
8

Respectful Type Converters for Mutable Types
Jeannette M. Wing and John Ockerbloom

Computer Science Department
CarnegieMellon University
Pittsburgh, PA 15_I8-3890

Abstract

In converting an object of one type to another, we expect some of the original

object's behavior to remain the same, and some to change. How can we state the
relationship between the original object and converted object to characterize what

information is preserved and what is lost after the conversion takes place? We

answer this question by introducing the new relation, respects, and say that a type
converter function K : A --+ B respects a type T. We formally ,define respects in

terms of the Liskov and Wing behavioral notion of subtyping; types A and B are

subtypes of T.

In previous work we defined respects for immutable types A, B, and T; in this

chapter we extend our notion to handle conversions between mutable types. This
extension is nontrivial since we need to consider an object's behavior as it varies over

time. We present in detail two examples to illustrate our ideas: one for converting

between PNG images and GIF images and another for converting between different
kinds of bounded event queues. This work was inspired in building at Carnegie

Mellon the Typed Object Model (TOM) conversion service, in daily use worldwide.

8.1 Motivation

The tremendous growth of the Internet and the World Wide Web gives millions of

people access to vast quantities of data. While users may be able to retrieve data
easily, they may not be able to interpret or display retrieved data intelligibly. For

example, when retrieving a Microsoft Word document, without a Microsoft Word

program, the user will be unable to display, edit, or print it. In general, the type of

the retrieved data may be unknown to the retrieving site.

Users and programs cope with this problem by converting data from one type to

another, for example, from the unknown type to one known by the local user or

161

162 Wing and Ockerbloom

program. Thus, to view the Word document, we could convert it to ASCII text or

HTML, and then view it through our favorite text editor or browser. A picture in
an unfamiliar Windows bitmap type could be converted into a more familiar GIF

image type. A mail message with incomprehensible MIME attachments could be
converted from an unreadable MIME-encoded type to a text, image, or audio type

that the recipient could examine directly. In general, we apply type converters on

(data) objects, transforming an object of one type to an object of a different type.

8.1.1 What Information Do Type Converters Preserve?

In converting objects of one type to another we expect there to be some relationship

between the original object and the converted one. In what way are they similar?
The reason to apply a converter in the first place is that we expect some things about
the original object to change in a way that we are willing to forgo, but we also expect
some things to stay the same. For example, suppose we convert a I.$TF_ file to an

HTML file. We may care to ensure that the raw textual contents of the original

1.6_ document are preserved, but not the formatting commands since they do not
contribute to the meaning of the document itself; here the preserved information is
the underlying semantics of the text contained in the document. Alternatively, if
we convert a I_$TEXfile to a table-of-contents document, we may care to ensure that
the number, order, and titles of chapters and sections in the original document are

preserved, but not the bulk of the text; here the preserved information is primarily
the document's structure.

The question we address in this chapter is "How can we characterize what in-

formation is preserved by a type converter?" Our answer is given in terms of the

behavior of some type T. Informally, we say a converter K : A --+ B respects type

T if the original object of type A and the converted object of type B have the
same behavior when both objects are viewed (through appropriate abstractions) as

_' a type T object. That is, from T's viewpoint, the A and B objects look the same.
If the converter respects a type, then it preserves that type's observable behavior,

as defined by the type's interface specification. This chapter formalizes the notion

of respectful type converters.

Our particular formalization of respects exploits the subtype relationship that

holds among types of objects. The Liskov and Wing notion of behavioral subtyp-

ing [LW94] conveniently characterizes semantic differences between types. If S is a
• subtype of T, users of T objects cannot perceive when objects of type S are sub-

stituted for T objects. Intuitively, if K respects type T, a supertype of both A and

B, then T captures the behavioral information preserved by K.

In our previous work, "Respectful Type Converters" [WO99a] we defined the

respects relation for conversions between immutable types only. (It was correspond-

ingly based on a simplified version of Liskov and Wing's definition of subtype.) In

this chapter, we present an enhanced version of our respects relation that captures

Respectful Type Converters for Mutable Types 163

T

• /\

/ \
A B

K: A B

Fig. 8.1. Does Converter K Respect Type Ti'.

importantproperties of conversions between mutable types. Specifically, for muta-

ble types we say that a conversion respects a certain type T if an object with the

converted value cannot be distinguished (using T's interface specification) from an

object with the original value either at the time of conversion, or by analyzing any

future computation on the object. That is, the future subhistory of the new object

will not be inconsistent with the expectations raised by the past subhistory of the

original object, given the constraints of type T.

Here is an example of why for some common ancestors, T, of A and B there

may not exist respectful type converters from A to B (Figure 8.1). Consider a type

family for images, depicted in Figure 8.2. Suppose that the PNG image and GIF

image types are both subtypes of a pixel_map type that specifies the colors of the

pixels in a rectangular region. GIF images are limited to 256 distinct colors; PNG

images are not. Assuming the pixel__map type does not have::a fixed color limit,
then a general converter from PNG images to GIF images would not respect the

pixel_map type: it is possible to use pixel_map's interface to distinguish a PNG
image with thousands of colors from its conversion to a GIF image with: at most

256 colors. On the other hand, suppose pixel_map is in turn a subtype of a more

• generic bitmap type that simply records whether a graphical element is set or clear.
Suppose further that elements in a pixel_map are considered set if they are not

black, and clear if they are black. As long as the PNG to GIF converter does not

change any nonblack color to black (or black to nonblack), and otherwise preserves
the pixel layout, there is no way for the bitmap interface to distinguish the PNG

image from the GIF image that results from the conversion. Here then, the PNG

to GIF converter respects the bitmap type.

8.1.2 Typed Object Model Contest

At Carnegie Mellon we built a type broker, an instance •of Ockerbloom's Typed Ob-

ject Model (TOM) [Ock98], that provides a type conversion service. Our TOM type
broker allows users in a distributed environment to store types and type conversion
functions, to register new ones, and to find existing ones. It supports roughly 100

164 Wing and Ockerbloom

bitmap
(set or clear)

I
pixel.,map

(l_'sofcolors)

/ \
PNG GIF

(lO00' s of colors) (256 colors)

K: PNG GIF

Fig. 8:2. A PNG to GIF converter that does not respect pixel.map might still respect
bitmap. Conversely, it iseasy to define a GIF to PNG converter that respects both
pixel_map and bitmap.

abstract data types, a few hundred concrete data types, and over 300 type convert-

ers (including over 200 meaningful compositions of about 70 primitive converters).

The kinds of types TOM supports today are different kinds of document types (for

example, Word, I$TF_, PowerPoint, binhex, HTML) and "packages" of such docu-

ment types (for example, a mail message that has an embedded postscript file, a tar

file, or a zip file). The kinds of conversions TOM supports are off-the-shelf convert-

ers like postscript2pdf (that is, AdobeDistillerTM), off-the-Web ones like latex2html,

and some home-grown ones like powerpoint2html.

The website for Carnegie Mellon's TOM service is: http://tom, cs. cmu.edu/.

As of May 1999, the number of accesses to the TOM conversion service stabilized to

5000 per month, which is an average of 167 per day. Accesses came from over 1000

sites in over 35 countries in six continents from all types of organizations including

educational, government, and commercial institutions.

In designing the type hierarchy for this service, Ockerbloom made a deliberate

decision to use only immutable types [Ock98], and hence our original paper [WO99a]

on the respects relation ignored the complexities of mutability. However, Wing ob-

served that though the objects are immutable, in their context of use---a distributed

environment the same problems of aliasing of mutable objects can arise [Win97].

For example, clients can access the same object through more than one naming

scheme, for example, a URL, and a local file name; since objects are not necessarily

uniquely named, this aliasing can lead to conflicting updates. Hence, in this chapter

we investigate what respects means more generally, that is, in the presence of shared

mutable objects.

Though our idea of respectful type converters was inspired by our use of TOM

Respectful Type Converters .for Mutable Types 165

in the context of file and document converters, type converters show up in other

contexts. Most programming languages have built-in type converters defined on

primitive types, for example, ascii_integer, char2string, and string$array[char]. The

real world is continually faced with painful, costly, yet seemingly simple conversions:

the U.S. Postal System• converted'five-digit zip codes to five+four-digit zip codes;

Bell Atlantic recently added a new area code necessitating the conversion of a large

portion of phone numbers in Western Pennsylvania from the 412 area code to 724;

payroll processing centers routinely need to convert large databases of employee

records whenever extra fields are added to the relevant database schema; and of

course, the infamous Year 2000 (Y2K) conversion problem is costing billions of

dollars to fix [Jon98].

8.1.3 Roadmap to Rest of Paper '

In this chapter we formally characterize the notion of when a converter respects a

type. We first review in Section 8.2 background details leading up to the definition of
Liskov and Wing's behavioral notion of subtyping [LW94]; this section is included to
make this chapter self-contained. In Section 8.3 we exploit this notion of subtyping

to define the respects relation between a converter and a type. In Section 8.4 we
discuss in detail two examples to illustrate converters that do and do not respect
types: one example of a type family for PNG and GIF images, and one for bounded
event queues. We close with a discussion of related work and summary remarks.

8.2 Behavioral Subtyping

The programming language community has come up with many definitions of the
subtype relation. The goal is to determine when this assignment

x: T:=E

is legal in the presence of subtyping. Once the assignment has occurred, x will be

used according to its "apparent" type T, with the expectation that if:the program

performs correctly when the actual type of x's object is T, it will also work correctly

if the actual type of the object denoted by x is a subtype of T.

What we need is a subtype requirement that constrains the behavior of subtypes
so that users will not encounter any surprises:

No Surprises Requirement: Properties of an object of a type T that users rely on should
hold even if the object is actually a member of a subtype S of T.

which guarantees Liskov's substitutability principle of subtypes {Lis87]. In their

1994 TOPLAS paper "A Behavioral Notion of Subtyping" Liskovand Wing [LW94]

formalized this requirement in their definition of subtyping. The novel aspect of
their subtype definition is the ability to handle mutable types, and in particular, a

166 Wing and Ockerbloom

type's history properties. Their specification logic limits the expressibility of history
properties to be monotonic. For example, they can state that the bound of a queue
stays the same but cannot state that it cyclically increases and decreases. Another
example of a history property is that the value of an integer counter monotoni-
cany increases. They cannot state any liveness properties. We assume the same
limitations herein.

Chapter 6 of this volume contains an extensive overview of many definitions of
behavioral subtyping, including Liskov and Wing's. To provide background for our
definition of respects, we first describe their model of objects and types, how they

specify types, and then how they define the subtype relation. These definitions axe
all taken from the Liskov and Wing paper [LW94].

8._.1 Model of Objects, Types, and Computation

We assume a set of all potentially existing objects, Obj, partitioned into disjoint

typed sets. Each object has a unique identity. A type defines a set of values for an

object and a set of methods that provide the only means to manipulate or observe
that object.

Objects can be created and manipulated in the course of program execution. A
state defines a value for each existing object. It is a pair of mappings, an environment

and a store. An environment maps program variables to objects; a store maps

objects to values.

State = Erie x Store

Env = Var --_ Obj

Store = Obj-+ Val

Given a variable, x, and a state, p, with an environment, p.e, and store, p.s, we

' use the notation xp to denote the value of x in state p; that is, xp = p.s(p.e(x)).
When we refer to the domain of a state, dorn(p), we mean more precisely the domain
of the store in that state.

We model a type as a triple, (0, V,M), where 0 C_ Obj is a set of objects,
V c_ Val is a set of values, and M is a set of methods. Each method for an

object is a constructor, an observer, or a mutator. Constructors of type _"return

new objects of type r; observers return results of other types; mutators modify

the values of objects of type T. A new object is one which does not exist in the
domain of the state upon method invocation. An object is immutable if its value

cannot change and otherwise it is mutable. A type is immutable if all of its objects
axe; otherwise it is mutable. We allow mixed methods where a constructor or an

observer can also be a mutator. We also allow methods to signal exceptions; we

assume termination exceptions, that is, each method call either terminates normally

or in one of a number of named exception conditions. To be consistent with object-

Respectful Type Converters for Mutable Types 167

oriented language notation, we write x.m(a) to denote the call of method m on

object x with the sequence of arguments a.

Objects come into existence and get their initial values through creators. Unlike
other kinds of methods, creators do not belong to particular objects, but rather are

independent operations. They are the class methods; the other methods are the
instance methods.

A computation, that is, a program execution, is a sequence of alternating states
and transitions starting in some initial state, P0:

Po Trl Pl ... Pn-1 Trn Pn

Each transition, Tri, of a computation sequence is a partial function on states. A

history is the subsequence of states of a computation.

Objects are never destroyed: V 1 <_i < n. dom(pi-1) C dorn(pi).

8.2.12 Type Specifications

A type specification contains the following information:

• The type's name.
• A description of the set of values over which objects of the type ranges. •
• For each of the type's methods: •

- Its name.

- Its signature, that is, the types of its arguments (in order), result, and signaled
exceptions. •

- Its behavior in terms of preconditions and postconditions.

• A description of the type's history properties.

Figure 8.3 gives an example of a type specification for GIF images. We give formal

specifications, written in the style of Larch [HGJ+93], but we could just as easily
have written informal specifications. Since these specifications are formal we can do

formal proofs, possibly with machine assistance like with the Larch Prover [GG89],

to show that a subtype relation holds [Zar96].

The GIFImage Larch Shared Language trait and the invariant clause in the

Larch interface type specification for GIF images together describe the set of values

over which GIF image objects can range. GIF images are sequences of frames where
each frame is a bounded two-dimensional array of colors. The Appendix contains

all traits used in all examples in this chapter, and here in particular, the GIFImage

trait and those for flame sequences, frames, colors, and so forth.

A type invariant constrains the value space for a type's objects. In the GIF

example, the type invariant says that a GIF image can have at most 256 different

colors. (The colorrange function defined in GIFImage returns the range of colors

mapped onto by the array.) The predicate ¢(xp) appearing in an invariant clause

for type _- stands for the predicate: For all computations c, and for all states p in c:

168 Wing and Ockerbloom

GIF: type

uses GIFImage (gif for G)

for all g: GIF

invariant I colarrange(gp) I<_256
constraint true

color get_color (i, j: int)
ensures result = overlay(g, i, j) .

bool set_color (i, j: int; c: color) "
modifies g
ensures if]colorrange(changepixel(gpre,i,j,C)) l< 256

then c E colorrange(gpost) A gpost = changepixel(gpre, i, j, c) A
result = true

else gpre "- gpost A result = false

frame get_frame (i: int)
requires 1 < i < len(g)

ensures result = g[i]

end GIF

Fig. 8.3. A Larch Type Specification for GIF Images.

Vx: r : x E dorn(p) =_ ¢(xp).

Whereas an invariant property is a property true of all states of an object, a

history property is a property that is true of all sequences of states that result from

any computation on that object. A type constraint in a Larch interface specifica-

tion defines the history properties of the type's objects. The two-state predicate

_(Xpi,Xpk) appearing in a constraint clause for type r stands for the predicate:

For all computations c, and for all states Pi and Pk in c such that i < k:

Vx: "r .x e dom(pi) ::_ ¢(Xpi,Xpk)

Note that we do not require that Pk be the immediate successor of Pi in c. The GIF

example has the trivial constraint true. In Section 8.4.2 we will give examples :of

types with nontrivial constraints.

The requires and ensures clauses in the Larch interface specification state the

methods' pre- and postconditions respectively. To be consistent with the Liskov

and Wing paper and the Larch approach, preconditions axe single-state predicates

and postconditions are two-state predicates. The modifies clause states that the

values of any objects it does not list do not change; the values of those listed may

possibly change. The absence of a requires clause stands for the precondition true.

Respectful Type Converters for Mutable Types 169

The absence of a modifies clause means that the method cannot change the values

of any objects.

The get_color method returns the color of the (i, j)th array element of g. The

overlay function defined in GIFImage returns the color value of the (i, j)th array
•element of the last frame in the sequence that gives a value for (i, j); otherwise, it

returns BLACK, a distinguished color value, introduced in the ColorLiterals trait.

For example, if there are three frames in the frame sequence and for a given (i, j),

the first frame maps the array element to BLACK, the second to RED, and the

third does not map (i,j) to any color (because it is not within its bounds), then
RED is returned. The set_color method modifies the GIF object g by changing

the final color of pixel (i, j)to c, and returns true, if the change would not make

the resulting GIF have more than 256 colors. Otherwise it leaves the GIF object

unchanged and returns false. The get_frame method returns the ith frame of the
GIF object's value.

To ensure that the specification is consistent, the specifier must show that each

creator for the type _- establishes r's invariant, and that each of z's methods both

preserves the invariant and satisfies the constraint. These are standard conditions
and their proofs are typically straightforward [LW94].

8.2.3 The Subtype Relation

The subtype relation is defined in terms of a checklist of properties that must hold

between the specifications of the two types, a and r. Since in general the value space

for objects of type a will be different from the value space for those of type r we
need to relate the different value spaces; we use an abstraction function, a, to define

this relationship. Also since in general the names of the methods of type a can be

different from those of type r we need to relate which method of a corresponds to
which method of _-; to define this correspondence we use a renaming map, v, that

maps names of methods of a to names of methods of _-.
The formal definition of the subtype relation, --<,is given in Figure 8.4 t. It relates

two types, a and T, each of whose specifications we assume are consistent. In the
methods rules, since x is an object of type a, its value (Xpre or Xpost) is a member
of S and therefore cannot be used directly in the predicates about _"objects (which

are in terms of values in T). The abstraction function c_ is used to translate these

values so that the predicates about _- objects make sense.

This definition of subtype guarantees that certain properties of the supertype---
those stated explicitly or provable from a type's specification--are preserved by the

subtype. The first .condition directly relates the invariant properties. The second
condition relates the behaviors of the individual methods, and thus preserves any

observable behavioral property of any program that invokes those methods. The
third condition relates the overall histories of objects, guaranteeing that the possible

t It is i. _kov and Wing's "constraint"-based subtype definition, and is taken from Fig. 4 of [LW94].

170 Wing and OckerblOom

DEFImT_ON OF THE SUBTYPE RELATION, __: a = (O_,S,M) is a

subtype of v = (Or, T, N) if. there exists an abstraction function, c_ :
S _ T, and a renaming map_ v : M _ N, such that:

(i) Subtype invariants ensure supertype invariants.

• Invariant Rule. For all computations, c, and all states p in c
for all x : a:

Ir[A(xp)/xp]
(ii) Subtype methods preserve the supertype methods' behavior. If

mr of _"is the corresponding renamed method m¢ of a, the fol-
lowing rules must hold:

• Signature rule.

- Contravariance of arguments, mr and ma have the same
number of arguments. If the list of i argument types of mr
is a and that of m¢ is b, •then Vi. ai _--<bi.

- Covariance of result. Either both mr and m¢ have a result
or neither has. If there is a result, let mr'S result type be a
and m¢'s be b. Then b -< a.

- Exception rule. The exceptions signaled by ma axe contained
• in the set of exceptions signaled by mr.

• Methods rule. For all x : a:

- precondition rule. mr.pre[a(Xpre)/Xpre] =:_ma.pre.
- postcondition rule.

 ..post =,).lx,,,,, x,,o,,)Ix,,o,]
(iii) Subtype constraints ensure supertype constraints.

• Constraint rule. For all computations c, and all states Pi and
Pk in c where i < k, for all x • a:
c.

Fig. 8.4. Definition of the Subtype Relation.

histories (viewed abstractly) in the subtype specification are also possible histories

in the supertype specification.

Figure 8.5 gives a type specification for pixel_map, which is a supertype of both

GIF and PNG. To show that GIF is a subtype of pixel_map (Figure 8.2), we define

the following abstraction function:

0_ M " G _ PM
Vi, j " Integer. a_ M (g)[i, j] = overlay(g, i, j)

Using this abstraction function, the proofs that the invariant, signature, methods,

and constraint rules either are straightforward to show or trivially hold. The only

noteworthy aspect of pixel_map's specification is the nondeterminism specified for

its set_color method, which is more liberal than that for both GIF images and PNG

images (as we will see in Section 8.4). A call to set_color can always either fail

Respectful Type Converters for Mutable Types 171

pixel_map: type

uses PixelMap (pixel_map for PM)
for all p: pixel_map

invariant true
constraint true

color get_color (i, j: int)
ensures result = p[i, j]

bool set_color (i, j: int; c: color)
modifies p
ensures (result = false A Ppre = Ppost) V

(result = true Ac e colorrange(ppost) A c = ppoa[i, j] ^
Vk, l : Integer.(k _ i V l _ j) =*,pr_,[k,l] = ppo,t[k,[])

end pixel.map

Fig. 8.5. A Larch Type Specification for Pixel Maps.

(making no change) or succeed (possibly adding a new color to the pixel_maps's
color range). We exploit this nondeterminism later in our proofs.

8.3 Respects •

8.3.1 Definition of Respectful Type Converter

Suppose we have two types A = (OA, VA, MA) and B = (OB, VB, MB). A converter,
K, is a partial function from VA to VB. Thus when we say that a converter maps

from type A to type B we mean more precisely that it maps the value space of

type A to the value space of type B; for notational convenience, we continue to

write the signature of K as A -_ B. To ensure the converter is consistent with

B's specification, the specifier should show that the values of Vs to which K maps
satisfy B's type invariant.

Figure 8.6 gives the definition of the respects relation for a converter K : A --_ B

and type T. The first two conditions (under Methods) state that the original value
and the converted value are indistinguishable when viewed through the methods (in

particular, the observers) of type T. Let a stand for Ypre used in the definition

(the value of the object of type A before the call to T's method rn). Then the
first condition requires that m's precondition holds for a's abstraction under c_ iff
it holds for the converted value of a abstracted under •/_. Thus from T's viewpoint,

if m is defined for A's values, it should be defined for B's values, and vice versa.

The second condition requires that m's postcondition holds for a's abstracted value
under c_ iff it holds for the converted value of a abstracted under/_. Thus, given

172 Wing and Ockerbloom
..

DEFINITION OF RESPECTSRELATION:Let K : A _ B be a partial
function mapping values of type A to values of type B. Let A _ T and
B -<T and let a : A -+ T and/_ : B --+T be the abstraction functions
for showing the corresponding subtype relations hold. Then converter
K respects T if the following conditions hold:

• Methods: For each method m of T, and for all objects x : T,
y : A, and z • B, and for all subcomputations Ypre mA Ypostand
Zpre ms zpost, such that mA and ms are invocations of A's and B's
corresponding methods of m, Ypre E dam(K), and K(ypre) Zpre:

(i) m.pre[a(y_re)/Xpre] ¢_ m.pre[fl(Zpre)/xpre] and
(ii) m.post[a(ypre)/Xpre,a(ypo,t)/xpo,t]

• m.post[Cz)lxe, Czpo.t)lxpo.]
• Constraint: For all integers i, j, and k, where 0 _<i _ j _ k, all

histories po...Pk and ¢o...¢k, and for all objects x • T, y : A, and z • B
such that Ypi E dora(K) and K(yp_) = zcj:
CT[a(p,)lxp,, C)lx]

Fig. 8.6. Definition of the Respects Relation.

that m is defined, then its observed state must be the same for A's values and B's

values from T's viewpoint.

The last condition (labeled Constraint) requires that T's constraints between

any two points of any history must be the same for an unconverted object of type
A as for a converted object of type B. This is trivially true for two points before

the conversion and for two points after the conversion; the condition more generally

handles the case where one point, pi, is before the conversion, and one point, Pk,

is after the conversion, where the point of conversion is pj. Thus, from T's view-

point, the converted object's later abstracted states are consistent with the earlier

abstracted states of the original object, given the history properties of T. To put

it another way, now let a stand for ypj used in the definition. If T's history con-
straint holds, then an observer cannot tell that the object with the new value after

conversion, K(a), is any different from the object with the original value, a, before
conversion.

These conditions together guarantee that T's behavior is preserved by the con-

version of objects of type A to those of type B. Informally, T cannot distinguish

between an object with the original value and an object with the converted value,

even when taking the subsequent histories of the objects into account. Thus K

respects T.

Claim 1 I]fa and K(a) abstractly map to the same value in T, i.e., a(a) = /3(K(a))
]for all a in the domain of K, then the respects relation trivially]follows.

Respectful Type Converters for Mutable Types 173

This special case is often useful in proofs that a converter respects a type, as we
will see Section 8.4.

8.3._ Discussion of Definition

The definition of the respects relation has a similar structure to the definition of the

subtype relation. Like the subtype relation, the respects relation includes methods
and constraint rules. The Methods rules show that the observable state of the

original object and the object with the converted value are indistinguishable (from

the respected type's point of view) at the time of conversion. The Constraint rule

shows that the abstract history of the object with the converted value is consistent
with the past abstracted history of the original object. Unlike the subtype relation,

the respects relation does not need an invariant rule. Since both types A and B are
subtypes of the respected type T, all objects of those types must conform to the

invariants of T, by the definition of subtype, so restating the invariant rule here for

particular A and B objects would be superfluous.

We considered various alternate definitions of the respects relation. One of them

explicitly modeled a computation involving object z • B, and required it to corre-

spond exactly to a computation involving object y : A, in rules like the ones above.

Another did not explicitly consider histories or computations at all, but simply

compared values of an object y • A to values of a corresponding object z : B, and
made sure the converted values of z matched the original values of y at every state.

The first alternative was more complex than necessary; the second, too simplistic.

Moreover, both failed to accommodate cases where the history of an object with a

converted value diverges from that of an object with an original value, a situation

we want (and need) to allow. (In the next section, we will see examples of this
phenomenon. One common case occurs where one of the types in question is less

constrained than the other.) The history of the original object and that of the con-

verted object are allowed to diverge after the point of conversion, as long as both

(abstracted) histories are consistent with the past (abstract) history of the original
object, with respect to the respected type's constraints. As long as this consistency

property holds, there should be "no surprises" from the respected type's point of
view after a conversion.

8.4 Two Examples

The first example shows how our definition handles mutable methods, and hence

mutable types. The second example goes one step further and shows how we handle
history properties as specified in nontrivial constraint clauses.

174 Wing and Ockerbloom

8.4.1 PNG and: GIF Ezample Revisited .'

Let us look at the PNG to GIF example more carefully. First, we give the type

specification for PNG images and a:n abstraction function that enables us to argue
that PNG is a subtype of pixel_map. Then we consider converters between PNG
and GIF, to argue that no total converter from PNG to GIF respects pixel_map,
but that some converters from GIF to PNG do.

The type specification for PNG images is given in Figure 8.7. Note we have 1

a nontrivial application of the renaming map, v, where v(get_corrected_color) =

get_color, and v(set_corrected_color) = set'color. (Only some of the methods for

PNG have corresponding supertype methods; the rest are left unmapped by v.)
We are always allowed to set a PNG image's pixels to new colors, with no limit

on the total number of colors in the image; this freedom follows from the trivial

type invariant and set_corrected_color's specification. In contrast, we are allowed to
set a GIF image's pixels to new colors only when the total number of colors does
not exceed 256. The nondeterminlsm in the pixel_map supertype (Figure 8.5) ac-

commodates both subtype specifications. In particular, for PNG images, the color

range grows as more colors are added, so that set__corrected_color always success-
fully sets a color, if a coordinate is set within the PNG image's bounds. Moreover,

although the pixel..map supertype does not have any concept of coordinate bound-

aries, its set_color method can fail for any reason, thus accommodating the behavior
of PNG's set_corrected, color in the case that the coordinates are out of bounds.

PNG images differ from pixel_map objects in two ways: (1) they are framed and

(2) associated with each PNG object, p, is a "gamma" value, denoted gamma(p),
used in a gamma correction function, gc. The gamma correction function corrects for

differences among monitors; some are dimmer than others and thus have different
color balances. We abstract from the intricacies of gamma correction functions;

for our purposes here, they take as arguments a color, an input gamma factor, an

, output gamma factor, and return a color. The constant, STDG, is the standard
gamma value for normal monitors.

We define the following abstraction function to show that PNG is a subtype of

pixel_map:

C_PM " P --4 PM

gc(p[i, j], gamma(p), STDG) l

ifxrnin(p) < i <_xmax(p)l A 1

Vi, j" Integer. aPM(p)[i,j] = ymin(p) <<j < ymax(p)
BLACK, otherwise

Consider a converter, K • P _ G, that maps values of PNG images to GIF values.

Claim 2 There is no such converter that respects pixel_map, if the converter is

defined for PNG images of more than 256 colors.

Proof: A simple counting argument suJfices. First we show that .for a given PNG

Respectful Type Converters for Mutable Types 175

PNG: type

uses PNGImage (PNG for P)
for allp: PNG

invariant true
constraint true

color get_uncorrected_color (i, j: int)
requires inflame(p, i, j)
ensures result - p[i, j]

gamma get_gamma 0
ensures result -- gamma(p)

int get_xmin 0
ensures result.= zmin(p)

... and similarly for get_xmax, get_ymin, and get_ymax ...

color get_corrected_color (i, j: int)
ensures if inflame(p, i, j)

then result = gc(p[i, j], gamma(p), STDG)
else result = BLACK

bool set_corrected_color (i, j: int; c: color)
modifies p
ensures same_bounds.and_gamma(ppre , Ppost) A

if inflame(p, i, j)
then c = gc(ppost[i, j], gamma(ppo,t), STDG) A

c E colorrange(ppost) A
Vk,l: Integer.(k# i Vl # j) _ ppr.[k,l]=ppo.,[k,l]))̂
result -- true

else P_e = Ppost A result = false

end PNG

Fig. 8,7. A Larch Type Specification for PNG Images.

value, p, where I colorrange(p) I= n and n > 256, its abstracted pixeLmap value,

aRM (p), also has at least e56 colors. From the abstraction function, a_ M(p)[i, j] =

gc(p[i,j], gamma(p), STDG), we know that every array element of p maps to some

array element of _M (19). Furthermore, if two array elements in p have different

colors, so do the corresponding cells in c_PM (p). To prove this, we show that if two

gamma corrected colors are the same, then the original colors, cl and c2, also have

to be the same, that is,

176 Wing and Ockerbloom

Suppose
1. gc(cl ,gamma(p), STDG) = gc(c2, gamma(p), STDG)

By the "transitivity" and "reflexivity." properties of gamma correction functions (see the
Appendix),

we know that

2. gc(gc(cl, gamma(p), STDG), STDG, gamma(p)) = cl
By substitution in line 1, we get

3. gc(gc(c2, gamma(p), STDG), STDG, gamma(p)) = cx
Yielding

_. C2 = C1

So if there are n > 256 colors in p then there are also at least n colors in a PM (19).

Next we show that the conversion of p to a valid GIF image value K(p) would

cause the GIF value to be observably different from the PNG value, when viewed

through pixel_map's interface. K(p) can have a maximum of 256 colors by the

type invariant of GIF image. Furthermore, the abstraction mapping of K(p) to a

pixel_map value, aPM(K(p)), cannot add any colors to colorrange(K(p)) (except
a PM and hence by the definitionfor BLACK), since we see from the definition of G ,

of overlay, that every c E colorrange(aPM(K(p))) is either BLACK or one of the
colors used in one of the frames of K(p). Therefore, there exists some color c such

that c E colorrange(aPpM(p)) and c _ colorrange(_ M (K(p))). It follows that there

exists some i and j such that the result of calling pixel_map's observer, get_color with

arguments i and j will differ between a call on the original PNG image from a call

on the converted GIF image, that is, a_,M(p)[i,j] _ c_PM(K(p))[i,j] Therefore,
the converter cannot respect pixeLmap. [:3

It is possible, however, to have a converter from GIF images to PNG that respects

the pixel_map type.

Claim 3 There exist converters from GIF to PNG that respect pixel_map.

Proof: By existence. Here is a converter from GIF to PNG:

K:G--+P

K(g) = p where
xmin(p) = min({xmin(g[i]) 10 < i < len(g)}) ^
xmax(p) = max({xmax(g[i]) I0 < i < len(g)}) ^
ymin(p) = min({ymin(g[i]) l O< i < len(g)}) ^
ymax(p) = max({ymax(g[i]) 10 < i < len(g)}) ^
gamma(p) = STDG ^
Vi, j" Integer. p[i, j] = overlay(g, i, j)

Composing our converter with our abstraction function from PNG to pixel_map,

for an original gif value, g, we get an abstracted converted pixeLmap value, pro,
such that

Respectful Type Converters for Mutable Types 177

gc(overlay(g, i, j), STDG, STDG)
ifmin({xmin(g[k]) l O < k < ten(g)}) < i A

i <_max({xmax(g[k])lO < k < ten(g)}) ^
Vi, j • Integer . pro[i, j] =

min({ymin(g[k]) 10 g k < len(g)}) < j A

j < max({ymax(g[k])lO <_k < len(g)})

BLACK, otherwise

By the "reflexivity" property of gamma correction functions, we know that

gc(c,g,g) =c.

Furthermore, we know that from the definition of overlay that when i and j are

beyond the bounds of any frames in a frameset, overlay(g, i' j) is BLACK. In the

definition above, whenever i or j are outside the respective minima or maxima, then

(i,j) is outside any frame in the GIF. Therefore the definition above simplifies to

Vi, j: Integer . pm[i, j] - overlay(g, i, j)

which is exactly the same abstraction function as is used to map the original GIF

to a pixel map. The abstracted values are identical, so by Claim 1 (made at the end

of Section 8.3.1), the conversion respects pixel_map, o

Our assertion above may seem to go against our intuition, when we consider the

further histories of the original GIF and the converted PNG. After all, the same

sequence of mutations called at the pixel_map level can cause the histories of the

original object and the converted object to diverge. Indeed, our type specifications
for GIF and PNG mandate that the histories sometimes must diverge. Consider,

for instance, an object o which at some state p has exactly 256 colors. Attempting

to call set_color (within appropriate x and y bounds) with a 257th color must fail
for the original GIF object, since it has a maximum of 256 colors. However, it must

succeed for the converted PNG object, since set_color as defined on PNG images

cannot fail if it is called within the x and y bounds of the image. From this point on,

then, the histories of the original GIF image and the converted PNG image diverge.

For our conversion to respect pixel_map, however, it suffices that the GIF image

and the converted PNG image, at the time of conversion, have identical possible

futures from pixel_map's perspective. That is, we should not be able to• tell, given

only the mutations and requirements of pixel_map, that the object with the original
value and the object with the converted value were different at the point of conver-

sion. As long as this is true, programs expecting to operate on a pixel_map object
will not encounter surprises if the object they operate on had been converted from

a GIF to a PNG image.

Our pixel_map type has only one mutator, set_color. All we know about set_color

is that any attempt to add a new color to a given pixel_map might succeed or might
fail. Either outcome is possible from pixel_map's perspective, no matter how many

178 Wing and Ockerbloom

eventqueue

, (timestamp order,
bound may vary)

I
fixedqueue

(timestamporder,
bound cannot change)

/ \
short.queue longqueue

(timestamp order, (timestamp order, . '
bound ffi10) bound = 1000)

K: shortqueue longqueue

Fig. 8'8, A Queue Hierarchy.

colors are in a pixel map at a given time. So, from pixel_map's perspective, any
sequence of pixel_map method calls on both an original GIF object and a converted

PNG object will have the same possible future observed behaviors. Since the pos-
sible future histories of the PNG and GIF objects look the same from pixel_map's

point of view, there will be no surprises when converting from GIF to PNG, if one

assumes only the behavior specified in pixel.map.

8.4.£ Event Queues

The types in the previous example had invariants but no history constraints. In
this section's example of an event queue type family (Figure 8.8), we look at a

' conversion between constrained types, and •show which common supertypes the

conversion respects, and which it does not.

At the root of the type hierarchy, we have an eventqueue type that models buffered

event queues (Figure 8.9). We represent a value of an eventqueue object, q, as a pair,

[items, bound, of a set of the buffered items and a bound. Events in the queue must
be inserted in increasing timestamp order. The size of the queue buffer is bounded,

but the bound is not directly readable or writable by the eventqueue type. New

• events (if they have appropriate timestamps) can be inserted into the queue unless
the number of items already in the queue is equal to (or greater than)the bound.

The eventqueue type also has the overall constraint that the event at the head of
the queue at a state Pi has to have a timestamp less than or equal to the event
at •the head of the queue at any later state Pk. The constraint, however, does not

require that its bound be fixed, so the bound can vary over time. (The specification

subtly allows this possible mutation since the insert and remove methods each has

Respectful Type Converters for Mutable Types 179

eventqueue = type

uses EventQueue (eventqueue for Q)
for all q: eventqueue

invariant len(qp.items) < qp.bound
constraint timestamp(head(qp,.items)) < timestamp(head(qph.items))

bool insert (e: event)

requires timestamp(last(qpre.items)) < timestamp(e)
modifies q

ensures len(qpoat.items) < qpost.bound A
if len(qpre.items) < qpost.bound

then qpo,t.items = add(e, q_e.items) ^ result = true
else qpoa.items = qpre.items A result false

event remove ()
requires qr_e.items _ empty
modifies q
ensures qpoa.items = tail(qp_e.items) ^ result = head(q_e.items) A

len(qpoat.items) < qpost.bound

int size ()
ensures result = len(qpre.items)

end eventqueue

Fig. 8.9. A Type Specification forEvent Queues.

a modifies clause; though no mention of changing the queue's bound is made in

either of their postconditions, the presence of the modifies clause gives permission

to implementors to change that part of the queue's value and simultaneously warns

callers that they cannot rely on that part of the queue's value to remain the same,

Even more subtly, the condition in the if... then.., else clause for insert compares

the length of the buffer of the queue's pre-state with the bound of the queue's post-

state to account for the possibility of the bound changing as a side effect of calling

insert.)

Let fixedqueue (Figure 8.10) be a subtype of eventqueue which adds the further

constraint that the buffer bound cannot change. Again, there are no methods to read

the bound directly. Two subtypes of fixedqueue, shortqueue and longqueue, further

specify that the bound is fixed to be 10 and 1000 items, respectively (Figures 8.11

and 8.12). The subtype clause in a type specification includes an abstraction

function, c_, that relates subtype values to supertype values. Implicitly the clause

requires that the subtype provides all methods of its supertype; any method not

180 Wing and Ockerbloom

fixedqueue = type

uses E_/entQueue (fixedqueue for'0)
for all q: fixedqueue

invariant len(qp.items) < qp.bound
constraint timestamp(head(qp, .items)) < timestamp(head(qp_.items)) A

qp_.bound = qp_.bound

bool insert (e: event)
requires timestamp(last(qpre.items)) < timestamp(e)
modifies q
ensures qpre.bound = qpoet.bound A

if len(qpre.items) < qpoa.bound
then qpost.items = add(e, q_e.items) A result = true
else qpoa.item.s = q_e.items A result = false

event remove()
requires qpre.items _ empty
modifies q
ensures qpost.items = tail(qpre.items) Aresult = head(qpre.items) A

qpost.bound = q_e .bound

subtype of eventqueue
Vq: Q . a(q) - q

end fixedqueue

Fig. 8.10. A Type Specification for Fixed Queues.

renamed or redefined is "inherited" from its supertype as is. For example, short-
queue's insert does not redefine fixedqueue's insert, but fixedqueue's does redefine

t

' eventqueue's.
..

Claim 4 There is no conversion from shortqueue to longqueue, either partial or

total, that respects fizedqueue.

Proof: Consider a shortqueue object s in the domain of the conversion. By the

definition of shortqueue, its bound must be 10. Suppose a conversion is made of spj,

yielding a longqueue value l_. By the definition of the longqueue type, the bound
of the converted object must be 1000. Now consider spi prior to the conversion

and the value l_ after the conversion. The constraint of fizedqueue is violated,

since spi.bo_nd _ l_k.bound, and fizedqueue's constraint prohibits the bound from
changing between states. The Constraint condition of the definition of respects

does not hold. Hence, the conversion cannot respect fizedqueue. D

The histories of the converted object show the failure of the conversion to respect

Respectful Type Converters for Mutable Types 181

shortqueue = type

uses EventQueue (shortqueue for Q)
for all q: shortqueue

invariant len(qp.items) < qp.bound A qp.bound = 10
constraint timestamp(head(qp_.items)) < timestamp(head(qp_.items))

subtype of fixedqueue

Vq: Q. a(q) = q

end shortqueue

Fig. 8.11. A Type Specification for Short Queues.

longqueue = type

uses EventQueue (longqueue for Q)
for all q: longqueue

invariant len(qp.items) < qp.bound A qp.bound = 1000
constraint timestamp(head(q re.items)) < timestamp(head(qph .items))

subtype of fixedqueue

Vq : Q. a(q) = q

end longqueue

Fig. 8.12. A Type Specification for Long Queues.

fixedqueue. While it is possible to define a simple conversion from shortqueue to

longqueue that contains exactly the same items, the conversion of its bound (from

10 to 1000) changes possible future behaviors of the longqueue object in ways not

consistent with the fixedqueue constraints. Suppose, for instance, that we have a

program that fills up a queue buffer to determine its size, and uses this information

to allocate a fixed-size buffer of its own to store items pulled off the queue. At some

later point, after more items have been added to the queue, the program empties

the queue items into its own fixed-size buffer. If the queue bound has been increased

by a conversion, the program may overflow its previously-allocated buffer, causing
a crash or other errors.

To illustrate the incongruity above, we must track the behavior of the original

182 Wing and Ockerbloom

object and the converted object over time, through the point of conversion. It is

not enough simply to look at each state and to compare the original object's value
and the e0nverted object's value.in that same state. In the queue example, the

longqueue type is less constrained than the shortqueue type, and so some possi-

ble longqueue values are outside the range of any converter on shortqueue values.

Once a conversion takes place, we need to reason about the object in terms of its

longqueue values; moreover, it would be ill-defined in subsequent states to compare

its longqueue value to any shortqueue value. However, we can allow such nonsurjec-

tive converters as long as the converted object's value does not violate constraints

of the respected type.
For instance, it is possible to convert from shortqueue to longqueue in a way that

respects the more general eventqueue type.

Claim 5 There is a total conversion from shortqueue to longqueue that respects

eventqueue.

Proof: By existence. Here is such a converter:

K:Q--+Q "
K (q) = [q.items, 1000]

To see whether this conversion respects eventqueue, we first check the method

rules. The pre- and postconditions of the methods remove and size, and the precon-

dition of the method insert, depend only on the items portion of the queue value,

which is the same for both a shortqueue object s and a longqueue object I at the time

of conversion. The insert method's postcondition depends in part on the post-state

of bound, but since eventqueue allows bound to change on insert, eventqueue's spec-

ification permits either s or l's bound to change, and hence allows the operation to

insert an item or not for either object. (While s and l will in fact behave differ-
ently based on the more constrained specifications of shortqueue and longqueue, the

, eventqueue specification itself cannot be used to tell that anything changed in the

conversion.)

The only constraint of eventqueue is that the timestamp at the head of the queue

not decrease over time. Let Spi be any value of s before the conversion, So_ be the

value of s at the time of conversion, 1¢_ be the value of l at the time of conversion,
and lck be any value of I after the conversion. Since shortqueue and longqueue are
both subtypes of eventqueue, which includes the history constraint, we know that:

1. timestamp(head(so, .items)) < timestamp(head(soj .items)) and
Z. timestamp(head(lcj .items)) < timestamp(head(l¢_.items))

Furthermore, by the definition of our conversion,
3. Sot.items = l¢_.items

so therefore
.4. timestamp(head(sp¢.items)) = timestamp(head(l¢i .items))

By transitivity, then,
5. timestamp(head(so, .items)) < timestamp(head(l¢_ .items))

Respectful Type Converters/or Mutable Types 183

Hence, the constraint rule is satisfied. Therefore, the conversion, K, as a whole

respects eventqueue. El

Again, this result matches our expectations. The buffer-overflowing program

mentioned earlier got into trouble only because the programmer assumed that the

eventqueue's buffer bound would not change, and therefore allocated a fixed buffer

for receiving events from the queue. Programmers that do not assume that the

eventqueue's buffer bound is fixed should allow for arbitrarily many events to be

emptied from the queue, and thus avoid the error of the previous program.

8.5 Related Work

There are notions of "respectful" conversions that are stronger or weaker than the

one we present in this chapter; they may be more appropriate in certain situations.

in earlier work [WO99a], we gave a simpler model of respectful conversion for

immutable types. Since the objects are immutable, there are no mutators or history
properties to consider; hence, the predicates under the Methods condition are

simpler and the Constraint condition is entirely unnecessary. We showed in that

paper how the simpler model is useful for applications that •retrieve and analyze

data. When applied to mutable objects, however, the failure to consider history
properties may produce behavior in the converted object that is inconsistentwith

the past behavior of the original object, as we saw in our queue example.

A longer version [WO99b] of this chapter contains informal descriptions of other

real-world examples, including those used in the TOM context and those addressing

the Y2K problem; it also contains a formal proof of the "no surprises" claim for

pixel._map made at the very end of Section 8.4.1.

Applications that pass converted data back and forth between heterogeneous pro-

grams may require stronger guarantees on conversions. For example, the Mocking-

bird system [ACC97], defines a notion of interconvertibility where data conversions
are fully invertible. With this policy, data converted to another format can al-

ways be converted back without loss of information. This concept corresponds in

our model to a conversion between two representations of some type T, where the

conversion respects type T. While interconvertibility makes it easy to exchange

transformed data without risk of losing information, it is often too strong a con-
straint on conversions. Our model of respectful type conversions is more flexible. In

respectful conversions, some information can be lost or changed in the conve_rsion,

provided that the information and behavior of the respected type is preserved.

8.6 Summary

In this chapter, we extended our earlier definition of a novel notion of respectful type

converters to capture what behavior a conversion function preserves when trans-

forming objects of one type to another; our extension deals with mutable types. We

184 Wing and Ockerbloom

built on Liskov and Wing's notion of behavioral subtyping. Our notion of respect-

ful type converters could probably be adapted for any other notion of subtyping

(behavioral or not, dealing wiih mutable types or not).

Analyzing the types that a conversion respects allows developers to determine

where programs will continue to behave normally after data is converted, and where

they may behave unexpectedly or erroneously. Intuitively, if a conversion respects

a type T, then after an object of type A is converted to an object of type B in a

conversion that respects T, programs that operate on the objects using the interface

and expectations of T will encounter no surprises. Programs that use more detailed

interfaces or that rely on behavioral assumptions specified by A or B but not by

T, however, may encounter problems. Reviewing the assumptions programs make

about data and seeing what types conversions respect allow us to detect possible

conflicts introduced by converted data, and to adjust programs appropriately.

Bibliography

[ACC97] Auerbach, J. and Chu-Carroll, M. C. The Mockingbird System: A
Compiler-based Approach to Maximally Interoperable Distributed
Programming. Technical Report RC 20718, IBM, Yorktown Heights, NY,
1997.

[GG89] Garland, S. and Guttag, J. An Overview of LP, the Larch Prover. In
Proceedings of the Third International Conference on Rewriting Techniques
and Applications, pages 137-151, Chapel Hill, NC, April 1989. Lecture Notes
in Computer Science 355.

[HGJ+93] Homing, J., Guttag, J. w. S. G., Jones, K., Modet, A., and Wing, J. Larch:
Languages and Tools for Formal Specification. Springer-Verlag, New York,
1993.

[Jon98] Jones, C. Bad Days for Software. IEEE Spectrum, 35(9):47-52, September
1998.

' [Lis87] Liskov, B. Data Abstraction and Hierarchy. In OOPSLA '87: Addendum to
the Proceedings, 1987.

[LW94] Liskov, B. and Wing, J. M. A Behavioral Notion of Subtyping. ACM
TOPLAS, 16(6):1811-1841, November 1994.

[Ock98] Ockerbloom, J. Mediating Among Diverse Data Formats. Technical Report
CMU-CS-98-102, Carnegie Mellon Computer Science Department, Pittsburgh,
PA, January 1998. Ph.D. Thesis.

[Win97] Wing, J. Subtyping for Distributed Object Stores. In Proceedings of the
Second IFIP International Workshop on Formal Methods]or Open
Object-based Distributed Systems (FMOODS), pages 305-318, July 1997.

[WO99a] Wing, J. M. and Ockerbloom, J. Respectful Type Converters. IEEE
Transactions on Software Engineering, 1999. to appear.

[WO99b] Wing, J. M. and Ockerbloom, J. Respectful Type Converters for Mutable
Types. Technical Report CMU-CS-99-142, Carnegie Mellon Computer Science
Department, June 1999.

[Zar96] Zaremski, A. M. Signature and Specification Matching. Technical Report
CS-CMU-96-103, CMU Computer Science Department, January 1996. Ph.D.
Thesis.

Respectful Type Converters/or Mutable Types 185

Appendix: Larch Traits and Type Specifications

This appendix contains the following Larch specifications: Color trait for color

literals, ColorSet trait for sets of colors, Frame trait, FrarneSeq trait, GIFImage

trait, Gammas trait, PNGImage trait, PixelMap trait, Event trait, event type, and

EventQueue trait. Appendix A of the Larch Book [HGJ+93] contains traits for

Boolean, Integer, FloatingPoint, Set, Deque, Array2, TotalOrder, and Queue, all of
which we use below.

ColorLiterals: trait
% A trait for N colors where BLACK = 0 and WHITE = 1 and N >> 256.

Color enumeration of BLACK, WHITE, 2, ..., N-1
end ColorLiterals

ColorSet(Color, CS): trait
includes ColorLiterals, Set (Color, CS)

end ColorSet

Frame(F): trait
includes Array2 (Color, Integer, Integer, F), ColorSet (Color, CS)
introduces

xmin, xmax, ymin, ymax : F --_ Integer
colorrange : F _ CS
inframe: F, Integer, Integer -_ Boolean

asserts for all i,j : Integer, f : F
xmin(f) < xmax(f)
ymin(f) <_ymax(f)
inframe(f,i,j) = (xmin(f) < i <_xmax(f)) A (ymin(f) <_ j < ymax(.f))
inframe(f , i, j) =_ f[i, j] E colorrange(f)

end Frame

FrameSeq(F, FS): trait
includes Deque (Frame, FS)
introduces

overlay: FS, Integer, Integer --_ Color
changepixel: FS, Integer, Integer, Color -_ FS
colorrange: FS -_ CS
__[__]"FS, Integer _ F

asserts for all i, j, k, l: Integer, c: Color, f: F, fs: FS
overlay(fs, i, j) = if len(fs) = 0 then BLACK else

if inframe(last(fs), i, j)
then last(fs)[i,j]
else overlay(init(fs), i, j)

colorrange(empty) = {}
colorrange(,fs F f) -- colorrange(fs) U colorrange(f)
(fs F f)[i] = if i = len(fs F f) then f else fs[i]
overlay(changepixel(fs, i,j, c), k, l) = if i = k A j = l then c else overlay(fs, k, l)

exempting

Vi "Integer . empty[i]

186 Wing and Ockerbloom

vi < o . Is[i]
Vi >_ten(Is) . Is[i]

end FrameSeq

GIFImage: trait
includes FrameSeq (G for FS), ColorSet(Color, CS)
asserts for all 9: G

BLACK E colorrange(g)
end GIFImage

Gammas: trait

includes FloatingPoint (Gamma for F)
introduces

STDG: _ Gamma

gc" Color, Gamma, Gamma -+ Color
asserts for all c: Color, g, h, i: Gamma

gc(c, g, 9) = c "reflexivity"

gc(gc(c,g,h),h,i) -- gc(c,g,i) "transitivity"
end Gammas

PNGImage: trait
includes Frame (P for F), Gammas
introduces

gamma: P -_ Gamma
same_bounds_and_gamma: P, P -_ Boolean

asserts for all p, _. P
same_bounds_and_gamma(p, q) = (gamma(p) = gamma(q)^

zmin(p) = xmin(q) ^ zmax(p) = zmax(q) A ymin(p) = ymin(q) A ymax(p) =
ymax(q))

end PNGImage

PixelMap: trait
includes Array2 (Color, Integer, Integer, PM), ColorSet (Color, CS)
introduces

colorrange: PM -+ CS
asserts for all i, j: Integer, pro: PM

BLACK E colorrange(pm)

pm[i, j] E colorrange(pm)
end PixelMap

Event: trait

includes TotalOrder (Time for T) •
introduces

timestamp: Ev _ Time

event: type •
uses Event (event for Ev)

end event

EventQueue: trait
includes Queue (Ev for E), Event

Q tuple of items: C, bound: Integer

