
Customizable Virtual Private Network Service with QoS

L. Keng Lim Jun Gao T.S. Eugene Ng Prashant Chandra

Peter Steenkiste Hui Zhang

Carnegie Mellon University

Pittsburgh, PA 15213

August 1, 2000

Abstract

In this paper, we propose and implementVirtual Net-
work Service (VNS), a value-added network service
for deploying virtual private networks (VPN) in a
managed wide area IP network. The key feature of
VNS is its capability of providing a customer with a
VPN that is customizable with management capabili-
ties and performance properties comparable to a ded-
icated physical network. In addition, VNS ensures
con�dentiality of data and principals through the use
of IPSEC. The main technique underlying VNS is
the virtualization of routers in both control and data
planes. Virtualization of the control plane enables
customizable routing and signaling per VPN. On the
data plane, packet forwarding and link bandwidth are
virtualized. Virtualization of the forwarding mecha-
nism on the data plane enables routing of tra�c ac-
cording to each VPN's topology and policies. Virtu-
alization of the link bandwidth enables each VPN to
have guaranteed QoS and customized resource man-
agement policies. We have developed a VNS proto-
type for deployment on the CAIRN network. The
VNS prototype implements several resource manage-
ment mechanisms including packet scheduling, sig-
naling and runtime monitoring. A graphical user in-
terface enables service providers to manage, con�gure
and deploy VPNs remotely.

1 Introduction

The Internet is gradually evolving into an infrastruc-
ture for network-based services. Virtual private net-
work (VPN) service will be one of the important In-

VPN Controller

Host running
VANESA

Figure 1: Two VPNs built on top of one shared phys-
ical network in VNS. VANESA is a graphical VPN
management tool. The VPN Controller is responsi-
ble for carrying out commands from VANESA.

ternet services. A VPN service allows a customer to
build a virtual wide-area network on top of a shared
wide-area network infrastructure, such as the Inter-
net, without setting up any dedicated physical con-
nections. There is strong economic incentive for the
VPN service because of the opportunity to share a
common expensive physical network infrastructure
amongst multiple VPNs. The ubiquity of the Inter-
net makes it an ideal infrastructure for providing the
VPN service. Figure 1 illustrates the situation where
two di�erent VPN topologies are created on top of
the same underlying shared network infrastructure.
Various forms of private networking services have

been available to enterprises for years. Initially, pri-

1



2

vate networks were built using dedicated leased lines,
but the cost of building a large private network us-
ing dedicated hardware is prohibitive to all but the
largest corporations. Then, with the introduction of
low cost, packet switched virtual circuit based ser-
vices such as Frame Relay and X.25, virtual pri-
vate networking became possible. Unfortunately, the
availability and functionality of these services is very
limited. For an Internet-based VPN service to be a vi-
able alternative, it must have properties comparable
to that of a dedicated physical network. The service
must provide mechanisms to enforce quality of service
(QoS) and con�dentiality of data must be guaranteed
as the data travels over the common infrastructure.
In addition, the service must o�er each VPN with the
autonomy to customize resource management.

Most Internet-based commercial VPN solutions to-
day construct virtual links using either site-to-site
IP tunnels or site-to-site MPLS paths. The con�g-
uration of the VPN topology is therefore highly re-
stricted. The services supported are often limited to
best-e�ort site-to-site connectivity and secure com-
munication between sites. If QoS is o�ered, it is usu-
ally provided by over-provisioning network resources
so that QoS service level agreements are unlikely to
be violated. Recently, some e�orts such as [5, 12] use
QoS strategies that require VPN tra�c to be regu-
lated at ingress nodes. The downside is that the op-
portunity for statistical sharing of unused resources
is reduced. Another important limitation of these ap-
proaches is the lack of customizability. For example,
a customer cannot control the routing of VPN tra�c
for load balancing or QoS routing, nor can a customer
specify resource management policies in the VPN.

In this paper, we propose and implement Virtual
Network Service (VNS), a value-added network ser-
vice for deploying VPNs in a managed wide-area IP
network. VNS is built on top of the IP layer to en-
sure interoperability across various layer two tech-
nologies (e.g. ATM, MPLS). A VPN is constructed
from virtual links. A virtual link is a link abstraction
connecting any two physical nodes that are in the
VPN's topology. Communication over the VPN is
secure, and each virtual link is allocated with a guar-
anteed bandwidth. Moreover, unused bandwidth is
shared statistically between VPNs for additional per-
formance gains.

The key advantage of VNS is that it deploys VPNs

that have a level of performance and degree of free-
dom in management that are comparable to physical
private networks. For instance, instead of being re-
stricted to only site-to-site virtual links, a customer
has full control of the VPN topology, and how the
VPN topology maps onto the underlying network.
This has two advantages. First, the topology can be
engineered such that applications that are sensitive
to the network topology (such as multicast applica-
tions) can achieve the best performance. Second, by
carefully choosing the topology, statistical sharing of
bandwidth within the VPN can be optimized. In ad-
dition to customizing the topology, each VPN can
also select its own control protocols. For example, it
can use a customized routing protocol that supports
load balancing, policy-based routing, or QoS routing.
VNS also provides guaranteed QoS on each virtual
link in a VPN. Moreover, because link bandwidth is
virtualized using hierarchical packet scheduling, each
VPN can even have its own signaling protocol (e.g.
RSVP) to customize resource sharing policies in the
VPN or to provide per-
ow QoS to real-time appli-
cations.

The main technique underlying VNS is the virtu-
alization of the control and data planes in routers.
Virtualization of the control plane enables each VPN
to have the autonomy to execute custom routing
and signaling protocols while sharing a common
physical infrastructure. Our approach to provi-
sioning customizable control planes leverages a pro-
grammable router architecture that provides an open
programmable interface [29].

In the data plane, packet forwarding and link band-
width are virtualized per VPN. Virtualization of the
forwarding mechanism enables isolation and routing
of tra�c according to virtual topologies. Virtual-
ization of the link bandwidth provides each VPN
with virtual links of guaranteed capacity, and the
autonomy to specify its own bandwidth sharing pol-
icy. Earlier work in VPN services such as [31], [15],
[24], [7] did not consider statistical sharing of under-
utilized resources. In this work, the additional perfor-
mance bene�t of statistical multiplexing is achieved
without compromising any bandwidth guarantees by
using the H-FSC [27] hierarchical packet scheduler.

Architecturally, VNS is based on the Darwin [8]
router design, which is programmable and capable
of virtualizing the link bandwidth. The Beagle [9]



3

Figure 2: A Screen-Shot of VANESA



4

signaling protocol is used for resource allocation and
control plane customization. In order to virtualize
routing and forwarding, we extend the Darwin router
design to allow each VPN to have its own routing
protocol and forwarding table. Secure communica-
tion is achieved through IPSEC [18]. The Virtual
Network System Administrator (VANESA), a Java-
based VPN management tool, provides a user inter-
face that hides the complexity of the signaling from
the user. VNS is targeted towards deployment on the
CAIRN research network [1].

The rest of this paper is organized as follows. In the
next section, we examine the overall system design
of VNS. In Section 3, we explain the key concept
of virtualization by describing the mechanisms used
to enforce virtualization of bandwidth, control plane
protocols, and the forwarding mechanism. We then
survey related work in Section 4 and summarize our
work in Section 5.

2 VNS System Overview

In this section, we describe the major components of
VNS and how they inter-operate. A more detailed de-
sciption of the techniques used in virtualizing routers
is presented in Section 3.

2.1 Components

The main VNS components are:

1. VANESA

VANESA is a Java-based centralized graphi-
cal user interface for con�guring and managing
VPNs. Figure 2 is a screen capture of VANESA.
The idea here is similar to the concept of a
software toolkit for deploying virtual networks
as described in [13] by Ferrari and Delgrossi.
VANESA provides a simple interface for the net-
work administrator to con�gure VPN proper-
ties such as the virtual topology, bandwidth re-
quirements of virtual links, parameters for secu-
rity con�guration and VPN membership infor-
mation. Members of a VPN are described by
the member end hosts' IP addresses and/or the
member subnets' network pre�xes. In addition,
VANESA can also be used to specify custom

routing and signaling protocols that are to be
deployed within a VPN.

2. VPN Controller

The VPN Controller is a process that runs on a
host or router that has direct access to the net-
work where VNS is deployed. The job of the
VPN Controller is to act as a proxy for con-
trol messages between VANESA and routers in
the WAN where VNS is deployed. This enables
VANESA to be executed remotely from any-
where in the Internet. Furthermore, the com-
plexity of the signaling required to set up the
VPN is handled by the VPN Controller and de-
coupled from the user interface. This setup is
depicted in Figure 1.

3. Virtualizable VNS Routers

VNS routers are Darwin-based routers built on
commodity PC hardware running a variant of
FreeBSD Unix. Usually, a minimal PC router
performs packet forwarding based on a single for-
warding table and a routing daemon that does
route computation. Darwin routers have en-
hancements such as a signaling protocol module,
a sophisticated packet scheduler, packet classi-
�er, and a programmable interface for deploy-
ing value-added services. Leveraging these exist-
ing features of Darwin, we extended the Darwin
router design for VNS. Control plane and data
plane resources on a VNS router are virtualized
to support the unique needs of each VPN.

In the data plane, each VPN is allocated its own
resources such as link bandwidth and a forward-
ing table. In the control plane, a VNS router
has mechanisms that enforce isolated execution
of custom-VPN routing and signaling protocols.
Figure 3 illustrates the virtualization of a router.

Next, we describe service provisioning in VNS by
explaining the interactions between the components
of the system during the design, setup, and operation
of a VPN.

2.2 VPN Design

We will describe the design of a VPN using example
VPN shown in Figure 4. Each VPN's virtual topol-
ogy is constructed from virtual links, illustrated as



5

VNS Router

routing
daemon

signaling
daemon

Classifier

Forwarding
Table

Scheduler

One physical link

network interface card

rd sd

Classifier

vpn1
forwarding

table

rd sd rd sd

Virtualized VNS Router

vpn1

vpn2 vpn3

vpn2
forwarding

table

vpn3
forwarding

table

Scheduler

One physical link,
Multiple virtual links

network interface card

Figure 3: A virtualized VNS Router with three instances of virtual control planes and customized forwarding
tables.

dotted lines for VPN#1 and as the lightly shaded
lines for VPN#2 in Figure 4. A router that is part
of a VPN's topology is called a virtual router. For
instance, VPN#2's virtual routers are A, B, D and
E.

A VPN provides connectivity for end hosts or sub-
nets identi�ed as members of the VPN. In our ex-
ample, VPN#2's members are subnet 10.1.1/24 at-
tached at router A and subnet 10.2.1/24 attached at
router E. The router that is the access point to the
network for a VPN member is called an edge router.
All other interior routers in the network that are part
of a VPN but are not directly connected to VPN
members are called core routers.

In order to provide QoS to virtual links and support
per-VPN forwarding, virtual routers need to maintain
VPN speci�c information for QoS enforcement and
per-VPN forwarding. In addition, edge routers must
maintain VPN membership information, IPSEC se-
curity parameters, and the encapsulating IP headers
to use for each VPN.

2.3 VPN Setup

During the setup phase, the network administra-
tor speci�es a VPN's properties through VANESA's
graphical interface. These properties include the
VPN's virtual topology, bandwidth requirements of
the virtual links in the topology, members, local rout-
ing policies for virtual routers, security information
and encapsulating IP headers for tunneling VPN traf-
�c. After specifying the VPN description, the net-
work administrator submits the request of setting
up this VPN by clicking on the \Submit" button on
VANESA's interface. Subsequently, VANESA sends
appropriate setup messages to the VPN Controller
based on the request. There are several types of setup
messages. Each is related to a request to con�gure
one of the VPN properties. For instance, in a min-
imal VPN setup that has no security con�guration,
VANESA will be used to set up virtual links with
bandwidth guarantees, dispatch membership infor-
mation and con�gure local routing policies of routers
in the virtual topology. VANESA would therefore
send three setup messages to the VPN Controller
since each of these con�guration steps corresponds
to a speci�c type of setup request.



6

A

B

C

D
E

VPN #1 10.2.1/24

VPN #2 10.1.1/24

VPN #1 10.1.1/24

VPN #2 10.2.1/24

140.173.6.82
140.173.6.65

core router
edge router

edge router

Figure 4: Basic concepts illustrated with two VPNs

Upon receiving the VPN setup messages, the VPN
Controller initiates requests to routers in the virtual
topology through the Beagle signaling protocol [9].
While it would also be possible to set up resource
reservations with 
ow-based signaling protocols such
as RSVP [4], we chose Beagle because it provides sup-
port for the allocation of resources for mesh struc-
tures such as VPN topologies. All VPN connection
management tasks are handled by the Beagle daemon
on the VPN Controller and the Beagle daemons on
the routers that are part of the virtual topology. In
Figure 5, we show this setup procedure for one of the
routers that is part of the VPN.
For virtual link resource reservations, the Beagle

daemon on every router of a VPN con�gures the local
classi�ers and schedulers of the appropriate network
interfaces to reserve resources. Beagle is also used to
deploy VPN speci�c routing and signaling protocol
modules on the routers of a VPN. The customization
of control protocols is discussed in Section 3.2.
During the setup of a VPN, Beagle also performs

two con�guration steps that are speci�c to edge
routers. The �rst step is to provide edge routers
with VPN membership information and the globally
unique VPN identi�er (VPN-ID) that was chosen by
VANESA; this information is needed so edge routers
can inject packets appropriately into the VPN. The
second VPN-speci�c step is to establish security as-

sociations between the edge routers; the security as-
sociations are used to provide authentication and en-
cryption of the data that travels over the VPN. Both
operations are described in more detail below.

2.4 VPN Operation

The operation of a VPN is based on IP-in-IP tun-
neling, but support is provided to maintain privacy
of the data and to allow per-VPN customization of
packet handling inside the core of the network. We
discuss the main tasks performed during the opera-
tion of a VPN in more detail in this section (Figure 6).
As in a private physical network, we believe the

basic security service a VPN should have is the con-
�dentiality of data and principals when VPN packet

ows in the core of the network. This is provided in
VNS by establishing ESP [17] tunnels between the
ingress and egress edge routers. This means that for
any VNS data stream, cryptographic packet process-
ing is performed at edge routers only. It can be ar-
gued that this is less secure than an alternative model
that requires re-keying at every link. Our choice in
keeping the security model simple is motivated by a
performance trade-o�, i.e. we reduce the overhead on
the core routers.
Using the membership information provided to

them by Beagle, an ingress edge router can correctly



7

Virtualizable RouterHost running 
VANESA

Controller 
Node

User 
Space

Kernel 
Space

VANESA

VPN Controller

beagle beagle

H-FSC
Scheduler

Classifier

Delegate
Runtime

Environment

Routing 
delegate

VPN
Routing
Table

Other 
delegates
executed 
per VPN

Virtualization
per-VPN

Figure 5: Control Path in VNS

identify packets that belong to a VPN. It then in-
jects the packet in the appropriate IP-in-IP tunnel
and tags the packet with the globally unique VPN-ID
of the VPN. The VPN-ID is necessary because once a
packet enters a VPN tunnel, the original packet is en-
crypted, so core routers can no longer use the header
�elds to identify what VPN the packet belongs to. To
di�erentiate between packets so as to enable per-VPN
forwarding and resource management, the VPN-ID
is added to the encapsulating header at the ingress
edge router as an IPOPT SATID IP option. This ap-
proach does not support inter-VPN communication,
although an easy extension to enable this would be to
supplement a pair of VPN-IDs identifying the source
VPN and destination VPN respectively.

By relegating the task of tagging packets with a
VPN-ID to the edge routers, we allow any end host
to become a VPN member without requiring any
changes. Implicitly, this limits the freedom of hosts
to directly control what VPNs they participate in,
since the information of what tra�c uses what VPN
has to be stored on the edge routers using a signal-
ing protocol. End-hosts can be given more control by
making them VNS-aware so they can insert a VPN-
ID into the packets they send. This way, the end host
can control more easily which speci�c VPN-ID they

want to use for speci�c applications.

VPN membership is maintained at each network
interface of an edge router in the form of <VPN-ID,
member src IP, member dst IP, ingress IP,

egress IP> tuples. The member source address in
the tuple identi�es a VPN member that is reachable
through that network interface. Using the source
and destination addresses of a packet, the packet
is classi�ed to be part of a VPN if it matches
the <member src IP, member dst IP> portion
of a tuple in the membership list. The packet is
then encrypted by IPSEC and prepended with the
corresponding VPN-ID, and at last the packet is
encapsulated with the ingress and egress routers' IP
addresses found in the tuple. Figure 7 illustrates
the resulting packet format. We can provide more
�ne grain control over what tra�c enters a VPN by
using additional �elds (e.g. source and destination
port numbers) in the �lter that is used to classify
packets.

When a core router receives a packet, it uses the
VPN-ID to identify the VPN that the packet belongs
to. It can then service the packet in a way that
is appropriate for that VPN. Packet forwarding and
packet scheduling (QoS) can be customized on a per-
VPN basis, as is discussed in more detail in the next



8

Classification
Encapsulation
Encryption
Forwarding Table Lookup

Decapsulation
Decryption
Forwarding Table Lookup

CMUPC
ingress
edge 
router

MITPC
egress
edge 
routercore 

routers

Src G

Dst F

security association is from edge to edge

Forwarding Table Lookup
Classification

10.3.3.x/24

10.3.2.x/24

Figure 6: Datapath through a VNS-enabled Network

Outer
IP header VPN_ID

ESP
Header IP header

Original
Payload Trailer

ESP

Authentication
ESP

    encrypted

authenticated

Figure 7: VNS Packet Format



9

section. This allows packets to be scheduled based
on the policies of the VPN and forwarded according
to the VPN's topology. At the egress edge router,
the packet is decrypted and decapsulated. The inner
packet is then examined and forwarded to the locally
attached VPN destination.
We have also modi�ed the route, traceroute and

netstat commands for the VNS environment such
that we can create the initial routing table setup and
verify VPN routes.

3 Virtualization

In this section we describe in detail how we virtualize
VNS routers.

3.1 Virtualization of Link Bandwidth

VPN #1

155 Mbps Link

VPN #2 VPN #3

20% 40% 40%

TCP UDP
40% 60%

audio video

Figure 8: Hierarchical Resource Tree of Link Band-
width

Enforcement of bandwidth guarantees to virtual links
is performed using a packet classi�er and a hierarchi-
cal packet scheduler. For any router, we represent the
division of the bandwidth of a link at the router as
a hierarchical resource tree. In the context of VNS,
each VPN virtual link created over a physical link is
represented by a node 1 in the �rst tier of nodes un-
derneath the root node in the hierarchical resource

1Generally, a node corresponds to one or multiple 
ows. A


ow is de�ned using a 
ow spec which includes �elds from IP

and transport layer headers and an optional application ID.

tree. A certain amount of bandwidth is reserved for
each node at the VPN set up time. The e�ect of this
is that each virtual link will have a guaranteed capac-
ity. Figure 8 is an example of what a resource tree at
a physical link might look like with three VPNs. In
this example, VPN#3 reserved 40% of the link band-
width, which ensures that the virtual link of VPN#3
has a capacity of about 62 Mbps. The hierarchical
scheduler allows a VPN to further divide its band-
width across the tra�c classes it carries by creating
a subtree. For instance, VPN#3 allocates 40% of its
bandwidth to its TCP tra�c in our examle.

VNS uses the Hierarchical Fair Service Curve (H-
FSC) [27] packet scheduler developed in the context
of Darwin. An advantage of using H-FSC as opposed
to other class based scheduling discipline such as H-
PFQ [2] and CBQ [14] is H-FSC's 
exibility in de�n-
ing and enforcing QoS on a multi-tier hierarchy. Un-
like H-PFQ and CBQ, H-FSC is capable of decoupling
the allocation of delay and bandwidth resources and
characterizing the provided service precisely. As a re-
sult, real-time tra�c can enjoy a low delay without
over-reserving resources. This allows the router to
have greater 
exibility in resource allocation and in-
creases resource utilization. We extended the packet
classi�er from the Darwin implementation to support
VPN-ID based classi�cation.2

Another important property of the H-FSC sched-
uler is that it allows sibling nodes in the resource tree
to borrow bandwidth from each other when possible.
This means that if a 
ow inside a VPN does not use
all the bandwidth that is allocated to it, other 
ows
within the same VPN will �rst have the opportunity
to use that bandwidth. If a VPN does not fully utiliz-
ing its capacity on a virtual link, the extra bandwidth
will be shared by tra�c belonging to other coexist-
ing VPNs. This additional performance gain from
statistical multiplexing demonstrates that VPNs in
VNS can actually do better than a physical private
network with �xed capacity.

2In the case of encrypted tra�c, an additional 
ow identi-

�er must be added to the packet header at the ingress router

in order to di�erentiate between 
ows inside the VPN. This

feature is not implemented in the current VNS prototype.



10

3.2 Virtualization of the Control
Plane Protocols

The control plane of a commodity PC router run-
ning the Unix operating system typically consists of
user-level daemons that implement various control
protocols. For example, a routing daemon creates
and maintains the routing table on a router, which
governs the packet forwarding behavior, by exchang-
ing routing protocol messages with peer routing dae-
mons on other routers in the network. In a tra-
ditional (physical) network, network administrators
can deploy a di�erent routing protocol by installing
new routing daemons on the routers within the net-
work. Similarly, we would like the administrators of
VPNs to be able to choose and deploy their own con-
trol plane protocols and network management poli-
cies within their VPN. To meet this requirement, the
control plane of the network that supports VPN ser-
vices needs to be virtualized. In other words, the
control plane can be sub-divided into multiple VPN
control planes, each running a VPN-speci�c set of
control daemons.

3.2.1 Darwin Programmability Support

To control the behavior of the router, a control pro-
tocol daemon needs to interact with modules in the
data plane, e.g., a routing daemon must be able to
update the routing table in the kernel, and a signal-
ing daemon must be able to change the states of the
classi�er and scheduler. However, a traditional router
is shipped as a \closed box" with a set of standard
vendor protocols. It is di�cult if not impossible for
users to install any customized control protocols. In
this project, we take on a programmable network ap-
proach to support control plane virtualization. In a
programmable network, the control plane function-
ality of the routers can be extended dynamically by
installing customized control protocols on the router.
These protocol can modify the forwarding behavior
of the data plane in a controled fashion through a
programming interface.
VNS leverages the programmability of the Dar-

win system [8] to dynamically deploy VPN-speci�c
control protocols. In Darwin, mobile code segments,
called delegates, can be transferred to the router and
instantiated in the Delegate Runtime Environment
(DRE) using the Beagle signaling protocol. Delegates

can implement control plane protocols, customized
control policies, or customized services. They run at
user level within the DRE and change the router's
behavior by controling data plane modules, such as
the classi�er, routing table and the scheduler through
Darwin's programming interface, the Router Control
Interface (RCI) [16]. Delegates can only modify the
forwarding behavior the tra�c 
ows that are explic-
itly assigned to them.

3.2.2 Routing Virtualization

We demonstrate control plane virtualization by show-
ing that VPN speci�c routing protocols can be de-
ployed using delegates. During VPN setup, delegates
implementinga selected routing protocol are installed
on all the virtual routers of the VPN. The coordi-
nated actions of these routing delegates will create
VPN speci�c routing tables according to the VPN's
topology. This means that a virtual router will have
multiple routing delegates running, each responsible
for the tra�c of a separate VPN.
To demonstrate the concept of routing virtualiza-

tion, we use RIP-2 [19] as an intra-VPN routing pro-
tocol. For each VPN, a separate RIP-2 routing dae-
mon will be started by Beagle. We modi�ed the ex-
isting CAIRN routing daemon, mrtd [26] to support
multiple RIP clouds over a single physical network.
The RIP-2 speci�cation requires all RIP messages to
be exchanged at the multicast address 224.0.0.9 and
port 520. In order to support multiple RIP clouds,
we extend the RIP protocol to support the exchange
of RIP messages at an assignable port number. The
idea here is to allow a VPN to select an unused port
number at the RIP multicast address and have VPN
routing daemons use that port number for RIP mes-
sages. This way, we ensure isolation of VPN speci�c
RIP messages and prevent VPNs from leaking routes
into each others' domain. In our implementation,
port 520 remains as the port used by RIP-2 for de-
fault routing, and for each VPN deployed, VANESA
assigns a unique and well known port number to the
VPN. All RIP-2 messages pertinent to this VPN will
then be exchanged via this port.
Another possible approach would be to assign each

VPN with a speci�c multicast address for RIP-2 pro-
tocol messages. This address would be chosen from
the administratively scoped range (239.192/14) [21]
and the only requirement is that the multicast ad-



11

dress must be uniquely mapped to a speci�c VPN.
This approach has the advantage that a router will
only receive VPN-speci�c RIP-2 messages if the
router is a virtual router in the VPN, but it requires
that multicast is available.
The VNS approach of executing independent per-

VPN routing daemons on a router o�ers customers
the 
exibility of deploying VPN speci�c routing pro-
tocols. However, it has the disadvantage that it will
not scale well to large numbers of VPNs. Each rout-
ing daemon will consume resources such as CPU cy-
cles and memory,which may degrade the router's per-
formance when it supports a large number of VPNs.
When multiple VPNs use the same routing proto-
col, we can reduce the number of routing daemons
by deploying a single routing delegate that sends and
receives all the routing messages belonging to the
VPNs using the same routing protocol. The dele-
gate then demultiplexes the messages internally to
compute routes for each VPN separately.
Besides multiple routing daemons, routing virtual-

ization also requires multiple routing tables in the
data plane. We made extensions to the FreeBSD
Unix forwarding mechanism so that packets belong-
ing to di�erent VPNs are forwarded by looking up
the next hop in a VPN-speci�c forwarding table. We
discuss the details of this extension to the forwarding
mechanism later in this section.

3.2.3 QoS management within a VPN

A virtualized router control plane allows a VPN to de-
ploy other VPN-speci�c control plane protocols. As
an example, we discuss how a VPN can deploy its own
signaling protocol to perform VPN-speci�c resource
management.
As discussed earlier, each virtual router employs a

hierarchical packet scheduler, i.e., the bandwidth of
each link is shared in a hierarchical fashion. As shown
in Figure 8, the �rst level in the resource tree corre-
sponds to the bandwidth sharing across the VPNs
running on the physical link. To further exploit the
merit of the hierachical scheduler, the owner of a VPN
link, i.e., a node in the �rst tier of the resource tree,
can set up more sophisticated bandwidth sharing pol-
icy for applications running within its VPN, as is il-
lustrated for VPN 3 in Figure 8.
To manage the resource reservations within a vir-

tual network, and a VPN may need to deploy its own

signaling protocol. This can be done by instantiat-
ing per-VPN signaling deamons (e.g. Beagle, RSVP),
similar to what VNS does for routing daemons. Si-
galing messages must be tagged with a VPN-ID, the
same way as other VPN tra�c, and they will be for-
warded according to the VPN topology, i.e., use the
VPN forwarding table managed by the routing dele-
gate of that VPN. The actions of the signaling dae-
mon will be restricted to the resources of a speci�c
VPN, i.e. the daemon will only be able to modify the
resource allocations within a speci�c subtree of the
resource tree.

3.3 Virtualization of Forwarding
Mechanism

In this section, we will discuss a speci�c virtualization
technique for forwarding packets according to virtual
topologies. Conceptually, this means that we may
have to forward packets destined for the same desti-
nation (egress router) di�erent. However, FreeBSD
Unix only supports single path routing [20]. This is
an inherent limitation of the forwarding table radix-
tree based lookup algorithm and data structures [25].

Our solution for route isolation in the forwarding
mechanism is to simply require the system to main-
tain a separate forwarding table for each VPN. Every
forwarding table is populated with routes computed
based on the VPN's virtual topology. Whenever a
packet arrives at a router and needs to forwarded,
the forwarding mechanism classi�es the packet. If
the packet is classi�ed to a VPN, it will be forwarded
based on a route lookup using that VPN's forwarding
table. Moreover, our system's routing architecture
must correctly demultiplex routing messages that are
exchanged between the user space and the kernel
space. In the remainder of this section, we present
the extensions that we made to the FreeBSD Unix
routing system.

3.3.1 Packet Forwarding in FreeBSD Unix

In a FreeBSD Unix router, the user-level routing dae-
mon and the kernel communicate using messages [32].
The core information carried in these messages are
addresses of destinations and gateways. These ad-
dresses are stored as one or more sockaddr struc-
tures in the payload of these messages. Figure 9 is



12

User space

Kernel space

Forwarding
Mechanism

AF_INET

rt_tables[]

forwarding table
for IP network

routing
daemon

socket

type Seq sockaddr structs

<protocol family,len,value>

<PF_ROUTE,0>

raw socket control blocks

<domain,protocol family>

<PF_ROUTE,RAW,AF_INET>

Figure 9: Forwarding Mechanism in FreeBSD Unix

a simpli�ed illustration of the forwarding mechanism
in FreeBSD Unix.

Forwarding and routing are organized on the basis
of di�erent address families. Separate routing tables
are used for di�erent address families, and routing
daemons inform the kernel what family of addresses
they are resonsible for. To make this system work
correctly, routing messages must be demultiplexed to
the appropriate routing daemon and forwarding table
updates have to be applied to the right table. Also,
when there are local changes in routes or route poli-
cies, the kernel's routing subsystem must be able to
dispatch these changes to the correct routing daemon.

To demultiplex to the correct forwarding table,
a pointer to the forwarding table is obtained by
using the sa family �eld of addresses as an in-
dex into the rt tables[] array. Similarly, to dis-
patch routing messages to routing daemons, the
forwarding mechanism searches through the control
block list in the kernel in order to �nd a con-
trol block which would give a back pointer to the
routing daemon. The search strategy is an ex-
haustive search that returns any control block that
has its <domain,protocol> values matching the key
<PF ROUTE, protocol family of address>.

It is clear that the above routing architecture can-
not support the multiple forwarding table solution
needed for per-VPN packet forwarding and routing.
All addresses in the VPNs are IP addresses and
will therefore have the protocol family �eld set to
AF INET. As a result, all VPNs will share the same
IP forwarding table and any routing update will be
dispatched to all VPN routing daemons. Any for-
warding table updates will \leak" to other VPNs.

3.3.2 Routing and Packet Forwarding in
VNS

We provide per-VPN packet forwarding by sup-
porting demultiplexing to di�erent forwarding tables
based on the VPN ID, as is illustrated in Figure 10.
This requires that we virtualize the the various ker-
nel data structures involved in routing and packet
forwarding:

1. Create an array vpn rt tables[] for VPN for-
warding tables

At compile time the kernel allocates two ar-
rays; vpn rt tables[] for VPN forwarding ta-
bles and rt tables[] for forwarding tables of



13

kernel space

user space

Network Interface

Network Interface Device Driver

IP Forward IP OutputIP Input

IF Output

Forwarding
mechanism

forwarding
mechanism

Default
Forwarding

Table

VPN
Forwarding

Table
is
VPN?

N

Y

Figure 10: Virtualization of forwarding mechanism in a VNS router's kernel

all other protocol families. Each entry in
vpn rt tables[] contains a pointer to a for-
warding table and an unsigned integer that
stores the VPN-ID for the associated forwarding
table.

2. Initialize routing daemon with VPN-ID

When a routing daemon is instantiated, it is
given the VPN-ID of the VPN it is responsible
for. This VPN-ID is used by the routing daemon
to interact with the kernel.

3. Label routing sockets with a VPN-ID

We augmented the kernel socket structure with
an additional unsigned integer �eld named
vpn id. After a VPN routing daemon has cre-
ated a routing socket, it will make an additional
ioctl() system call to set the vpn id �eld of the
socket structure in the kernel to the VPN-ID of
the VPN.

4. Label the raw socket control blocks with a VPN-
ID

We modi�ed the raw socket control block struc-
ture by adding a �eld named vpn id. As in step
3, vpn id is set to the VPN-ID of the VPN as-
sociated with the routing daemon.

All the functions responsible for processing routing
messages entering the kernel from user space have

access to the kernel socket structure of the process
that generated the routing messages. As a result,
we can use the vpn id �eld in the kernel socket to
associate the routing messages with the correct VPN.
For example, using the vpn id �eld as the index to
the vpn rt tables array, we can easily obtain the
pointer to the appropriate VPN forwarding table.

In the other direction, when routing messages
needs to be dispatched to the routing daemon, we
cannot easily associate these routing messages with
a kernel socket. In the IP domain, the forwarding
mechanism uses <PF ROUTE, AF INET> as the search
key to �nd a match from the list of raw socket con-
trol blocks. We extended the search to use the tu-
ple <PF ROUTE, VPN-ID>. Within the forwarding
mechanism, we overloaded the functionality of the
sa family �eld in sockaddr to encode the VPN-ID
in the following way. If its value falls outside the set
of well-known protocol families, then we know that
sa family must be a VPN-ID. Consequently, in the
search for the corresponding raw socket control block,
the vpn id �eld in the control block structure will be
used for comparison.

Finally, an extra step is added into the packet for-
warding mechanism. As shown in Figure 10, a route
lookup is performed in the IP FORWARD module after
the IP INPUT module determines that a packet has
yet to reach its �nal destination. In VNS, the extra
step involved in this lookup consist of a classi�cation



14

step to determine if the packet belongs to a VPN.
The classi�cation step checks for the availability of
the IPOPT SATID option in the packet header. If the
option exists, the packet is assumed to be a VPN
packet and the option value is used as the VPN-ID.
The destination address of the packet is then packed
into a sockaddr structure and tagged with the VPN-
ID. This sockaddr structure is then passed to the
forwarding mechanism for a route lookup.
Our virtualization of the forwarding mechanism is

straightforward and results in no changes to the tree-
based forwarding table lookup algorithm and its as-
sociated data structures. An alternative would be
revamp the forwarding table lookup algorithm and
data structures, as is done in the Detour project [10],
or to use MPLS. A more detailed discussion of De-
tour and MPLS in comparison to VNS is provided in
Section 4.

4 Related Work

One of the distinguishing features of VNS is that it
can provide VPN services with customizable intra-
VPN QoS support. To the best of our knowledge,
other approaches such as the X-Bone [30], Genesis [6]
and Supranet [13] are more focused on providing an
overall service architecture and have not fully de-
veloped techniques for enabling per-VPN QoS. Ear-
lier research in virtual network services, such as [15],
[24], and [7] focused on VPN services on broad-
band ATM networks, i.e. they deleloped methods
for managing and mapping VPNs on virtual circuits.
While some measure of QoS is attainable through
dedicated virtual circuits, these ATM-based solu-
tions typically do not allow bandwidth sharing across
VPNs, since VPN 
ows are mapped directly to vir-
tual circuits. This leads to a lower utilization of the
bandwidth resources. Other QoS strategies that reg-
ulate tra�c exclusively at the ingress router, such
as [5] and [12], also cannot capitalize on statistical
multiplexing gains as easily.
Our approach to QoS is based on a IP layer mech-

anism that provides bandwidth guarantees to VPNs
and has the added bene�t of statistical multiplexing
gained through the use of the H-FSC packet sched-
uler. When 
ows are inactive, their unused band-
width can be utilized by other active 
ows.
Programmable network router architecture facili-

tates the virtualization of a router's control plane.
Projects such as Tempest [31], Genesis [6], and Vir-
tual Active Network (VAN) [28] represent recent ef-
forts in using concepts of programmable networks for
deploying virtual networks. Their approaches are
conceptually similar to ours. Architecturally, Tem-
pest is an ATM-based solution that uses logical en-
tities called switchlets for isolating multiple control
architectures. Genesis on the other hand, has an
architecture for spawning virtual networks through
the operating system services of the Genesis kernel.
VAN uses a functional language [11] to specify virtual
networks and virtual networks generated from VAN
are deployed as application layer tunnels using UDP
encapsulation. In VNS, we leverage Darwin's pro-
grammable router architecture, which provides pro-
grammability of the routers through the use of dele-
gates and an open programming interface called RCI.

Virtualization of packet forwarding can be imple-
mented in several di�erent ways. To our knowledge,
VNS and Detour are the only two projects that im-
plements virtual forwarding by modifying the be-
haviour of the forwarding mechanism in a router's
kernel. VNS virtualizes the forwarding mechanism
by maintaining multiple forwarding tables to isolate
VPN routes. In Detour, the forwarding mechanism
looks up routes in a 
ow database and tunnels packets
using IP-in-IP encapsulation every time the packet
traverses from one virtual node to another virtual
node. In our approach, encapsulation occurs only
once at the edge of the network and no tunneling is
needed in the core of the network. Furthermore, be-
cause routing algorithms are not considered as part
of the Detour framework, the 
ow database used for
route lookups in Detour are manually con�gured with
routes. The VNS approach allows for automatic con-
struction of a VPN forwarding table by using a VPN-
speci�c routing protocol.

MPLS-based VPN solutions such as [23, 22] have
also been proposed. For QoS, these approaches rely
on tra�c engineering and regulating tra�c at the
ingress router using service models such as Di�-
Serv [3]. For the purpose of labelling packets, MPLS
based solutions require the insertion of a shim layer
between layer 2 and layer 3 protocols or overload-
ing of existing layer 2 protocol �elds. The networks
where such a service is deployed must therefore be
MPLS aware. In contrast, the VNS approach is an



15

IP layer solution and is independent of the underlying
link layer.

5 Summary

In this paper we presented the design and a proto-
type implementation of VNS, a virtual private net-
work service that is customizable and supports VPN
level Quality of Service. We had three design goals.
First, we wanted VPN support at the IP level for in-
teroperability across multiple network technologies.
Second, we wanted VPNs to be very similar to physi-
cal networks by providing the 
exibility to use a vari-
ety of QoS models inside the VPNs. In fact, we want
VPNs to be better than physical networks in the sense
that heavily used VPNs can share the unused capac-
ity of lightly-loaded VPNs through statistical multi-
plexing. Finally, users should be able to customize
the management and control functions of their VPN.
Our proposed VNS design uses IP tunnels and IP

security as the basic VPN infrastructure. To sup-
port the VPN isolation and customization that is
needed to meet the above goals we use three com-
plementary mechanisms. A hierarchical fair service
curve scheduler provides bandwidth isolation between
VPNs and allows each VPN to independently man-
age the bandwidth that is assigned to it. Customiza-
tion of control plane functionality is provided by us-
ing a programmable router platform that supports
the execution of third party control plane protocols.
These customized control protocols can control the
data path functions for the tra�c they are responsi-
ble for through a router control interface. Finally, we
virtualized critical functions in the data plane. The
H-FSC scheduler already supports virtualization of
resource allocation (scheduling) and in our prototype
we also demonstrate the virtualization of packet for-
warding.
We implemented a VNS prototype based on this

design using the Darwin network as a foundation.
Darwin is a programmable network that uses the H-
FSC scheduler and it also provides a signaling pro-
tocol that makes bandwidth reservations and installs
customized control protocols. Our prototype is rich
enough to demonstrate bandwidth isolation, isola-
tion of bandwidth management, and customization
of routing and packet forwarding. We plan to ex-
pand our prototype to further evaluate the possi-

bilities of our approach, e.g. by providing support
for customized signaling protocols and hierarchical
VPNs.

References

[1] Collaborative Advanced Inter Agency Research
Network. http://www.cairn.net.

[2] J.C.R. Bennett and H. Zhang. Hierarchical
packet fair queueing algorithms. IEEE/ACM
Transactions on Networking, 5(5):675{689, Oc-
tober 1997. Also in SIGCOMM'96.

[3] S. Blake, D. Black, M. Carlson, E. Davies,
Z. Wang, and W. Weiss. An Architecture for
Di�erentiated Services. Request for Comments
(Informational) 2475, Internet Engineering Task
Force, December 1998.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog, and
S. Jamin. Resource Reservation Protocol RSVP
- Version 1 Functional Speci�cation. Request
for Comments (Standards Track) 2205, Internet
Engineering Task Force, September 1997.

[5] T. Braun, M. Gunter, and I. Khalil. An Archi-
tecture for Managing QoS-enabled VPNs over
the Internet. In 24th IEEE Annual Conference
on Local Computer Networks (LCN 99), Low-
ell/Boston, MA, October 1999.

[6] A.T. Campbell, M.E. Kounvanis, D.A. Villela,
J. Vicente, K. Miki, H.G. De Meer, and K.S.
Kalaichelvan. Spawning Networks. IEEE Net-
work Magazine, July/August 1999.

[7] M.C. Chan, A.A. Lazar, and R. Stadler. Cus-
tomer Management and Control of Broadband
VPN Services. In Proceedings 5th IFIP/IEEE
Int'l Symp. Integrated Network Mgmt., May
1997.

[8] P. Chandra, A. Fisher, C. Kosak, T.S.E. Ng,
P. Steenkiste, E.Takahashi, and H. Zhang. Dar-
win: Resource Management for Value-added
Customizable Network Service. In Sixth IEEE
International Conference on Network Protocols
(ICNP'98), Austin, TX, October 1998.



16

[9] P. Chandra, A. Fisher, and P. Steenkiste. A Sig-
naling Protocol for Structured Resource Alloca-
tion. In Proceedings of IEEE Infocomm 99', New
York, NY, March 1999.

[10] A. Collins. The Detour Framework for Packet
Rerouting. PhD. Qualifying Examination, Uni-
versity of Washington, Department of Computer
Science and Engineering, November 1998.

[11] S. DaSilva, D. Florissi, and Y. Yemini.
NetScript: A Language-Based Approach to Ac-
tive Networks. Technical report, Computer Sci
Dept., Columbia University, NY,NY, January
1998.

[12] N.G. Du�eld, P. Goyal, A. Greenberg,
P. Mishra, K.K. Ramakrishnan, and J.E. van der
Merwe. A 
exible model for resource manage-
ment in virtual private networks. In Proceed-
ings of ACM SIGCOMM 1999, pages 95{108,
September 1999.

[13] D. Ferrari and L. Delgrossi. Supranets. Technical
Report CTR-96-001, Center for Research on the
Applications of Telematics to Organizations and
Society (CRATOS), Universita Cattolica, Pia-
cenza,Italy, September 1996.

[14] S. Floyd and V. Jacobson. Link-sharing and
Resource Management Models for Packet Net-
works. IEEE/ACM Transactions on Network-
ing, 3(4):365{386, August 1995.

[15] S. Fotedar, M. Gerla, P. Crocetti, and L. Fratta.
ATM Virtual Private Networks. Communica-
tions of the ACM, 38(2), February 1995.

[16] J. Gao, P. Steenkiste, E. Takahashi, and
A. Fisher. A Programmable Router Architecture
Supporting Control Plane Extensibility. IEEE
Communications Magazine, March 2000.

[17] S. Kent and R. Atkinson. IP Encapsulation Se-
curity Payload (ESP). Request for Comments
(Standards Track) 2406, Internet Engineering
Task Force, November 1998.

[18] S. Kent and R. Atkinson. Security Architecture
for the Internet Protocol. Request for Com-
ments (Standards Track) 2401, Internet Engi-
neering Task Force, November 1998.

[19] G. Malkin. RIP Version 2. Request for Com-
ments (Standards Track) 2453, Internet Engi-
neering Task Force, November 1998.

[20] M.K. McKusick, K. Bostic, M.J. Karels, and J.S.
Quarterman. The Design and Implementation
of the 4.4BSD Unix Operating System. Addison-
Wesley, 1996.

[21] D. Meyer. Administratively Scoped IP Multi-
cast. Request for Comments (Best Current Prac-
tice) 2365, Internet Engineering Task Force, July
1998.

[22] K. Muthukrishnan and A. Malis. Core MPLS
IP VPN Architecture. Internet draft draft-
muthukrishnan-mpls-corevpn-arch-03.txt. Work
in Progress; expires December 2000.

[23] E. Rosen and Y. Rekhter. BGP/MPLS VPNs.
Request for Comments (Informational) 2547, In-
ternet Engineering Task Force, March 1999.

[24] J.M. Schneider, T. Preuss, and P.S. Nielsen.
Management of Virtual Private Networks for In-
tegrated Broadband Communication. Proceed-
ings of the ACM SIGCOMM 1993, pages 224{
237, September 1993.

[25] Keith Sklower. A tree-based packet routing table
for berkeley UNIX. In Proc. of Usenix Winter
Conference, Dallas, Texas, January 1991.

[26] Software available for download at.
http://www.mrtd.net.

[27] I. Stoica, H. Zhang, and T.S.E. Ng. A Hierarchi-
cal Fair Service Curve Algorithm for Link Shar-
ing, Real-time and Priority Service. In Proceed-
ings of the ACM SIGCOMM, September 1997.

[28] G. Su. Virtual Active Network: A White Paper.
http://www.cs.columbia.edu=�gongsu.

[29] E. Takahashi, P. Steenkiste, J. Gao, and
A. Fisher. A Programming Interface for Network
Resource Management. In Proceedings of 1999
IEEE Open Architectures and Network Program-
ming, pages 34{44, New York, NY, March 1999.

[30] J. Touch and S.Hotz. The X-Bone. Third Global
Internet Mini-Conference in conjunction with



17

Globecom '98, November 1998. Sydney, Aus-
tralia.

[31] J.E. van der Merwe, S. Rooney, I.M. Leslie, and
S.A. Crosby. The Tempest - A Practical Frame-
work for Network Programmability. IEEE Net-
work, 12(3):20{28, May/June 1998.

[32] G.R. Wright and W.R. Stevens. TCP/IP
Illustrated, Volume 2: The Implementation.
Addison-Wesley, 1995.


