann, San Mateo, CA, 1991.
[8] D. Nassimi and S. Sahni. Parallel Permutation and Sorting Algorithms and a New Generalized Connection

Network.Journal of the ACM, 29:642–667, 1982.
[9] C. G. Plaxton. Efficient Computation on Sparse Interconnection Networks. Ph.D. thesis, Department of

Computer Science, Stanford University, September 1989.
[10] L. G. Valiant. Parallelism in Comparison Problems.SIAM Journal on Computing, 4:348–355, 1975.
[11] U. Vishkin. An Optimal Parallel Algorithm for Selection. InParallel and Distributed Computing,

pages 79–86, Volume 4 of Advances in Computing Research. JAI Press, Greenwich, CT, 1987.

